
Standardizing Boolean Transforms

Alan Mishchenko, Yukio Miyasaka, John Wawrzynek, Robert Brayton
University of California, Berkeley

alanmi@berkeley.edu

Abstract— This paper reviews several flavors of Boolean
resubstitution and shows that many known implementations of
logic rewriting, circuit restructuring, and Boolean decomposi-
tion can be expressed using resubstitution. It proposes a unified
representation of individual instances of the resubstitution
problem and several solvers with different runtime/quality
tradeoffs. The solvers are implemented in ABC and ongoing
experiments show that they cover a broad range of use-cases
in logic synthesis and formal verification.

I. INTRODUCTION

In the age when both runtime and quality of results
produced by hardware design flows pose significant chal-
lenges, it is helpful to rethink Boolean transforms, classify
and prioritize them, and come up with a standard way to
solve them. In practice, it means developing solvers with
different runtime/quality tradeoffs accepting problems in a
unified representation format, similar to how a variety of SAT
solvers can solve Boolean satisfiability problems specified
using the CNF representation in DIMACS format [1]. This
is particularly helpful in the age of multicores and GPUs,
because having a standard representation and a uniform
interface helps deploy diverse workloads in the parallel
setting.

When talking about Boolean transforms in this paper, we
consider individual instances of Boolean computations, such
as decomposing a small Boolean function into a minimum set
of two-input gates, restructuring a logic cone to have fewer
nodes, or re-expressing a node in the lookup-table network
to be independent of timing critical fanins.

Each of these instances is solved by one call to a Boolean
transform solver (such as a decomposition package or a
rewriting engine). Typically a series of similar transforms is
applied to the design representation, resulting in a cumulative
improvement of the target function. This is similar to how the
same SAT solver can be used to solve a series of related SAT
problems represented in CNF. In some cases, the problems
are completely independent while in other cases they are
related through shared logic or timing.

When characterizing a Boolean transform, we may ask the
following questions:

• is it applicable to completely-specified functions,
incompletely-specified functions (functions with don’t-
cares), and Boolean relations

• is it applicable to single-output or multiple-output
Boolean functions/relations, resulting in logic cones
with logic shared across different outputs

• how a function is represented (truth table, SOP, BDD,
AIG, CNF, etc)

• can the transform take advantage of side-divisors, that
is, available nodes potentially useful as building blocks
for the target functions (in the simple case of decompos-
ing a single-output function without surrounding logic,
the only divisors are the primary inputs)

• what is the goal of the transform (minimizing area,
delay, switching activity, etc)

• what is the runtime/memory/data-transfer budget
• is it possible to err on some inputs (as in machine

learning or in approximate synthesis)
In this paper, we distinguish and characterize three types

of Boolean resubstitution: exact synthesis, don’t-care-based
resubstitution, and circuit rewriting, which have different
runtime/quality tradeoffs, discussed in detail in Section IV.
We also propose resubstiution solvers to efficiently solve
individual instances of resubstitution problems of the above
three types, uniformly represented using the proposed format.

In the rest of the paper, we give some background
(Section II), present the simulation-guided implementation
of Boolean methods that largely motivated this work (Sec-
tion III), describe the three flavors of resubstitution while em-
phasizing their tradeoffs and use-cases (Section IV), propose
a unified input/output representation format (Section V), and
describe the current implementation in ABC (Section VI),
followed by conclusions and open problems (Section VII).

II. BACKGROUND

III. SIMULATION-GUIDED IMPLEMENTATION OF
BOOLEAN TRANSFORMS

The efficiency of bit-parallel simulation (when a large
number of simulation patterns is packed into 64-bit machine
words and efficiently simulated through the circuit using
bitwise operators) and the use of simulation signatures (when
nodes’ functions can be exactly or approximately represented
using their simulation information) leads to a new and
efficient way of implementing Boolean transforms, called
simulation-guided paradigm [2].

We briefly discuss this paradigm here, because it motivates
the proposed standardization of the Boolean transforms and
is likely to benefit from it.

The reason why simulation-guided computations are im-
portant is because of their fast runtime and high scalability,
compared to more traditional Boolean computations based
on SOPs, BDDs, and SAT. For small functions (up to 16



inputs), simulation-based computations can be made accurate
because the complete truth table of each node can be
represented and manipulated using simulation signatures. For
larger functions (and even for functions of 10-16 inputs, for
which complete truth tables can be used) a speedup can be
obtained by approximating the functionality of the nodes
using approximate simulation signatures.

To this end, whenever a circuit size exceeds 10 inputs,
the nodes’ functions can be represented using simulation
signatures created using, say, 256 randomly generated input
patterns. This approximate representation can be used to
compute functional properties and perform logic restructur-
ing. In the end, efficient SAT-based equivalence checking
can be performed [3]. If the equivalence check passes, a
given instance of a Boolean transform is correct and the
computation moves to the next node; if, however, the check
fails, we collect a randomized set of counter-examples failing
the check and append them to simulation signatures.

For convenience, we may choose to collect 64 different
counter-examples because this is equivalent to appending one
machine word to the simulation signatures of the nodes. Only
this one additional machine word of simulation information
need to be recomputed before the next attempt to perform
the Boolean transform, while all the existing simulation
information remains valid.

The advantage of the approximate representation using
simulation signatures is that it is compact and thus one
iteration of a Boolean transform can be orders of magnitude
faster than when it is implemented using an accurate repre-
sentation (such as a truth table, BDD, or SAT). However,
in practice, several refinement iterations may be needed.
Overall, the simulation-guided computations tend to run
faster and be more scalable than their accurate versions.
Symbolic sampling [4] is a similar approach that has been
proposed for approximating nodes’ functions using BDDs.

IV. RESUBSTITUTION SOLVERS AND THEIR USE-CASES

A. Exact synthesis

Exact synthesis [5]–[9] is the least scalable method, which
can handle the general case of multi-output Boolean relations
and synthesize provably smallest circuits. The method can be
implemented using SAT solving or functional enumeration.
It has been used to synthesize minimum circuits for any 5-
input function but it fails to finish on many 6-input functions.
The fact that this method is applicable multi-output Boolean
relations makes it the only truly multi-output synthesis
method implemented in ABC where all other methods are
single-output in the sense that they can modify the function
of only one node while assuming that the function of other
nodes remains unchanged.

B. Don’t-care based resubstitution

Don’t-care based resubstitution [10]–[12] works for single-
output incompletely-specified functions with side-divisors
representing nodes already existing in the circuit. It is
typically performed in two phases: first, a minimal subset
of side-divisors is computed resulting in the support of a

resubstitution function; second, the functional representation
of the target function is computed. This method is not the
most fast and scalable, this is why its use is often limited to
post-mapping resynthesis and high-effort area optimization.

C. Logic rewriting

Logic rewriting [13], [14] is the most scalable logic
synthesis method implemented in ABC. It is applicable to
four-input functions with side-divisors found in the surround-
ing logic. It has been extended to work with five-input
cuts [15] and has been further generalized by orchestrating
several transforms to be performed interchangeably [16].
The method makes local changes in the contest of structural
hashing [17], which employs a global hash table storing all
available nodes. Because it is very fast, it can be iterated,
resulting in non-local changes. The high speed and scalability
of this method makes it applicable to large designs.

V. REPRESENTATION FORMAT

This section discusses the unified representation format
used by all Boolean resubstitution engines presented in this
paper. This is an input/output format because it describes the
representation of both the input functions/relations and the
output circuits produced by resubstitution.

After a careful consideration and experiments with dif-
ferent format, we adopted a variation of the Espresso PLA
format [18] as a way to represent input data in this project.

The PLA format represents Boolean functions by listing
the number of their inputs (.i <num>) and outputs (.o
<num>), followed by a table of input/output combinations.
At the end of the table, there is an optional final line (.e).

According to the PLA format description, “each position
in the input plane corresponds to an input variable where
a 0 implies the corresponding input literal appears comple-
mented in the product term, a 1 implies the input literal
appears uncomplemented in the product term, and - implies
the input literal does not appear in the product term” [18].

For the output part, we adopt type fdr described as
follows: “with type fdr, for each output, a 1 means this
product term belongs to the ON-set, a 0 means this product
term belongs to the OFF-set, a - means this product term
belongs to the DC-set, and a implies this product term has
no meaning for the value of this function” [18].

Incompletely-specified functions can be represented in this
format by using symbol “-” in the output column or by not
listing an input minterm or cube in the PLA description, in
which case it is assumed to be a don’t-care. Boolean relations
can be represented by allowing the same input combination
to appear several times with different output values.

Fig. 1 shows three examples of the input data represen-
tation in the PLA format: (a) is the Boolean function of
a full-adder with three inputs, two outputs, and eight input
combinations; (b) is the Boolean function of a full-adder
modified to allow for any output value when the input is
111; (c) is the Boolean function of a full-adder modified to
be a Boolean relation, which allows for the outputs to be
both 00 and 11 when the input is 111.



.i 3

.o 2
000 00
001 01
010 01
011 10
100 01
101 10
110 10
111 11
.e

(a)

.i 3

.o 2
000 00
001 01
010 01
011 10
100 01
101 10
110 10
111 --
.e

(b)

.i 3

.o 2
000 00
001 01
010 01
011 10
100 01
101 10
110 10
111 00
111 11
.e

(c)
Fig. 1. Examples of the input data representation.

As stated above, side-divisors are functions that may
already exist in the circuit and thus could be used to express
the target function along with the primary inputs. If side-
divisors are present, their number is added to that of the
primary inputs in the .i line and their values are listed in
the input/output table after input and before outputs.

The synthesized circuit can be represented as an AIG
[19] composed of the constant node, inputs (I) (including
primary inputs and side-divisors if any), internal nodes (A),
and outputs (O). In this AIG, the object with ID 0 is reserved
for the constant 0 function, followed by I inputs with IDs
ranging from 1 to I , followed by A internal nodes with IDs
ranging from 1 + I to I +A, followed by outputs with IDs
ranging from 1 + I +A to I +A+O. The total number of
objects in this AIG is N = 1 + I +A+O.

The synthesized circuit is represented as a list of pairs of
integer numbers. The constant node and the inputs are not
explicitly listed because it is assumed that their number is
known. The internal nodes are represented as pairs of fanin
literals, and the outputs are represented as pairs of duplicated
literals of their drivers.

For example, function F = ab + cd can be represented
as an AIG with four objects: three internal nodes and one
output. Since each of the four objects is a pair of integer
numbers, the resulting representation is an array of eight
numbers: 2 4 6 8 11 13 15 15. The first pair of numbers
(2 and 4) represents node ab, because the IDs of inputs
a and b are 1 and 2, respectively, and the positive literals
of these inputs are 1 × 2 + 0 = 2 and 2 × 2 + 0 = 4.
Similarly, the second pair (6 and 8) represents node cd. The
third pair (11 and 13) represents negative literals of the first
two internal nodes whose IDs are 5 and 6. Finally, the output
is a duplicated negative literal (15 and 15) of the last internal
nodes whose ID is 7 because 2× 7 + 1 = 15.

If a synthesized circuit is associated with an input PLA
file, there is no ambiguity regarding the number of inputs.
However, if the synthesized circuit in the proposed format is
found in a stand-alone file, the number of outputs (O) can be
found by looking for pairs of identical numbers, while the
number of internal nodes (A) is the number of remaining
pairs, and the number of inputs (I) is the last node ID
pointed to by an output minus the number of internal nodes.
Alternatively, the output file may contain the first line listing
the number of inputs (I), internal nodes (A) and outputs

(O). For other needs, such as interfacing with the external
tools, the synthesized circuit can be dumped in the standard
AIGER format [19].

VI. CURRENT IMPLEMENTATION

All three engines are implemented in ABC and are avail-
able (or will be available shortly) as separate commands
applicable to the specification in the proposed format.

A. Exact synthesis

Exact SAT-based synthesis is implemented as commands
twoexact and lutexact, which take an input PLA file
on the command line. Alternatively, if the input is a single-
output completely-specified function, the function can be
represented as a truth table on the command line. Currently
the exact synthesis is not integrated into any optimization
engine in ABC but there are external integrations [20].

B. Don’t-care based resubstitution

Don’t-care based resubstitution is implemented as a com-
mand resub_core, which takes an input PLA file on the
command line. Currently this flavor of resubstitution is used
in commands resub [21] and mfs2 [22].

C. Logic rewriting

Circuit rewriting [13] was implemented in the first public
release of ABC in 2005 and has become a de facto standard
for fast logic synthesis. The original command rewrite
was later superseded by drw. It was found experimentally
that iterating AIG rewriting often results in smaller AIGs
than employing other slow and complicated Boolean trans-
forms. However, ultimate area reductions cannot be achieved
by circuit rewriting alone and requires the use of high-effort
Boolean methods, such as the AIG-based transduction [23]
(command &transtoch).

VII. CONCLUSIONS AND OPEN PROBLEMS

The goal of this tutorial is to give the reader an under-
standing of Boolean resubstitution, its three flavors offering
different runtime/quality tradeoffs, its place in a logic synthe-
sis flow, and how it is implemented in ABC using simulation
signatures. The reader may also be able to run ABC com-
mands performing these and other transforms and get started
with writing their code to customize and generalize available
implementations.

Several open research problems are listed below.
Problem 1: Adapting circuit rewriting methods to work

with very large circuits, in particular, AIGs containing more
than 10 million nodes. Although such massive AIGs can be
currently handled in ABC, the runtime is often prohibitive.
The challenge is to obtain a wide spectrum of runtime/quality
tradeoffs, which allows some users to spend 1 minute to
reduce the AIG size by, say, 10%, while other users may
choose to spend 10 minutes and reduce the AIG size by 15%,
while yet another user may choose to run the tool overnight
and reduce the AIG size by 20%. The latter overnight option
may already exist in ABC, but the former 1-minute option is
currently missing. It is true that large AIGs can partitioned



into smaller ones, but many non-scalabilities still remain even
when handling 100K-node partitions, while using smaller
partitions can limit optimization quality due to inability to
optimize across the partition boundaries.

Problem 2: Developing AIG optimization methods to be
applied before technology mapping, which are aware of the
LUT size or the technology library used for the mapping.
This is because the current AIG optimization methods are
only aware of the AIG node count and level count, which
often results in a substantial structural bias, which shows
when a well-optimized AIG is mapped into LUTs or into
a standard-cell library, resulting in larger area and/or delay
than when the unoptimized AIG is mapped into the same
library. Recent work has shown that standard-cell mapping
can be improved if tech-independent AIG-based synthesis is
customized to minimize factored-form literal counts [24].

Problem 3: Developing placement aware logic synthesis
methods, which explore logic restructuring in the context
of placement. This may require developing novel placement
proxy cost functions, which allow for estimating the results
of placement during synthesis and using the estimations in
the inner loop of logic restructuring. Recent work shows the
potential of this method, indicating that area can be reduced
by as much as 25% if logic structures are chosen while
evaluating the results using placement [25].

ACKNOWLEDGEMENT

This research was supported in part by the SRC Contract
3173.001 “Standardizing Boolean transforms to improve
quality and runtime of CAD tools”, the NSA grant “Novel
methods for synthesis and verification in cryptanalytic appli-
cations”, and donations from AMD, Siemens, and Synopsys.

REFERENCES

[1] DIMACS CNF format, https://jix.github.io/
varisat/manual/0.2.0/formats/dimacs.html.

[2] S.-Y. Lee, H. Riener, A. Mishchenko, R. Brayton, and
G. D. Micheli, “A simulation-guided paradigm for logic
synthesis and verification,” IEEE Trans. CAD, vol. 41, no. 8,
pp. 2573–2586, 2022.

[3] H.-T. Zhang, J.-H. R. Jiang, L. Amaru, A. Mishchenko, and
R. Brayton, “Deep integration of circuit simulator and SAT
solver,” in Proc. DAC, 2021.

[4] Y.-T. Lin, J.-H. R. Jiang, and V. N. Kravets, “Symbolic
uniform sampling with XOR circuits,” in Proc. ICCAD,
2020.

[5] N. Een, Practical SAT: A tutorial on applied satisfiability
solving, Invited presenation at FMCAD, 2007.

[6] D. E. Knuth, “Boolean evaluation,” in The Art of Computer
Programming, vol. 4A, Boston, MA, USA: Pearson Educa-
tion, Inc., 2015, ch. 7.1.2.

[7] W. Haaswijk, M. Soeken, A. Mishchenko, and G. D.
Micheli, “SAT-based exact synthesis: Encodings, topology
families, and parallelism,” IEEE Trans. CAD, vol. 39, no. 4,
pp. 871–884, 2020.

[8] F.-X. Reichl, F. Slivovsky, and S. Szeider, “Circuit mini-
mization with QBF-based exact synthesis,” in Proc. AAAI
Conf. on Artificial Intelligence, vol. 37, 2023, pp. 4087–
4094.

[9] S.-Y. Lee, J.-H. R. Jiang, A. Mishchenko, and R. Brayton,
“Enumeration of minimum fanout-free circuit structures,” in
Proc. IWLS, 2019.

[10] M. A. Perkowski, M. Marek-Sadowska, L. Józwiak, et
al., “Decomposition of multiple-valued relations,” in Proc.
ISMVL, 1997.

[11] V. N. Kravets and K. A. Sakallah, “M32: A constructive
multilevel logic synthesis system,” in Proc. DAC, 1998.

[12] A. Mishchenko and R. Brayton, “SAT-based complete don’t-
care computation for network optimization,” in Proc. DATE,
2005.

[13] P. Bjesse and A. Boralv, “DAG-aware circuit compression
for formal verification,” in Proc. ICCAD, 2004.

[14] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-
aware AIG rewriting: A fresh look at combinational logic
synthesis,” in Proc. DAC, 2006.

[15] N. Li and E. Dubrova, “AIG rewriting using 5-input cuts,”
in Proc. ICCD, 2011.

[16] Y. Li, M. Liu, M. Ren, A. Mishchenko, and C. Yu, “DAG-
aware synthesis orchestration,” IEEE Trans. CAD, to appear,
2024.

[17] M. Ganay and A. Kuehlmann, “On-the-fly compression of
logical circuits,” in Proc. IWLS, 2000.

[18] Input file format for Espresso (PLA-file), https : / /
user . engineering . uiowa . edu / ~switchin /
OldSwitching/espresso.5.html.

[19] AIGER format, https : / / fmv . jku . at / aiger /
index.html.

[20] F. Reichl, F. Slivovsky, and S. Szeider, “Circuit minimiza-
tion with exact synthesis: From QBF back to SAT,” in Proc.
IWLS, 2023.

[21] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis
using a simple circuit structure,” in Proc. IWLS, 2006.

[22] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang,
“Scalable don’t care based logic optimization and resynthe-
sis,” in Proc. FPGA, 2009.

[23] Y. Miyasaka, “Transduction method for AIG minimization,”
in Proc. ASP-DAC, 2024.

[24] A. T. Calvino, A. Mishchenko, H. Schmit, E. Mahintorabi,
and a. X. X. Giovanni De Micheli, “Improving standard-
cell design flow using factored form optimization,” in Proc.
DAC, 2023.

[25] R. Roy, J. Raiman, and S. Godil, Designing arithmetic
circuits with deep reinforcement learning, https :
//developer.nvidia.com/blog/designing-
arithmetic - circuits - with - deep -
reinforcement-learning.


