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DAG-aware Synthesis Orchestration
Yingjie Li, Mingju Liu, Haoxing Ren, Alan Mishchenko, Cunxi Yu

Abstract—Modern logic synthesis techniques use multi-
level technology-independent representations like And-
Inverter-Graphs (AIGs) for digital logic. This involves
structural rewriting, resubstitution, and refactoring based
on directed-acyclic-graph (DAGs) traversal. Existing DAG-
aware logic synthesis algorithms are designed to perform
one specific optimization during a single DAG traversal.
However, we empirically identify and demonstrate that
these algorithms are limited in quality-of-results due to
the solely considered optimization operation in the de-
sign concept. This work proposes Synthesis Orchestration,
which is a fine-grained node-level optimization implying
multiple optimizations during the single traversal of the
graph. Our experimental results are comprehensively con-
ducted on all 104 designs collected from ISCAS’85/89/99,
VTR, and EPFL benchmark suites. The orchestration
algorithms consistently outperform existing optimizations,
rewriting, resubstitution, refactoring, leading to an average
of 4% more node reduction with reasonable runtime cost
for the single optimization. Moreover, we evaluate the
orchestration algorithm in the sequential optimization,
and as a plug-in algorithm in resyn and resyn3 flows
in ABC, which demonstrate consistent logic minimization
improvements (1%, 4.7% and 11.5% more node reduction
on average). Finally, we integrate the orchestration into
OpenROAD for end-to-end performance evaluations. Our
results demonstrate the advantages of the orchestration
optimization techniques, even after technology mapping
and post-routing in the design flow.

I. INTRODUCTION

Logic optimization plays a critical role in design au-
tomation flows for digital systems, significantly impact-
ing area, timing closure, and power optimizations [1],
[2], [3], [4], [5], [6], [7], as well as influencing new
trends in neural network optimizations [8], [9]. The goal
of logic optimization is to achieve higher performance,
reduced area, and lower power consumption, all while
maintaining the original functionality of the circuit.
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Modern digital designs are complex and feature with
millions of logic gates, coupled with an extensive ex-
ploration space. This complexity underscores the impor-
tance of efficient, technology-independent optimizations
for design area and delay at the logic level. Key method-
ologies in modern logic optimization techniques are
conducted on multi-level, technology-independent rep-
resentations, such as And-Inverter-Graphs (AIGs) [10],
[11], [12] and Majority-Inverter-Graphs (MIGs) [4], [13],
for digital logic. Additionally, XOR-rich representations
are crucial for emerging technologies, as seen in XOR-
And-Graphs [14] and XOR-Majority-Graphs [15].

A framework for logic synthesis, ABC [5], intro-
duces multiple state-of-the-art (SOTA) Directed-Acyclic-
Graphs (DAGs) aware Boolean optimization algorithms.
These include structural rewriting (command rewrite in
ABC) [10], [16], [17], resubstitution (command resub
in ABC) [18], and refactoring (command refactor in
ABC) [10], all of which are based on the AIG data
structure. During the existing logic optimization process,
the algorithm considers a single specific optimization
method and applies the optimization based on a single
criterion [10]. Our empirical studies further reveal crit-
ical limitations inherent in the mainstream stand-alone
concept of logic optimization, particularly in missing
significant optimization opportunities. These opportuni-
ties are often overlooked due to a consistent tendency of
becoming stuck in ”bad” local minima. In other words,
the optimization of a node, when various applicable
optimization opportunities are present, is constrained
by the limitations inherent in the current stand-alone
optimization concept. For instance, as depicted in Figure
1, although node g is suitable for both refactoring and
resubstitution, it misses potential optimization opportu-
nities when subjected solely to rewriting.

In this work, we propose a novel logic synthesis
development concept, DAG-aware Synthesis Orches-
tration, that maximizes optimizations through Boolean
transformations by orchestrating multiple optimization
operations in the single traversal of the logic graph.
Specifically, we implement the synthesis orchestration
approach based on AIGs by orchestrating rewrite, refac-
tor, and resub implemented in ABC [5] in the single
optimization command orchestration. The orchestration
algorithm is orthogonal to other DAG-aware synthesis



2

algorithms, which can be applied to Boolean networks
independently and/or iteratively. Our results demonstrate
that applying orchestration in DAG-aware synthesis can
significantly improve logic optimization compared to the
existing optimization methods. We anticipate that the
concept of logic synthesis orchestration can be effec-
tively extended to other data structures, such as Majority-
Inverter Graphs (MIGs) [4].

The main contributions of the work are summarized
as follows:

• Our comprehensive analysis and examples (Figures
1 and 2) highlight significant optimization losses in
current logic optimization implementations.

• We propose two DAG-aware synthesis orchestra-
tion algorithms, Priority-ordered orchestration and
Local-greedy orchestration to define the criteria for
orchestrating rewrite, refactor, and resub in AIG
optimizations (Section III).

• We provide the performance evaluations and run-
time analysis on 104 designs from five bench-
mark suites (ISCAS’85/89 [19], ITC/ISCAS’99
[20], VTR [21], and EPFL benchmarks [22]), which
shows our orchestration technique achieves an av-
erage of 4.2% more AIG reductions compared to
existing logic optimization algorithms in ABC (Sec-
tion IV-A and IV-B).

• We provide the evaluations of sequential optimiza-
tions with orchestration algorithms, where the or-
chestration techniques show its performance advan-
tage of 4.7% for resyn and 11.5% for resyn3
(Section IV-C).

• We further integrate orchestrated logic optimiza-
tions into OpenROAD [23] for end-to-end de-
sign evaluations, demonstrating consistent AIG
minimization and area improvements for post-
technology mapping and routing (Section IV-D).

• Our approach is available in ABC [5] through a new
command, orchestration.

II. PRELIMINARY

A. Boolean Networks and AIGs

A Boolean network is a directed acyclic graph (DAG)
denoted as G = (V,E) with nodes V representing logic
gates (Boolean functions) and edges E representing the
wire connection between gates. The input of a node is
called its fanin, and the output of the node is called
its fanout. The node v ∈ V without incoming edges,
i.e., no fanins, is the primary input (PI) to the graph,
and the nodes without outgoing edges, i.e., no fanouts,
are primary outputs (POs) to the graph. The nodes with
incoming edges implement Boolean functions. The level

of a node v is defined by the number of nodes on
the longest structural path from any PI to the node
inclusively, and the level of a node v is noted as level(v).

And-Inverter Graph (AIG) is one of the typical types
of DAGs used for logic manipulations, where the nodes
in AIGs are all two-inputs AND gates, and the edges
represent whether the inverters are implemented. An
arbitrary Boolean network can be transformed into an
AIG by factoring the SOPs of the nodes, and the AND
gates and OR gates in SOPs are converted to two-inputs
AND gates and inverters with DeMorgan’s rule. There
are two primary metrics for evaluation of an AIG, i.e.,
size, which is the number of nodes (AND gates) in the
graph, and depth, which is the number of nodes on the
longest path from PI to PO (the largest level) in the
graph. A cut C of node v includes a set of nodes of the
network. The leaf nodes included in the cut of node v
are called leaves, such that each path from a PI to node
v passes through at least one leaf. The node v is called
the root node of the cut C. The cut size is the number
of its leaves. A cut is K-feasible if the number of leaves
in the cut does not exceed K. The logic optimization
of Boolean networks can be conducted with the AIGs
efficiently [24], [7] based on the Boolean algebra enabled
logic transformations.

B. DAG-Aware Logic Synthesis

To minimize logic complexity and size, subsequently
leading to enhanced performance, DAG-aware logic opti-
mization approaches leverage Boolean algebra at direct-
acyclic-graph (DAG) logic representations, aiming to
minimize area, power, delay, etc., while preserving the
original functionality of the circuit.

This is achieved through the application of various
technology-independent optimization techniques and al-
gorithms, such as node rewriting, structural hashing,
and refactoring. In this work, we focus specifically on
exploring DAG-aware logic synthesis using And-Inverter
Graphs (AIGs) representations. The AIG-based opti-
mization process, during a single traversal of the logic
graph, typically involves two steps: (1) transformability
check – checking the transformability of the optimization
operation for the logic cut in relation to the current node;
(2) graph updates – if the optimization is applicable, the
optimization operation is applied at the node to realize
the transformation of the logic cut and subsequently
update the graph.
Rewriting [10], denoted as rw, is a fast greedy algorithm
for logic optimization. It iteratively selects an AIG logic
cut with the current node as the root node and replaces
the selected subgraph with the same functional pre-
computed subgraph (NPN-equivalent) of a smaller size
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Fig. 1: The optimized graph produced by stand-alone optimization operations: (a) original AIG, graph size is 25;
(b) optimized AIG with stand-alone rw, graph size is 23; (c) optimized AIG with stand-alone rf, graph size is
23; (d) optimized AIG with stand-alone rs, graph size is 22.

to realize the graph size optimization. In the default
settings in ABC, the target logic cuts for each node are 4-
feasible cuts. For AIG rewriting, all 4-feasible cuts of the
nodes are pre-computed using the fast cut enumeration
procedure. In each iteration, the Boolean function for
the current logic cut is computed and its NPN-class
is determined by hash-table lookup. After trying all
available subgraphs, the one that leads to the largest
improvement at a node is used. For instance, Figure 1b
illustrates the optimization of the original graph shown in
Figure 1a using rw. The algorithm traverses each node in
topological order, checking the transformability of its cut
with rewriting. In Figure 1b, node k = efr is optimized
using rw, resulting in a reduction of 2 nodes for the
logic optimization.
Refactoring [10], denoted as rf, is a variation of the
AIG rewriting using a heuristic algorithm to produce
a larger cut for each AIG node. Refactoring optimizes
AIGs by replacing the current AIG structure with a
factored form of the cut function. For example, Figure
1c illustrates the optimization of the original AIG with
rf. Node g is optimized to the factored form of g =
ac(n+a) and the node w is optimized to w = qo(u+h).
As a result, the optimized graph with rf has a graph size
of 23 with 2 nodes reduction.
Resubstitution [18], denoted as rs, optimizes the AIG
by replacing the function of a node with functions of
other existing nodes, referred as divisors, within the
graph. This approach aims to eliminate redundant nodes
unnecessary for expressing the function of the current
node. In resubstitution, cuts containing no more than
12-16 leaves are considered, and the optimization is
performed using explicitly computed truth tables and
exhaustive simulation. During resubstitution, the intro-
duction of new nodes may occur to complete the func-

tionality in the AIG, which is a process known as k-
resubstitution (where k represents the number of newly
introduced nodes) and k should not exceed the number of
nodes saved by the optimization. In the default settings
of ABC, k-resubstitution is checked for k = {0, 1, 2, 3},
and the number of divisors in each cut is limited to
150. For example, in Figure 1a, the node g = ap, with
p = md, d = ac, and m = abc, implies g = abc. This
condition allows for resubstitution with node m, leading
to the removal of nodes g, p, and d from the graph,
as depicted in Figure 1d. Consequently, rs optimizes
the original AIG by reducing the graph size through the
removal of 3 nodes.
Definition 1: Stand-alone Logic Optimization: Stand-
alone logic optimization refers to the process of opti-
mizing the logic graph using a single pre-set optimiza-
tion criterion during the single traversal of the entire
graph. Example 1: The existing optimizations, such
as structural rewriting, refactoring, and resubstitution,
are stand-alone optimizations as they only assess the
transformability with respect to a single pre-set oper-
ation and update the graph based on the corresponding
optimization criterion.

III. APPROACH

In existing logic optimization algorithms that follow a
stand-alone optimization approach as shown in Figure 1,
certain nodes may miss optimization opportunities. For
instance, node g, which is suitable for both refactoring
and resubstitution, may be overlooked for optimizations
in rewriting. To further enhance the logic optimization
process in DAG-aware logic synthesis, we introduce
”Orchestration” for logic optimization in this work. This
approach is in contrast to Stand-alone Logic Optimiza-
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Fig. 2: The optimization opportunities with different optimization operations. The X−axis denotes the optimization
operations. The Y−axis denotes the number of valid iterations with the corresponding operation.
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Fig. 3: The Venn diagram for the design bfly—a detailed analysis of Figure 2f—illustrates the relationships as
follows: (a) among standalone optimizations; and (b) to (d) between orchestration optimization Ô1 (as defined in
Section III-C) and each of rw, rs, rf, respectively. In each diagram, we consider only the nodes that participate
in valid iterations within the respective optimizations. Furthermore, for Ô1 in diagrams (b) to (d), the number of
valid iterations is aligned with that of the corresponding optimization for comparison.

tion defined in Definition 1. We provide the details of
Orchestrated Logic Optimization in Definition 2.
Definition 2: Orchestrated Logic Optimization: Or-

chestrated logic optimization involves multiple optimiza-
tion operations being considered during a single traversal
of the logic graph. In each optimization iteration, mul-
tiple operations can be evaluated and applied based on
the predefined orchestration criteria.

In the orchestration optimization, multiple optimiza-
tions are made available for each node, thereby max-
imizing its optimization opportunities. Specifically, we
orchestrate optimization operations including rewriting
(rw), resubstitution (rs), and refactoring (rf), in a
single traversal of the AIG for the logic optimization.
The orchestration technique can be iteratively applied
to the AIG multiple times, in combination with other
optimization operations such as balance, redundancy
removal to achieve iterative DAG optimization. More-
over, the optimized AIG resulting from our orchestration
method can be verified for equivalence to the original
AIG using Combinatorial Equivalence Checking (CEC).

In this section, we first explore optimization oppor-
tunities in the single traversal of AIG for both stand-
alone optimizations and orchestrated optimization. We
then introduce two orchestration policies: Local-greedy
orchestration, which selects the operation yielding the
highest local gain (i.e., the number of nodes saved by
applying the optimization operation) at each node for
AIG optimization, and Priority-ordered orchestration,
which prioritizes operations in a predefined order for
AIG optimization at each node.

A. Optimization Opportunities Studies

First, we analyze the optimization opportunities in
a single traversal of the AIG for various optimization
methods. We record the number of iterations where op-
timization leads to graph updates, termed as ”valid itera-
tions,” in this analysis. The results for logic optimizations
using rw, rs, rf, and the orchestration method are
illustrated in Figure 2. The orange bar represents the
number of valid iterations with rw, purple for rs, and
blue for rf. The bar labeled ”Ours” shows the number
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of valid iterations with the orchestration optimization,
incorporating valid iterations from different optimiza-
tions (rw, rs, rf), indicated by the corresponding
colors within the bar. For instance, for the design voter,
stand-alone optimization methods (rw/rs/rf) result in
1917/2106/738 valid iterations respectively (Figure 2j).
In contrast, the orchestration method yields 3696 valid
iterations, presenting 93%, 75%, and 400% more valid
iterations than the rw, rs, and rf methods, respectively,
in a single traversal of the AIG.

For a better illustration, we present a Venn diagram
using design bfly in Figure 3 as a detailed analysis of
Figure 2f. Here, the orchestration algorithm employed is
the priority-ordered algorithm with Ô1, which prioritizes
rw most, then rs and rf least, and follows the definition
in Section III-C. The diagram in Figure 3a demonstrates
that while there are overlaps between different stand-
alone optimizations, most root nodes found are distinct
for each method. Additionally, the diagrams in Figure
3b to 3d for orchestration optimization and its cor-
responding stand-alone optimizations highlight unique
root nodes in both approaches. It is noteworthy that
the ratio of overlap to uniqueness varies with different
orchestration algorithms and across designs.

Our observations from this study highlight two key
points: (1) Stand-alone optimization algorithms can miss
significant optimization opportunities; (2) Orchestrating
multiple optimizations in a single DAG traversal can
introduce more optimization opportunities and more ef-
ficient logic optimization.

Given the context of orchestration, we can define the
theoretical solution space and its optimal solution as
follows: Consider a combinational And-Inverter Graph
(AIG), denoted as G(V,E). It is postulated that within
the entire solution space, which encompasses 3|V | pos-
sibilities, there exists at least one orchestration decision
ensuring that G(V,E) can be minimized to its smallest
possible form utilizing a single traversal algorithm. Con-
sequently, the theoretical upper limit for the complexity
associated with pinpointing the optimal orchestration
solution scales exponentially with the size of the graph,
represented by |V |. Nevertheless, within the scope of
Boolean minimization, it has been empirically observed
that the expansive solution space of 3|V | may actually
equate to a considerably reduced space of quality-of-
results, specifically concerning the dimensions of the
optimized AIGs. Note the solution space will increase
if orchestration elaborates more than three synthesis
techniques (i.e., increasing the base of the exponential
complexity). This space of results tends to be notably
constricted for smaller Boolean networks.

Thus, to orchestrate multiple optimizations in a single
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Fig. 4: The optimized graph produced by orchestration
optimization operations: (a) optimized AIG with Local-
greedy orchestration, graph size is 19; (b) optimized AIG
with Priority-ordered orchestration, graph size is 21.

AIG traversal, an effective orchestration policy (heuris-
tic) is essential. In this work, we propose two policies:
(1) The Local-greedy orchestration, which selects the
optimization operation resulting in the highest local
gain (node reductions from the logic transformation of
the operation) at the node for AIG optimization; and
(2) The Priority-ordered orchestration, which follows
a pre-defined priority order for orchestrating multiple
operations, i.e., applying optimizations according to the
order. These policies are detailed in Algorithms 1 and 2,
respectively.

B. Algorithm 1: Local-greedy Orchestration

The Local-greedy orchestration algorithm takes a
graph G(V,E) as input, where V represents the set of
nodes in the AIG, and E denotes the edges between
nodes. Following the topological order, we initially
check the transformability of each node with respect
to all orchestrated optimization operations, namely rw,
rs, and rf. This process yields the corresponding local
optimization gains, Grw, Grs, and Grf (line 2). When
none of the operations are applicable to a node, the local
gain G is set to −1. Once the local gains Grw, Grs, and
Grf at the node are determined, the algorithm identifies
the optimization operation with the highest non-negative
local gain (lines 3, 6, and 9). The operation with the
highest gain is then applied, and the graph is updated
accordingly (lines 4, 7, and 10). If no operation is
applicable (all gains are negative), the node is bypassed
for optimization (line 12), and the algorithm proceeds to
the next node in the iteration (line 13).



6

Compared to stand-alone optimizations, the Local-
greedy orchestration algorithm incurs additional run-
time overhead due to the necessity of pre-computing
transformability checks and local gains for all available
optimization operations (line 2).

Algorithm 1: Local-greedy Orchestration
Input : G(V,E)← Boolean Networks/Circuits in AIG
Output: Post-optimized AIG G(V,E)

1 for v ∈ V in topological order do
2 check transformability of v w.r.t orchestrated operations:

rw, rs, rf, and get the corresponding optimization
gain: Gv

rw, Gv
rs, Gv

rf . // if operation is not
applicable, G is −1; otherwise, G is
a non-negative number.

3 if Gv
rw ≥ 0 and Gv

rw ≥ Gv
rs and Gv

rw ≥ Gv
rf then

4 Apply rw to v and update G(V,E)
5 continue // rw with the highest gain
6 else if Gv

rs ≥ 0 and Gv
rs ≥ Gv

rw and Gv
rs ≥ Gv

rf then
7 Apply rs to v and update G(V,E)
8 continue // rs with the highest gain
9 else if Gv

rf ≥ 0 and Gv
rf ≥ Gv

rw and Gv
rf ≥ Gv

rs then
10 Apply rf to v and update G(V,E)
11 continue // rf with the highest gain
12 else
13 continue

Example: An illustrative example is shown in Figure 4a,
based on the original AIG from Figure 1a. Following
the topological order of the AIG, the Primary Inputs
(PIs) are bypassed for optimization. Nodes n, m, d,
and p are also skipped as none of the optimizations are
applicable to them. The algorithm then evaluates node
g, checking its transformability with rw, rs, and rf,
and determining the local gains as Grw = −1, Grs = 3,
and Grf = 1. The Local-greedy orchestration algorithm
selects the operation with the highest local gain for
optimization, in this case, rs. By iteratively traversing
the entire logic graph, the Local-greedy orchestration
algorithm optimizes the AIG with a node reduction of
6, as depicted in Figure 4a.

C. Algorithm 2: Priority-ordered Orchestration

In this algorithm, the selection of the optimization
operation to be applied at each node depends on a
pre-defined priority order with respect to the available
optimizations. For the three operations rw, rs, and rf,
there are six possible permutations of the priority order,
namely: Ô1 7→ rw>rs>rf, Ô2 7→ rw>rf>rs, Ô3 7→
rs>rw>rf, Ô4 7→ rs>rf>rw, Ô5 7→ rf>rs>rw,
and Ô6 7→ rf>rw>rs. For instance, the priority order
Ô1 implies that rw has the highest priority during opti-
mization, meaning it is checked first for transformability;
rs is evaluated next if rw is not applicable to the

node; and rf is considered last when the higher priority
operations are not applicable.

Algorithm 2 outlines the implementation of the
priority-ordered orchestration for logic graphs. This al-
gorithm takes an AIG G(V,E) and a priority orches-
tration policy P> as inputs. The policy P> is defined
as a precedence-ordered set of operations, wherein the
operation positioned first has the highest priority. As
delineated in Algorithm 2, for each node, the algorithm
initially examines the transformability of the highest-
priority operation, P>[0] (line 2). If P>[0] is applicable,
it is applied, and the graph is updated accordingly (line
3). Following this, the algorithm proceeds to the next
node without evaluating other lower-priority operations
(line 4). If P>[0] is not applicable, the algorithm assesses
the next highest-priority operation, P>[1] (lines 5 –
7). This process is repeated, methodically evaluating
operations in descending order of priority (lines 8 –
10). In cases where none of the operations in the policy
P> are applicable, the node is bypassed in the current
iteration, resulting in no modifications to the graph (lines
11 – 12).

The selection of the most effective priority order
depends heavily on the specific design domain. The
initial transformation chosen can significantly impact
the optimization process. Operations with higher priority
tend to play a more critical role. Furthermore, incorpo-
rating domain knowledge into the optimization process
can improve performance. Machine learning techniques
can be helpful in this regard and exploring their potential
leads to more further work.

Algorithm 2: Priority-ordered orchestration
Input : G(V,E)← Boolean Networks/Circuits in AIG
Input : Orchestration rule: P>(rw, rf, rs)
// P> is a list as the permutation of the

available Boolean transformations.
Output: Post-optimized AIG G(V,E)

1 for v ∈ V in topological order do
2 if v is transformable w.r.t P>[0] then
3 Apply P>[0] to v and update G(V,E)
4 continue // check first priority
5 else if v is transformable w.r.t P>[1] then
6 Apply P>[1] to v and update G(V,E)
7 continue // check second priority
8 else if v is transformable w.r.t P>[2] then
9 Apply P>[2] to v and update G(V,E)

10 continue // check third priority
11 else
12 continue

Example: An illustrative example is shown in Figure
4b, using the original AIG from Figure 1a. The priority
sorting is set as P>(rw,rf,rs), corresponding to Ô2.
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TABLE I: Detailed results of selected large size designs. Comparison of single-traversal orchestration with stand-
alone optimizations from ABC.

Design
AIG

Baseline rw rs rf Ô1 Ô2 Ô3 Ô4 Ô5 Ô6 LocalGreedy
#Node #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%)

ISCAS

s38584 12400 10697 (13.7%) 11505 (7.2%) 10932 (11.8%) 10366 (16.4%) 10379 (16.3%) 10336 (16.7%) 10655 (14.1%) 10932 (11.8%) 10932 (11.8%) 10449 (15.7%)
s35932 11948 9110 (23.8%) 11916 (0.3%) 9836 (17.7%) 8561 (28.4%) 8561 (28.4%) 8561 (28.4%) 9836 (17.7%) 9836 (17.7%) 9836 (17.7%) 8561 (28.4%)
b17 1 27647 24178 (12.6%) 26305 (4.9%) 24533 (11.3%) 22951 (17.0%) 23125 (16.4%) 22935 (17.0%) 23393 (15.4%) 24532 (11.3%) 24532 (11.3%) 23008 (16.7%)
b18 1 79054 66807 (15.5%) 73076 (7.6%) 69606 (12.0%) 63431 (19.8%) 64135 (18.9%) 63167 (20.1%) 65956 (16.6%) 69586 (12.0%) 69587 (12.0%) 63726 (19.4%)

b20 12219 10659 (12.8%) 11197 (8.4%) 10593 (13.3%) 10017 (18.02%) 10110 (17.3%) 10011 (18.1%) 10228 (16.3%) 10590 (13.3%) 10590 (13.3%) 10129 (17.1%)
b21 12782 10863 (15.1%) 11449 (10.4%) 10961 (14.3%) 10146 (20.6%) 10237 (19.9%) 10133 (20.7%) 10458 (18.2%) 10958 (14.3%) 10958 (14.3%) 10261 (19.7%)
b22 18488 15983 (13.6%) 16891 (8.6%) 15983 (13.6%) 14977 (19.0%) 15115 (18.2%) 14953 (19.1%) 15275 (17.4%) 15965 (13.6%) 15965 (13.6%) 15127 (18.2%)

VTR

bfly 28910 26827 (7.2%) 27060 (6.4%) 27487 (4.9%) 25996 (10.1%) 26183 (9.4%) 26027 (10.0%) 26353 (8.8%) 27487 (4.9%) 27487 (4.9%) 26181 (9.4%)
dscg 28252 26132 (7.5%) 26352 (6.73%) 26972 (4.5%) 25339 (10.3%) 25552 (9.5%) 25345 (10.3%) 25768 (8.8%) 26970 (4.5%) 26970 (4.5%) 25496 (9.7%)
fir 27704 25641 (7.5%) 25768 (7.0%) 26437 (4.6%) 24778 (10.6%) 25061 (9.5%) 24831 (10.4%) 25189 (9.1%) 26437 (4.6%) 26437 (4.6%) 24987 (9.8%)

syn2 30003 27787 (7.4%) 28031 (6.6%) 28617 (4.6%) 27013 (10.0%) 27266 (9.1%) 27048 (9.9%) 27444 (8.5%) 28617 (4.6%) 28617 (4.6%) 27198 (9.3%)

EPFL

div 57247 41153 (28.1%) 52621 (8.1%) 56745 (0.9%) 41123 (28.2%) 41143 (28.1%) 41124 (28.2%) 52098 (9.0%) 56738 (0.9%) 56738 (0.9%) 41147 (28.1%)
hyp 214335 214274 (0.0%) 209164 (2.4%) 212341 (1.0%) 207335 (3.3%) 212327 (0.9%) 207315 (3.3%) 207315 (3.3%) 212338 (1.0%) 212338 (1.0%) 207319 (3.3%)

mem ctrl 46836 46732 (0.2%) 46554 (0.6%) 46574 (0.6%) 46301 (1.1%) 46484 (0.8%) 46085 (1.6%) 46204 (1.4%) 46569 (0.6%) 46569 (0.6%) 46201 (1.3%)
sqrt 24618 19441 (21.0%) 21690 (11.9%) 23685 (3.8%) 19221 (21.9%) 19441 (21.0%) 19221 (21.9%) 21582 (12.3%) 23685 (3.8%) 23685 (3.8%) 19221 (21.9%)

voter 13758 11408 (17.0%) 10997 (20.1%) 12681 (7.8%) 9461 (31.2%) 10982 (20.2%) 9399 (31.7%) 9492 (31.0%) 12679 (7.8%) 12679 (7.8%) 9606 (30.2%)
Avg. Node Reduction% 12.7% 7.3% 7.9% 16.6% 15.3% 16.7% 13.0% 7.9% 7.9% 16.1%

Avg. Runtime (s) 0.366 0.177 0.155 0.459 0.373 0.454 0.226 0.123 0.137 0.478

Following the topological order, the PIs and nodes n, m,
d, and p are bypassed as none of the optimizations are
applicable. For node g, the algorithm first checks rw as
per the priority order but finds it inapplicable, proceeding
then to rf. Since rf is applicable, it is applied to update
the AIG (indicated by the blue box), with no need to
check the transformability of rs. The iterative traversal
of the entire graph leads to the AIG, optimized via
the Priority-ordered orchestration algorithm, achieving
4 node reductions compared to the original graph.

These two orchestration algorithms apply stand-alone
optimizations within a single AIG traversal, each lever-
aging distinct strategies. The Local-greedy orchestration
algorithm selects the most effective operation for logic
minimization based on the current local node structure.
In contrast, the Priority-ordered orchestration algorithm
utilizes a variety of pre-defined priority orders, poten-
tially enhancing overall performance. A key distinc-
tion lies in their operational approach: the Local-greedy
orchestration algorithm examines the transformability
with respect to all operations at each node, whereas
the Priority-ordered algorithm progresses to the next
node once an applicable operation is found in the given
order, effectively minimizing redundant transformability
checks. Consequently, in terms of runtime efficiency,
the Local-greedy orchestration may be less efficient
compared to the Priority-ordered orchestration. Detailed
empirical studies and discussions of these findings are
presented in Section IV.

IV. EXPERIMENTS

Our experimental results include comparisons with
stand-alone optimizations in ABC, covering: (1) per-
formance and runtime evaluation with single traversal
optimization; (2) performance evaluation of optimization
methods in iterative synthesis; (3) end-to-end perfor-
mance evaluation in existing ABC flows resyn by

OpenROAD [23], where the orchestration method is
integrated into ABC in Yosys [25] for OpenROAD.
OpenROAD reports the performance of area minimiza-
tion (technology mapping) and post-routing area mini-
mization with respect to different optimization methods.
Experimental results are conducted on 104 designs from
the ISCAS’85/89/99, VTR[21], and EPFL[22] bench-
mark suites. All experiments are conducted on an Intel
Xeon Gold 6230 20x CPU.

A. Single Optimization Evaluations

Initially, we validate the benefits of the orchestration
concept in logic optimization for single AIG traversal.
Specifically, we compiled optimization results for all 104
designs from various benchmark suites. These results
are related to (1) the stand-alone optimization methods,
namely rw, rs, and rf, and (2) the orchestration
optimization methods, which include priority-ordered
orchestration (Ô1 – Ô6) and local-greedy orchestration
(LocalGreedy). A subset of these results, focusing on
large designs, is presented in Table I.

The data indicates that the most effective optimiza-
tion method for all designs consistently originates from
one of the orchestration methods, exhibiting notable
improvements over stand-alone optimizations. Specifi-
cally, the best performing orchestration algorithm (Ô3)
demonstrates an average performance benefit of at least
4.0% compared to stand-alone methods (specifically rw).
Additionally, the table includes the average runtime cost
for each optimization, where the orchestrated algorithms
with better optimization performance take runtime over-
head at the same time. Specifically, it takes more runtime
overhead than rs and rf while less than rw.

B. Single Runtime Evaluations

We also analyze the runtime of the orchestration
algorithm Local-greedy optimization (LGP) and Priority-
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Fig. 5: Runtime comparison between selected single-traversal orchestration policies (Ô1, Ô3, and Local-greedy
(labeled as LGP)) and stand-alone optimizations from ABC: (a) runtime comparison with rw; (b) runtime
comparison with rs; (c) runtime comparison with rf.

ordered optimization with Ô1 and Ô3. This analysis,
including a comparison with stand-alone optimizations
(i.e., rw, rs, and rf), is illustrated for all 104 designs in
Figure 5. To effectively showcase the runtime variances,
the figure employs a logarithmic scale. The x-axis repre-
sents the runtime of the stand-alone ABC optimizations,
while the y-axis denotes the runtime of the orchestration
algorithms. The dotted line (x = y) acts as a benchmark,
where points above this line indicate a higher runtime
cost for the orchestration algorithm compared to its
stand-alone ABC counterpart. Conversely, points below
the line suggest a lower runtime cost. From the runtime
data, we draw two main conclusions: (1) Generally,
orchestration algorithms (with comparable performance,
i.e., Ô1, Ô3 and LGP) have a comparable runtime,
with LGP tending to incur a higher runtime overhead
than other orchestration methods. (2) Orchestration al-
gorithms exhibit runtime overhead when compared to
stand-alone optimizations, their runtime is akin to rw
but notably higher than rs and rf.

A further analysis of the runtime for each optimization
iteration, focusing on different optimization methods,
has been conducted. As outlined in Section II-B, logic
optimizations predominantly involve two phases: trans-
formability check and graph update. Firstly, the trans-
formability check constitutes the bulk of runtime in logic
optimizations. Secondly, despite an equal number of
total iterations, rs and rf optimizations are quicker than
rw, implying that the per iteration runtime cost is lower
for rs and rf. Thirdly, a substantial number of iter-
ations are ‘wasted’ with merely performing transforma-
bility checks without contributing to graph optimization.
For instance, in Figure 2, design bfly, the number of
valid iterations is 1764/1374/920 for rw/rs/rf, which is
6%/5%/3% of total iterations, with 94%/95%/97% itera-
tions are wasted. However, with orchestration algorithms,

the number of valid iterations is 2306, which is 8%
of total iterations with 92% wasted iterations. Despite
the orchestration optimization has a higher percentage
of valid iterations, it still incurs runtime overhead due
to these wasted iterations. Specifically, in orchestra-
tion, nodes in wasted iterations undergo transformability
checks for all three optimizations, significantly increas-
ing the runtime. Particularly, Local-greedy orchestration
suffers the most as it requires transformability checks for
all optimizations in every iteration. Consequently, the
runtime inefficiency in orchestration algorithms is mainly
due to the substantial number of wasted iterations in-
volving comprehensive transformability checks. The per
iteration runtime is heavily influenced by rw iterations,
leading to an overall runtime overhead for orchestration
optimizations compared to stand-alone methods, albeit
being comparable to rw.

C. Iterative Optimization Evaluations

It is known that DAG-aware synthesis performs better
in iterative transformations. However, considering the
runtime for fair comparison, in this iterative optimization
evaluation, we compare priority-ordered orchestration
optimization (e.g., {Ô1 → Ô1 → Ô1}, denoted as
Seq(Ô1)) to the corresponding stand-alone optimization
sequence of the priority order (e.g., correspond to Ô1, the
sequence is {rw → rs → rf}, denoted as Seq(ABC)).
We use the same notations and perform experiments
on other Priority-ordered orchestration algorithms. The
results of the iterative-traversal with orchestration algo-
rithms and the corresponding sequence of stand-alone
optimizations are shown in Table II. In all permutations
of stand-alone optimization sequences, node reduction
performance ranges from 16.9% to 17.2%. However,
with orchestrated operation sequences, this performance
varies between 9.7% and 18.3%. In line with single
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TABLE II: Detailed results of selected large size designs. Comparison of Iterative-traversal orchestration with
corresponding sequence optimizations from ABC.

Design
AIG

Baseline rw → rs → rf Seq(Ô1) rw → rf → rs Seq(Ô2) rs → rw → rf Seq(Ô3) rs → rf → rw Seq(Ô4) rf → rs → rw Seq(Ô5) rf → rw → rs Seq(Ô6) Seq(LGP)
#Node #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%) #Node (∆%)

s38584 12400 10288 (17.0%) 10176 (17.9%) 10230 (17.5%) 10196 (17.8%) 10263 (17.2%) 10115 (18.4%) 10219 (17.6%) 10493 (15.4%) 10250 (17.3%) 10793 (13.0%) 10242 (17.4%) 10788 (13.0%) 10187 (17.8%)
s35932 11948 8561 (28.3%) 8177 (31.6%) 8561 (28.3%) 8177 (31.6%) 8561 (28.3%) 8177 (31.6%) 8177 (31.6%) 8177 (31.6%) 8177 (31.6%) 8177 (31.6%) 8177 (31.6%) 8177 (31.6%) 8129 (32.0%)
b17 1 27647 22724 (17.8%) 22503 (18.6%) 22664 (18.0%) 22620 (18.2%) 22831 (17.4%) 22533 (18.5%) 22841 (17.4%) 23084 (16.5%) 22888 (17.2%) 24203 (12.5%) 22832 (17.4%) 24203 (12.5%) 22506 (18.6%)
b18 1 79054 62622 (20.8%) 61556 (22.1%) 62425 (21.0%) 62676 (20.7%) 63060 (20.2%) 61568 (22.1%) 63042 (20.3%) 64492 (18.4%) 62552 (20.9%) 68539 (13.3%) 62288 (21.2%) 68540 (13.3%) 61457 (22.3%)

b20 12219 10009 (18.1%) 9798 (19.8%) 9972 (18.4%) 9921 (18.8%) 10029 (17.9%) 9799 (19.8%) 9910 (18.9%) 10026 (17.9%) 9933 (18.7%) 10370 (15.1%) 9907 (18.9%) 10372 (15.1%) 9815 (19.7%)
b21 12782 10150 (20.6%) 9904 (22.5%) 10137 (20.7%) 10034 (21.5%) 10175 (20.4%) 9914 (22.4%) 10084 (21.1%) 10163 (20.5%) 10211 (20.1%) 10654 (16.6%) 10033 (21.5%) 10656 (16.6%) 9915 (22.4%)
b22 18488 14960 (19.1%) 14633 (20.9%) 14891 (19.5%) 14830 (19.8%) 14952 (19.1%) 14629 (20.9%) 14856 (19.6%) 14962 (19.1%) 14743 (20.3%) 15654 (15.3%) 14710 (20.4%) 15656 (15.3%) 14676 (20.6%)
bfly 28910 25914 (10.4%) 25750 (10.9%) 25839 (10.6%) 25945 (10.3%) 26015 (10.0%) 25818 (10.7%) 25931 (10.3%) 26163 (9.5%) 25871 (10.5%) 27373 (5.3%) 25827 (10.7%) 27375 (5.3%) 25727 (11.0%)
dscg 28252 25269 (10.6%) 25093 (11.2%) 25208 (10.8%) 25281 (10.5%) 25377 (10.2%) 25119 (11.1%) 25312 (10.4%) 25566 (9.5%) 25250 (10.6%) 26861 (4.9%) 25175 (10.9%) 26861 (4.9%) 25052 (11.3%)
fir 27704 24751 (10.7%) 24568 (11.3%) 24688 (10.9%) 24818 (10.4%) 24802 (10.5%) 24607 (11.2%) 24757 (10.6%) 24984 (9.8%) 24733 (10.7%) 26191 (5.5%) 24718 (10.8%) 26209 (5.4%) 24553 (11.4%)

syn2 30003 26890 (10.4%) 26708 (11.0%) 26833 (10.6%) 27001 (10.0%) 26962 (10.1%) 26738 (10.9%) 26942 (10.2%) 27188 (9.4%) 26854 (10.5%) 28494 (5.0%) 26810 (10.6%) 28480 (5.1%) 26700 (11.0%)
div 57247 40965 (28.4%) 40869 (28.6%) 40965 (28.4%) 40866 (28.6%) 41006 (28.4%) 40874 (28.6%) 41004 (28.4%) 51414 (10.2%) 41142 (28.1%) 56224 (1.8%) 41104 (28.2%) 56222 (1.8%) 40849 (28.6%)
hyp 214335 207340 (3.3%) 206559 (3.6%) 207343 (3.3%) 211283 (1.4%) 207320 (3.3%) 206539 (3.6%) 206648 (3.6%) 207240 (3.3%) 206671 (3.6%) 211991 (1.1%) 206671 (3.6%) 211991 (1.1%) 206530 (3.6%)

mem ctrl 46836 46177 (1.4%) 45650 (2.5%) 46013 (1.8%) 46005 (1.8%) 46171 (1.4%) 45360 (3.2%) 46039 (1.7%) 45855 (2.1%) 46113 (1.5%) 46312 (1.1%) 46077 (1.6%) 46312 (1.1%) 45418 (3.0%)
sqrt 24618 19327 (21.5%) 19219 (21.9%) 19327 (21.5%) 19218 (21.9%) 19333 (21.5%) 19219 (21.9%) 19333 (21.5%) 19223 (21.9%) 19332 (21.5%) 23661 (3.9%) 19328 (21.5%) 23661 (3.9%) 19217 (21.9%)

voter 13758 8755 (36.4%) 8428 (38.7%) 9109 (33.8%) 10306 (25.1%) 9056 (34.2%) 8612 (37.4%) 9060 (34.1%) 8589 (37.6%) 9789 (28.8%) 12440 (9.6%) 9870 (28.3%) 12440 (9.6%) 8861 (35.6%)
Avg. Node Reduction% 17.2% 18.3% 17.2% 16.8% 16.9% 18.3% 17.3% 15.8% 17.0% 9.7% 17.2% 9.7% 18.2%

Avg. Runtime (s) 0.443 1.162 0.438 1.149 0.434 1.148 0.430 1.144 0.429 1.143 0.431 1.155 1.162

TABLE III: Detailed results of selected large size designs. Comparison of orchestration-substituted
O-resyn/LGP-resyn with original resyn and resyn3.

Design
AIG: resyn

Baseline resyn resyn3 Ô-resyn Ô-resyn3 LGP-resyn LGP-resyn3
#Node Depth #Node (∆%) Depth #Node (∆%) Depth #Node (∆%) Depth #Node (∆%) Depth #Node (∆%) Depth #Node (∆%) Depth

ISCAS

s38584 12400 36 10391 (16.2%) 25 11378 (8.2%) 28 10085 (18.7%) 26 10077 (18.7%) 26 9988 (19.5%) 24 9894 (20.2%) 24
s35932 11948 19 8518 (28.7%) 12 11916 (0.3%) 19 8177 (31.6%) 13 8177 (31.6%) 13 8113 (32.1%) 11 8113 (32.1%) 11
b17 1 27647 52 23021 (16.7%) 46 26067 (5.7%) 47 22046 (20.3%) 47 22011 (20.4%) 47 21475 (22.3%) 46 21459 (22.4%) 46
b18 1 79054 132 63151 (20.1%) 114 70808 (10.4%) 128 60231 (23.8%) 131 59948 (24.2%) 130 58983 (25.4%) 127 58710 (25.7%) 127
b20 12219 66 10152 (16.9%) 64 11013 (9.9%) 65 9678 (20.8%) 64 9622 (21.3%) 64 9464 (22.5%) 65 9304 (23.9%) 65
b21 12782 67 10211 (20.1%) 64 11249 (12.0%) 65 9790 (23.4%) 64 9721 (23.9%) 64 9580 (25.1%) 65 9414 (26.3%) 63
b22 18488 69 15067 (18.5%) 65 16643 (10.0%) 65 14480 (21.7%) 65 14390 (22.2%) 65 14137 (23.5%) 65 13910 (24.8%) 65

VTR

bfly 28910 97 26177 (9.5%) 68 26543 (8.2%) 70 25242 (12.7%) 70 25017 (13.5%) 70 24989 (13.6%) 69 24605 (14.9%) 69
dscg 28252 92 25427 (9.9%) 67 25806 (8.7%) 68 24681 (12.6%) 68 24434 (13.5%) 68 24274 (14.1%) 67 23945 (15.2%) 66
fir 27704 94 24930 (10.0%) 67 25242 (8.9%) 69 24081 (13.1%) 69 23870 (13.8%) 69 23842 (13.9%) 67 23472 (15.3%) 68

syn2 30003 93 26911 (10.3%) 67 27355 (8.8%) 68 26160 (12.8%) 68 25839 (13.9%) 68 25806 (14.0%) 67 25370 (15.4%) 67

EPFL

div 57247 4372 40889 (28.6%) 4359 52336 (8.6%) 4372 40883 (28.6%) 4372 40908 (28.5%) 4372 40796 (28.7%) 4369 40749 (28.8%) 4370
hyp 214335 24801 214240 (0.0%) 24801 208371 (2.8%) 24801 206529 (3.6%) 24801 205734 (4.0%) 24801 206005 (3.9%) 24800 205182 (4.3%) 24799

mem ctrl 46836 114 46611 (0.5%) 111 46484 (0.8%) 114 45676 (2.5%) 114 45190 (3.5%) 114 44063 (5.9%) 111 42165 (10.0%) 108
sqrt 24618 5058 19437 (21.0%) 5058 21424 (13.0%) 5058 19219 (21.9%) 5058 19218 (21.9%) 5058 19217 (21.9%) 5058 19217 (21.9%) 5058

voter 13758 70 10446 (24.1%) 58 10155 (26.2%) 68 8411 (38.9%) 58 8207 (40.3%) 57 8224 (40.2%) 57 8071 (41.3%) 58
Avg. Node Reduction% 15.7% 8.9% 19.2% (+3.5%) 19.7% (+10.8%) 20.4% (+4.7%) 21.4% (+11.5%)

Avg. Runtime (s) 0.717 0.521 1.148 1.840 1.197 1.908

TABLE IV: The results reported by OpenROAD with orchestration methods implementation, including the results
from logic synthesis, i.e., AIG minimization, technology mapping with nangate 45nm, and post-routing.

Logic Synthesis
(resyn)

Logic Synthesis
(LGP-resyn)

Logic Synthesis
(O-resyn)

Tech Map
(resyn)

Tech Map
(LGP-resyn)

Tech Map
(O-resyn)

Post-routing
(resyn)

Post-routing
(LGP-resyn)

Post-routing
(O-resyn)

Node Node Node Area Area Area Area/um2 Area/um2 Area/um2

s38584 10391 9988 (-3.9%) 10085 (-2.9%) 13161.95 13000.48 (-1.2%) 13011.922 (-1.1%) 14313 14013 (-2.1%) 14137 (-1.2%)
s35932 8518 8113 (-4.8%) 8177 (-4.0%) 15368.15 15372.40 (+0.03%) 15368.15 (0) 16045 16055 (+0.06%) 16045 (0)
b17 1 23021 21475 (-6.7%) 22046 (-4.2%) 26798.44 25640.27 (-4.3%) 26019.588 (-2.9%) 29138 28193 (-3.2%) 28561 (-2.0%)
b18 1 63151 58983 (-6.6%) 60231 (-4.6%) 70259.38 68211.18 (-2.9%) 67852.876 (-3.4%) 76811 74499 (-3.0%) 74516 (-3.0%)

b20 10152 9464 (-6.8%) 9678 (-4.6%) 11295.96 10915.57 (-3.3%) 11029.158 (-2.4%) 12247 11861 (-3.1%) 12027 (-1.8%)
b21 10211 9580 (-6.2%) 9790 (-4.1%) 11585.63 11190.09 (-3.4%) 11222.274 (-3.1%) 12596 12246 (-2.7%) 12276 (-2.5%)
b22 15067 14137 (-6.2%) 14480 (-3.9%) 16115.61 15879.67 (-1.4%) 15928.612 (-1.2%) 17856 17404 (-2.5%) 17518 (-1.9%)

traversal results, sequential optimizations using Ô1 and
Ô3 surpass their corresponding stand-alone sequences by
1.1% and 1.4% respectively.

Furthermore, we evaluate the performance of the
orchestration methods when combined with other or-
thogonal optimizations in a sequential synthesis flow.
Specifically, we evaluate the orchestration algorithm in
resyn and resyn3 in ABC. The original flow involves
iterative transformations such as rewriting (rw), resubsti-
tution (rs), refactoring (rf), and balance (b). The zero-
cost replacement enabled rw, rs, and rf are denoted as
rwz, rsz, and rfz, respectively. Similarly for the zero-
cost replacement enabled orchestration algorithms are
denoted as Z1 to Z6. The optimization flow in resyn is
{b;rw;rwz;b;rwz;b}; the flow of resyn3 is {b;rs;rs

-K 6;b;rsz;rsz -K 6;b;rsz -K 5;b}. We follow
the permutation of the original flows by replacing the
stand-alone optimization with orchestration optimiza-
tions to compose orchestration flows. We name the resyn
flow where rw/rwz is replaced with Ô1/Ẑ1 (because
rw has the highest priority in Ô1) as O-resyn, the
resyn3 flow where rs is replaced with Ô3 (because
rs has the highest priority in Ô3) as O-resyn3,
and the resyn/resyn3 flow where rw(rwz)/rs is re-
placed with Local-greedy(Local-greedy-z) as
LGP-resyn/LGP-resyn3.

Table III shows the AIG optimization results of 16
designs. Upon comparing the average node reduction of
each optimization option, we can observe a consistent
improvement with orchestration synthesis flows. Specif-
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ically, O-resyn and LGP-resyn outperforms resyn
by 3.5% and 4.7% more average node reductions, respec-
tively; and O-resyn3 and LGP-resyn3 with 10.8%
and 11.5% more average node reductions than resyn3.

D. End-to-end Evaluations

Finally, we integrate our proposed orchestration opti-
mization methods into the end-to-end design framework
OpenROAD (Open Resilient Design for Autonomous
Systems) [23] to evaluate the end-to-end performance
by the orchestration improved logic synthesis. Open-
ROAD [23] Project is an open-source project aiming
at developing a comprehensive, end-to-end, automated
IC (Integrated Circuit) design flow that supports a wide
range of design styles and technology nodes. It integrates
various open-source tools to streamline chip develop-
ment. The flow begins with RTL synthesis, where Yosys
[25] converts high-level RTL descriptions into gate-level
netlists and performs logic synthesis and technology
mapping via ABC [5]. As shown in Figure 6, this is
the specific integration where we deploy our proposed
orchestration methods in ABC in the end-to-end design
flow (the dash line box). Next, the OpenROAD flow
performs floorplanning, placement, and global routing.
Tools such as RePlAce, TritonRoute, and FastRoute are
used for these tasks, respectively. Afterward, detailed
routing and signoff checks are completed, using tools
like OpenROAD’s built-in router and Magic.

1) Technology Mapping: We have implemented AIG
technology mapping for standard cells using the 45nm
Nangate library [26] and applied resyn, O-resyn,
and LGP-resyn across all 104 designs in a consistent
environment. Selected results for 7 detailed cases are pre-
sented in Table IV (columns 5 – 7), with the technology
mapping outcomes reported by Yosys in OpenROAD.
Generally, flows incorporating orchestration optimiza-
tions tend to yield better area minimization, averaging
2.2% more area reduction. This suggests the potential of
integrating orchestration into existing synthesis flows for
enhanced technology mapping performance. However,
an exception is observed in the case of s35932, where
although orchestration-enhanced resyn flows surpass
the original resyn in AIG reduction, they result in
larger areas post-technology mapping.

Furthermore, a comparison between the post-
technology mapping results and those from logic syn-
thesis reveals that the benefits gained from orchestration
methods during logic synthesis can diminish, disappear,
or even turn into drawbacks after technology mapping.
This discrepancy likely arises from the misalignment
between technology-independent logic synthesis and

Logic Synthesis
(YOSYS)
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Clock & 
Optimization

Global and 
Detailed Routing

Layout and reports

Verilog & Liberty 
& Timing SDC

YOSYS Frontend
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Replaced with

Fig. 6: The OpenROAD framework integrated with pro-
posed orchestration methods. The dash line blue box
shows the details in logic synthesis where the original
ABC is replaced with our proposed orchestration opti-
mization implemented ABC.

technology-dependent mapping cost models, attributable
to the high-level abstractions involved at the logic level.

2) Post-Routing: Furthermore, we carry out post-
routing evaluations in OpenROAD, applying the three
resyn flows to various designs. The results, de-
tailed in the last three columns of Table IV, indi-
cate that the orchestration-enhanced flows (O-resyn
and LGP-resyn) generally maintain superiority over
the original resyn across most designs. However, the
margin of this superiority is reduced when compared
to the gains observed in logic synthesis. For instance,
in the case of the design b21, the LGP-resyn flow
demonstrates a 6.2% improvement in AIG reduction,
but this advantage is reduced to 2.7% in terms of
area minimization following post-routing. A notable
exception is observed in the design s35932, where,
despite a 4.8% improvement in AIG reduction with
orchestration methods, the post-routing area minimiza-
tion performance degrades. This trend, similar to what
was observed in technology mapping, underscores the
potential misalignments between the benefits achieved
during technology-independent logic synthesis and the
outcomes post technology-dependent mapping and rout-
ing stages.

In conclusion, our study reveals a modest correlation
between the improvements achieved in logic optimiza-
tion and the enhancements in post-routing performance.
However, there is a more pronounced connection be-
tween the results following technology mapping and
those observed in the post-routing stage. This finding
motivates the focus of our future research on developing
technology-aware logic synthesis approaches, aiming to
align more closely with the subsequent stages of technol-
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ogy mapping and routing, thereby enhancing the overall
design efficiency.

V. CONCLUSION

In this work, we propose a novel concept in logic
synthesis development – DAG-aware synthesis orches-
tration, which encompasses multiple optimization op-
erations within a single AIG traversal. The proposed
concept is implemented in ABC, orchestrating the pre-
exisiting stand-alone optimizations, namely rewriting,
resubstitution, refactoring for fine-grained node-level
logic optimization within a single AIG traversal. Specif-
ically, we provide two algorithms for this orchestration
process: (1) The Local-greedy orchestration algorithm,
which selects the optimization operation offering the
highest local gain at each node for AIG optimiza-
tion; (2) The Priority-ordered orchestration algorithm,
which employs a predefined priority order to select
the optimization operation at each node. Our imple-
mentations have been rigorously tested on 104 designs
from benchmark suites such as ISCA’85/89/99, VTR,
and EPFL. In comparison to conventional stand-alone
optimizations, our orchestration optimization achieves
superior performance with a reasonable runtime over-
head during single graph traversal. Additionally, this
optimization maintains its performance benefits in iter-
ative optimizations and integrated design flows, such as
resyn, when combined with other optimizations like
balance. Notably, when implemented within an end-to-
end design flow, the orchestration algorithm surpasses
stand-alone optimizations in technology mapping and
post-routing for the majority of designs. However, it is
important to note the observed discrepancies between
technology-independent stages (e.g., logic synthesis) and
technology-dependent stages (e.g., technology mapping
and post-routing). These observations have spurred our
interest in future research, specifically aiming to develop
end-to-end aware DAG-aware synthesis orchestrations
that address these optimization miscorrelations.
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