
Randomized Transduction for
High-Effort Logic Synthesis

Yukio Miyasaka1, 2, Alan Mishchenko1, John Wawrzynek1, Dino Ruić2, Xiaoqing Xu2

1UC Berkeley
2X, the moonshot factory

Abstract—High-effort logic synthesis has become an important
research direction due to the increase in silicon cost and the
growth of design complexity. The emphasis on security leads to
complex cryptographic circuits, while the acceleration of AI/ML
results in custom arithmetic blocks—all of which need to be
highly optimized by EDA tools. In such applications, high-effort
logic synthesis allows for an efficient exploration of larger solution
spaces, leading to area and power savings beyond the capacity
of traditional methods. This paper presents a novel variation of
high-effort logic synthesis called transduction, which performs
transformation and reduction using don’t-cares to restructure
the circuit. Integrating the proposed method into a stochastic
optimization flow with dynamic scheduling saved 6.8% AIG
nodes on average, compared to the original flow using the same
runtime. An additional experiment further demonstrated the
strength of the proposed method, which discovered a new lower
bound for 46 out of 100 benchmarks.

I. INTRODUCTION

In the long history of EDA (electrical design automation),
scalability has always been the primary concern to keep up
with exponential transistor scaling. In particular, hardware
developers expect EDA tools to run extremely fast for efficient
design space exploration, even though most EDA problems
are NP-hard. But the demands on EDA are evolving because,
in recent years, many custom processors and programmable
accelerators have been developed, especially for accelerating
AI/ML applications. Custom processors and accelerators are
designed to exploit the parallelism existing in applications.
Typically their architecture comprises an array of small identi-
cal processing units equipped with complex arithmetic blocks.
Because the architecture itself is quite simple, more time can
be invested into the low-level implementation to further im-
prove the performance. In contrast to the traditional use-case,
EDA tools are now asked to generate a better implementation
at the cost of a higher compute resource usage.

Logic synthesis is one of the most important steps in the
EDA flow. It is performed in the early stage of the flow
and converts an RTL (register transfer logic) into a netlist.
Logic synthesis can have a large impact on the final quality
of the design as the quality of downstream optimizations is
highly dependent on the generated netlist. Logic synthesis
is usually divided into two phases: technology-independent
synthesis and technology mapping. The former optimizes the
design in the form of a simple logic representation such as
an AIG (and-inverter graph), XAIG (xor-and-inverter graph),
MIG (majority-inverter graph), etc., while the latter converts
those representations into a netlist composed of components

in the technology library. The advantage of using simple logic
representations during synthesis is that they can be handled
efficiently without having exceptions for complex gates, and
the algorithms can be shared across different technologies. It
is also known that there exists a high correlation between the
quality of designs before and after technology mapping. In
this paper, we focus on technology-independent synthesis on
AIGs.

Due to the recent shift in design trends, logic synthesis
has also been directed towards high-effort optimization. One
concept that is drawing attention these days, is that of area-
increasing transformations. In technology-independent synthe-
sis, area means the number of nodes in the representation,
since it highly correlates with area after mapping. Conven-
tionally, only transformations that monotonically decrease
the area are used in logic synthesis. After generating an
initial circuit based on SOP (sum of product), BDD (binary
decision diagram), or another decomposition method, local
transformations that never increase the area are repeated until
convergence. However, since those local transformations are
biased by the circuit structure, they often get stuck at a local
minimum. Area-increasing transformations, on the other hand,
allow the circuit to grow temporarily so that a larger design
space can be explored to find a better local minimum.

In this paper, we propose a new method, randomized trans-
duction, which performs an area-increasing transformation
using don’t-cares in a randomized manner. It was integrated
into an existing state-of-the-art flow with dynamic scheduling
so that it can efficiently explore the design space. On the IWLS
2022 benchmark suite [1], which consists of truth tables that
can be synthesized into AIGs ranging from 10 to 6,000 nodes,
the proposed flow outperformed the baseline by an average
of 6.8% in terms of AIG node count, given the same time
limit. Moreover, it was able to generate smaller AIGs than the
previous best results, with or without using them, for 46 out
of 100 functions in the benchmark suite.

Our contributions are summarized as follows:
• A novel way of using transduction is demonstrated, where

it is used to randomly restructure the circuit and make
new optimization opportunities for other algorithms.

• Dynamic scheduling is performed to efficiently explore
the design space using different types of area-increasing
transformations.

The remainder of this paper is organized as follows. Section
II gives some background on transduction and other related

x

d

i

d

a

b

y

p

q

a

b
k

c

j

Fig. 1. Example of transduction. By adding the red wire from j to i, the blue
wire from k to i becomes redundant.

work. Section III explains our proposed method. Section IV
shows the experimental results compared with the state-of-
the-art flow. Section V concludes the paper and lists possible
future extensions.

II. BACKGROUND

A. Transduction

Transduction is a coined word meaning a combination of
transformation and reduction [2]. The transformation increases
the area by adding redundant wires and extra nodes to the
circuit. Those wires are redundant in the sense that they do
not change the function of primary outputs. In circumstances
where a redundant wire can be added, the underlying circuit
satisfies the connectable condition, which can be calculated
via observability don’t-cares [3]. A signal j is connectable
to an AND gate i if fj ∨ ¬fi ∨ gi ≡ 1, where fj and fi
denote the functions of the signal j and the output of the gate
i, respectively, and gi denotes the don’t-care of the output of
the gate i (gi takes the value one when i is don’t-care). If the
condition is satisfied, a wire can be added from the signal j
to the input of the gate i without affecting the primary output
functions. This process of adding redundant wires/nodes is
often referred to as redundancy addition.

Reduction, on the other hand, removes redundant wires from
the circuit. If a wire takes the value one for all patterns other
than its don’t-cares, we can replace the wire with a constant
one without changing the primary output functions. Let k be
an input signal of the gate i, fk be its function, and gk,i be the
don’t-care of the wire between k and i. The wire between k
and i can be replaced with a constant one when fk ∨gk,i ≡ 1.
Additionally, nodes that end up having no fanouts are also
removed. This algorithm is also known as redundancy removal.

Example: In Fig. 1, before adding the wire from j to i, the
functions in the circuit can be expressed by the truth tables
shown below in terms of primary inputs {a, b, c, d}, where fx

denotes the function at the output of node x.

fa = 1111 1111 0000 0000

fb = 1111 0000 1111 0000

fc = 1100 1100 1100 1100

fd = 1010 1010 1010 1010

fp = fa ∧ ¬fd = 0101 0101 0000 0000

fj = fp ∨ fb = 1111 0101 1111 0000

fk = fa ∨ fb = 1111 1111 1111 0000

fi = fk ∧ fc = 1100 1100 1100 0000

fq = fd ∨ fi = 1110 1110 1110 1010

Because the other input of OR gate q is d, node i receives a
don’t-care when d takes the value one, denoted by gi below.
Here, the connectable condition is satisfied between j and i. In
fact, the function of the output of i is modified to f ′i below by
adding a wire from j to i, but the function at the output of q
is unaffected. Meanwhile, the wire between k and i gains the
don’t-care denoted by g′k,i below, which makes fk ∨ g′k,i ≡ 1
meaning the wire from k to i is replaceable with constant one.

gi = fd = 1010 1010 1010 1010

f ′i = fj ∧ fk ∧ fc = 1100 0100 1100 0000

g′k,i = ¬fj ∨ ¬fc = 0011 1011 0011 1111

Transduction iterates transformation and reduction to op-
timize the circuit. Transformation itself may increase the
number of wires and nodes in the circuit, but it changes the
distribution of don’t-cares, and thus the subsequent reduction
may be able to remove more wires/nodes than previously
added.

Transduction was later rediscovered as redundancy addition
and removal [4] and extended to rewiring [5] based on ATPG
(automatic test pattern generation) techniques, where rewiring
focused on removal of a particular wire by adding alternative
wire(s).

B. Area-Increasing Transformation
Recently, other types of area-increasing transformations

have been proposed. LUT mapping/unmapping [6] performs
mapping to LUTs (look-up tables) and converts them back to
the original representation. The circuit is dramatically restruc-
tured during this process, where some nodes are duplicated
and packed into different LUTs, and resubstitution may be
performed while changing the function of each LUT [7].
Although it largely increases the circuit size, by applying
several local transformations, it is possible to recover and even
reduce the circuit size. It is implemented as the command
&deepsyn in ABC, a state-of-the-art logic synthesis tool [8].
The command &deepsyn iteratively performs LUT mapping
with randomized configurations followed by a conventional
script of local transformations: compress2rs or &dc2, both
of which consist of a sequence of rewrite, refactor [9],
resub [10], and balance [11]. A recent report [12] showed
that a similar approach achieved 7% improvement on the MIG
node count over the best results at the time.

(a) Single-wire addition (b) Multi-wire addition

Fig. 2. Redundancy addition by adding redundant wire(s) highlighted in red.

In this context, LMS (lazy man’s synthesis) [13] may be in-
terpreted as an area-increasing transformation. LMS is known
as the strongest delay (logic depth) optimization algorithm and
replaces each cut with a functionally equivalent subcircuit in
a precomputed library as in rewriting [9]. The main difference
to rewriting is that it creates a library by recording subcircuits
observed during the optimization of some benchmark circuits.
Because recording is computationally cheaper than topological
enumeration, it can use larger cut sizes (number of inputs per
cut) while capturing the cumulative results of other algorithms.
Although it was not directly useful for area optimization,
it demonstrated significant delay improvement by creating a
library in favor of logic depth. From another perspective, it
trades area for delay, where each cut may be replaced with a
larger subcircuit of smaller delay.

The final method, called reshuffling [14], increases the area
by adding a redundant node that has the same function (up
to a complement) as one of its fanins. Reshuffling iterates
this area-increasing transformation with don’t-care-based 0-
resubstitution [10] (node merging), which reportedly leads to
a 1% area reduction after mapping.

III. PROPOSED METHOD

We propose a method for high-effort area optimization of
AIGs. Extensions for different optimization criteria and other
representations will be discussed in Section V.

A. Redundancy Addition

There are various ways to add redundant wires/nodes to
the circuit. We adopted single-wire addition and multi-wire
addition, with or without inserting a complemented node.

First of all, to better exploit the don’t-cares in the circuit,
we use an MIAIG (multi-input-AIG) as an intermediate repre-
sentation. An MIAIG consists of multi-input AND gates along
with inverters. We can convert an MIAIG into an AIG simply
by decomposing each N -input MIAIG node into cascaded
N − 1 AIG nodes. The benefit of using MIAIG is that it can
reduce the structural bias in don’t-cares. Our method is based
on compatible don’t-cares [3], which is a subset of all don’t-
cares where at least one of the controlling fanins will remain
unchanged for each controlling pattern. In MIAIGs, we can
efficiently shuffle those don’t-cares by permuting the fanins
of multi-input nodes.

We perform redundancy addition by increasing the number
of inputs of the target node with extra fanin(s) as shown in Fig.
2. We traverse the circuit except the transitive fanout (TFO) of
the target node to find connectable signal(s). If the function of

Fig. 3. Redundancy addition with inserting a complemented node highlighted
in red.

the node (or its negation) satisfies the connectable condition
with respect to the target node, a wire is added from the node
(respectively, its negation) to the target node.

For single-wire additions, we perform redundancy removal
every time a new wire is added. If nothing else can be
removed by redundancy removal (i.e., only the newly added
wire is redundant), the changes are canceled by removing the
added wire. Otherwise, we keep the changes, as some circuit
restructuring has occurred. On the other hand, for multi-wire
addition, redundancy removal is performed only once after
all connectable signals are added to the input of the target
node. In this case, the changes are saved if the number of
removed wires is not less than the number of added wires, and
otherwise they are discarded. We discard the changes when
the number of wires has increased because keeping them was
experimentally about 2-4% worse on average in our flow.

Additionally, to increase the generality, we also try redun-
dancy addition by inserting a complemented node as shown
in Fig. 3. We first insert a node with both input and output
complemented at the output of the target node such that all
previous fanouts of the target node become the fanouts of the
inserted node with proper negations. Then, redundant wires
are added to the input of the inserted node. This redundancy
addition corresponds to the insertion of an OR gate in [15],
although ours is less exhaustive as they consider the insertion
for each fanout.

B. Randomized Transduction

Traditionally, transduction or rewiring has been used in an
isolated manner, where the algorithms iterate over all existing
nodes in the circuit. This reflects a long-standing idea in logic
synthesis that optimization should end as soon as possible
while the gain is likely to converge after one round. However,
this approach suffers from the phase ordering problem: once
one transformation has happened, some other transformations
are no longer available. In contrary, our proposed algorithm is
based on a new idea that regards logic synthesis as a search
problem—the longer it runs, the better the result becomes.

Randomized transduction is an algorithm intended to be
used in a stochastic flow. It performs redundancy addition
and removal as described above with a target node selected
in a random order, and it terminates when it finds a different
structure that contains a smaller or equal number of nodes.
Algorithm 1 shows an example using single-wire addition

Algorithm 1 Randomized transduction using single-wire ad-
dition without inserting a complemented node
Input: L: list of nodes; I: list of primary inputs
Output: List of nodes

1: for i ∈ L in a random order do
2: for j ∈ (I ∪ L \ {i}) \ TFO(i) in a random order do
3: if j is connectable to i then
4: L′ := Copy of L
5: Single-wire addition from j to i in L′

6: Redundancy removal in L′

7: Decompose all multi-input nodes in L′

8: if L′.length ≤ L.length and L 6= L′ then
9: return L′

10: end if
11: end if
12: end for
13: end for
14: return L

without inserting a complemented node. In the unlikely case
that it cannot find such a structure, it returns the original one.

Our actual implementation is a little more complex. For
each node in the inner loop, we also add its negation to the
input of the target node if that is connectable. Additionally,
for each target node, we try wire addition both with and
without inserting a complemented node, while their order is
randomized as well.

C. Dynamic Scheduling

We integrated randomized transduction into the state-of-the-
art high-effort AIG-based synthesis command &deepsyn in
ABC. The problem we face is that we have different kinds of
area-increasing transformations which need to be scheduled.
One observation is that randomized transduction restructures
the circuit more locally than LUT mapping/unmapping. It is
known to be efficient in optimization to start from global
search (LUT mapping/unmapping) and then gradually shift
to local search (transduction), but it would be detrimental to
phase out the global search due to the strong non-linearity of
the solution space.

We adopted a dynamic scheduling approach that selects
the transformation based on the results of previous iterations.
Our stochastic optimization flow is shown in Algorithm 2.
In the first few iterations, only LUT mapping/unmapping
followed by conventional optimization is performed as long
as the area decreases (because N remains 0). When the area
stops decreasing, we start applying randomized transduction N
times in the inner loop, where single-wire addition or multi-
wire addition is selected randomly. The parameter N increases
when no improvement was made in each iteration.

Our flow uses a random number generator to enable broader
exploration. Transduction is randomized by shuffling the order
of nodes in a list based on generated numbers. For the
conventional optimization, either compress2rs or &dc2 is
selected based on a generated Boolean value. As in the original

Algorithm 2 Stochastic optimization flow with dynamic
scheduling
Input: G: AIG; s: integer
Output: AIG

1: R := Random number generator with a seed s
2: G′ := Copy of G
3: N := 0
4: repeat
5: Apply LUT mapping/unmapping to G with R
6: Apply conventional optimization to G with R
7: repeat N times
8: f := Random Boolean value from R
9: if f then

10: Apply single-wire transduction to G with R
11: else
12: Apply multi-wire transduction to G with R
13: end if
14: Apply conventional optimization to G with R
15: end
16: if G.size < G′.size then
17: G′ := Copy of G
18: else
19: Increase N
20: end if
21: until timeout
22: return G′

flow, LUT mapping/unmapping is randomized by toggling the
option of structural choice command (-f of &dch) [16] and
the use of fast extract (&fx; &st) [17], while the target LUT
size is decided based on the value of some internal counter.

D. Implementation Details

We implemented transduction using our own BDD package
as a back-end engine. We construct BDDs for functions and
don’t-cares in the circuit. It is our future work to have a
comparison with simulation- or SAT-based engines.

Since the size of BDD is highly affected by the variable
order, we perform variable reordering at the beginning of our
flow. The variables are reordered after constructing BDDs for
functions in the circuit, and the resulting variable order is
saved and used throughout our flow.

Moreover, we reuse the BDD manager across different iter-
ations, maintaining the unique table and the cache. Although
we reconstruct BDDs every time transduction is called, it
saves lots of time because most of the functions are found
in the cache. This implementation has another advantage that
transduction and other algorithms are completely decoupled,
and there was no need to modify any existing code.

IV. EXPERIMENTAL RESULTS

A. Benchmark

We conducted experiments on the IWLS 2022 benchmark
suite [1]. It consists of 100 truth tables of completely specified
Boolean functions whose input counts range from 5 to 16 and

TABLE I
IWLS 2022 BENCHMARK SUITE

Benchmarks Description
ex00 - ex01 known random-looking functions
ex02 - ex07 modified or unmodified random functions
ex08 - ex09 s-box and inverse s-box from AES
ex10 - ex15 5- to 15-input majority functions
ex16 - ex27 binary sorters
ex28 - ex49 Espresso benchmarks
ex50 - ex67 custom arithmetic functions
ex68 - ex99 quantized neuron functions

output counts range from 1 to 77. Table I shows the breakdown
of the benchmarks. It includes a variety of functions: random-
looking decomposable functions, arithmetic functions, crypto-
graphic functions [18], Espresso benchmarks [19], and quan-
tized neuron functions [20]. We synthesized initial AIGs using
“strash”, “collapse; strash”, “collapse; sop;
fx; strash”, and “&ttopt”. Command strash syn-
thesizes an AIG through algebraic factoring [21]. Command
collapse constructs a BDD of the function. Command sop
creates an irredundant SOP from the BDD [22][23]. Command
fx synthesizes a multi-level circuit from the SOP through fast
extract [17]. Command &ttopt synthesizes an AIG from a
BDD but with more intense variable reordering.

B. Comparison with the State-of-the-Art Flow

We compared the proposed flow with the original state-
of-the-art flow (&deepsyn). Both flows were designed to
continue running until the time limit is reached (by removing
the iteration limit). We ran each flow 48 times with different
random seeds and calculated the average and minimum AIG
sizes for each case. This is because we are comparing stochas-
tic flows, and the results may vary depending on the value of
the seed. We set the time limit for each run to 10 minutes.
We used the smallest one among the four initial AIGs as a
starting point.

Table II shows the results of the comparison. The third
column for each track (average and minimum) shows the ratio
of the proposed flow over &deepsyn, where blue cells show
improvement. Overall, our flow generated 6.8% smaller AIGs
in geometric mean of the averages. When we compare the
minimum AIGs after 48 runs, our flow was 5.9% better in
geometric mean. Considering specific test cases, our average
and minimum were always smaller or the same, except for
ex57 and ex72. To ensure that the improvement arose from
transduction not from dependency of the target LUT size
on the internal counter, we conducted another experiment
randomizing the target LUT size. With this, the result of
&deepsyn improved only by 0.1% for both average and
minimum track, so the improvement is not merely due to the
randomized target LUT size.

C. Comparison with the Best Known Results

We did an additional experiment by running the proposed
flow for an hour from each starting point. In addition to
the four initial AIGs above (labeled as “strash”, “collapse”,

TABLE II
COMPARISON OF &DEEPSYN AND THE PROPOSED FLOW ON THE AVERAGE

AND MINIMUM AIG SIZES OF 48 RUNS WITH A 10-MINUTE TIME LIMIT

Average Minimum
Benchmark Initial &deepsyn Proposed Ratio &deepsyn Proposed Ratio

ex00 33 25.3 23.0 0.909 25 22 0.880
ex01 38 32.3 25.0 0.774 32 23 0.719
ex02 128 90.7 85.0 0.937 82 77 0.939
ex03 36 24.8 24.1 0.970 24 24 1.000
ex04 430 348.1 341.7 0.981 332 321 0.967
ex05 70 41.9 38.2 0.911 41 37 0.902
ex06 1437 1227.6 1216.2 0.991 1156 1155 0.999
ex07 243 154.3 141.5 0.917 147 134 0.912
ex08 765 647.3 635.4 0.981 610 601 0.985
ex09 763 650.0 632.0 0.972 626 612 0.978
ex10 12 10.0 10.0 1.000 10 10 1.000
ex11 24 23.3 20.0 0.860 20 20 1.000
ex12 40 32.5 30.3 0.933 30 30 1.000
ex13 60 48.0 45.9 0.957 42 42 1.000
ex14 84 67.2 62.3 0.926 60 58 0.967
ex15 112 90.8 84.1 0.927 81 78 0.963
ex16 20 18.0 18.0 1.000 18 18 1.000
ex17 30 24.0 24.0 1.000 24 24 1.000
ex18 42 36.1 32.0 0.887 32 32 1.000
ex19 56 45.7 41.7 0.911 42 38 0.905
ex20 72 60.0 53.7 0.894 54 50 0.926
ex21 90 75.0 66.7 0.888 70 62 0.886
ex22 110 91.8 82.7 0.901 84 76 0.905
ex23 132 114.6 101.0 0.881 101 94 0.931
ex24 156 136.1 120.6 0.886 125 114 0.912
ex25 182 160.7 142.5 0.887 142 132 0.930
ex26 210 188.6 166.8 0.885 172 154 0.895
ex27 240 216.2 193.1 0.893 200 179 0.895
ex28 80 39.0 39.0 1.000 39 39 1.000
ex29 49 40.6 37.9 0.932 37 35 0.946
ex30 759 69.1 68.0 0.984 68 68 1.000
ex31 1893 1557.2 1516.0 0.974 1500 1417 0.945
ex32 54 46.0 44.0 0.957 46 44 0.957
ex33 131 80.8 74.2 0.919 80 71 0.888
ex34 128 47.4 46.1 0.971 47 46 0.979
ex35 17 17.0 15.0 0.882 17 15 0.882
ex36 1860 1776.3 1734.4 0.976 1741 1676 0.963
ex37 214 147.9 140.9 0.953 146 137 0.938
ex38 53 31.3 27.0 0.862 29 27 0.931
ex39 675 225.0 193.6 0.860 213 177 0.831
ex40 404 206.5 185.8 0.900 193 183 0.948
ex41 25 17.0 17.0 1.000 17 17 1.000
ex42 58 28.0 28.0 1.000 28 28 1.000
ex43 90 37.0 37.0 1.000 37 37 1.000
ex44 115 70.8 50.4 0.713 55 48 0.873
ex45 386 217.2 189.1 0.871 201 184 0.915
ex46 54 32.3 31.0 0.961 32 31 0.969
ex47 25 25.0 25.0 1.000 25 25 1.000
ex48 680 509.5 491.6 0.965 498 474 0.952
ex49 76 39.0 39.0 1.000 39 39 1.000
ex50 21 18.0 18.0 1.000 18 18 1.000
ex51 51 31.6 27.2 0.862 28 26 0.929
ex52 26 19.1 18.1 0.949 19 18 0.947
ex53 61 42.8 35.6 0.832 38 34 0.895
ex54 14 13.0 12.0 0.923 13 12 0.923
ex55 245 152.4 142.5 0.935 144 128 0.889
ex56 35 29.0 29.0 1.000 29 29 1.000
ex57 272 191.5 202.0 1.055 142 162 1.141
ex58 145 90.9 81.3 0.895 84 75 0.893
ex59 412 267.2 261.7 0.979 246 242 0.984
ex60 100 67.5 58.7 0.869 61 54 0.885
ex61 2508 1915.8 1915.7 1.000 1860 1860 1.000
ex62 55 40.0 40.0 1.000 40 40 1.000
ex63 1500 1160.1 1121.5 0.967 1113 1070 0.961
ex64 599 423.5 411.2 0.971 397 395 0.995
ex65 2407 1852.4 1794.3 0.969 1787 1715 0.960
ex66 438 341.8 329.9 0.965 323 315 0.975
ex67 6477 6380.2 6312.9 0.989 6352 6220 0.979
ex68 392 250.7 229.0 0.913 239 206 0.862
ex69 439 278.4 254.1 0.913 247 217 0.879
ex70 448 236.1 197.9 0.838 210 171 0.814
ex71 582 349.4 317.8 0.909 323 289 0.895
ex72 802 418.7 433.4 1.035 348 364 1.046
ex73 534 252.9 201.6 0.797 180 154 0.856
ex74 939 552.2 519.9 0.941 477 467 0.979
ex75 822 554.6 514.9 0.928 490 480 0.980
ex76 347 227.4 215.3 0.947 215 202 0.940
ex77 436 319.7 295.8 0.925 296 274 0.926
ex78 458 358.7 340.8 0.950 345 323 0.936
ex79 575 368.4 353.2 0.959 332 332 1.000
ex80 663 523.9 500.1 0.955 502 483 0.962
ex81 485 355.8 340.5 0.957 341 327 0.959
ex82 858 593.6 566.1 0.954 565 542 0.959
ex83 792 633.1 593.3 0.937 606 566 0.934
ex84 194 129.8 122.7 0.946 124 115 0.927
ex85 261 199.7 193.0 0.967 187 184 0.984
ex86 257 171.2 160.8 0.939 164 146 0.890
ex87 491 364.3 354.2 0.972 355 341 0.961
ex88 397 311.9 294.6 0.944 301 278 0.924
ex89 283 202.8 194.0 0.957 195 179 0.918
ex90 614 464.7 449.8 0.968 455 437 0.960
ex91 307 232.1 224.8 0.968 222 207 0.932
ex92 37 31.4 28.9 0.922 30 28 0.933
ex93 59 46.5 39.3 0.844 42 39 0.929
ex94 60 42.5 33.5 0.788 40 33 0.825
ex95 85 66.0 60.3 0.913 63 57 0.905
ex96 98 76.1 69.0 0.907 74 66 0.892
ex97 87 66.6 60.1 0.903 65 57 0.877
ex98 179 138.7 132.7 0.957 132 127 0.962
ex99 119 86.8 79.1 0.911 84 74 0.881

Geomean 173.5 122.2 113.9 0.932 114.9 108.2 0.941

“sop-fx”, and “&ttopt”, respectively), we used the previous
best result from the IWLS 2022 [1] and IWLS 2023 [24]
competitions and our previous work [25] for each benchmark
as another starting point (labeled as “prev.”). The IWLS 2023
competition used the same set of benchmarks as the IWLS
2022 competition, while they were obfuscated under NPN
equivalence. The previous best results were collected from
the results of Team EPFL [26] at IWLS 2022, the results
of TU Wien (TUW) [27] and Google DeepMind (GDM)
[28] at IWLS 2023 as well as our previous results [25].
They all use ABC as an optimization engine, while EPFL
generated initial circuits with various decomposition methods
[29][30][31], TUW interleaved ABC with exact synthesis [32],
and GDM used circuit neural networks to synthesize initial
circuits.

Table III shows the AIG sizes of each starting point and
the results of our method, which takes the minimum of 48
runs of the proposed flow with a one-hour time limit. The last
column denotes where the previous best result (prev.) came
from, or otherwise it is from our previous work. Cells after
optimization are highlighted in blue when the resulting AIG is
smaller than the previous best result. The second to last column
(Corr.) shows the correlation of the AIG sizes before and after
optimization excluding those starting from the previous best
results, while a cell is highlighted in the darker red for the
higher correlation.

Our method was able to produce smaller AIGs than the
previous best results for 16 cases starting from some of the
four initial AIGs generated independently of the previous best
results. When starting from the previous best results, our
method was able to reduce the AIG sizes in 43 cases, most
of which started from the results of competition participants.
This is remarkable because they have already run &deepsyn
and other ABC commands for days or weeks, which indicates
that having randomized transduction in the flow is crucial to
find a better local minimum.

Another thing we can see in the results is that there is a
high correlation in the AIG sizes before and after optimization
for hard instances with over 100 AIG nodes. There are some
exceptions such as sorter functions (ex16-ex27), but the cor-
relation was notably high for random functions (ex02-ex07),
cryptographic functions (ex08 and ex09), custom arithmetic
functions (ex50-ex67), and quantized neuron functions (ex68-
ex99). In order to produce comparable AIGs from scratch
for those cases, it would be necessary to explore the circuit
initialization algorithms, which is out of the scope of this
paper.

V. CONCLUSION

We propose a method based on transduction to restructure
AIGs in a randomized manner to create new optimization
opportunities for conventional algorithms. Integrated in a state-
of-the-art flow with dynamic scheduling, our proposed method
produced 6.8% smaller AIGs on average using the same
runtime. In the additional experiment, we discovered a new

lower bound for 46 functions in the benchmark suite using
the proposed method.

The proposed method can be extended to delay-
optimization. One possible approach is to prioritize removal
of wires in the critical paths as proposed on [33][34]. On the
other hand, in many cases LMS [13] can generate sufficiently
shallow AIGs. Our method may be used for area recovery after
LMS. It is easy to modify the condition to keep or discard the
changes after reduction in our method so that the logic depth is
maintained. For efficiency, we may need to restrict redundancy
addition in such a way that the wires are added only from
nodes in a lower level with respect to the target node. Multi-
input nodes should be decomposed into a balanced tree of
nodes for this purpose.

Our method currently focuses on optimizing AIGs. For
other circuit representations, redundancy addition is harder
to define, while redundancy removal is still applicable based
on observability don’t-cares. Alternatively, SPFDs (sets of
pairs of functions to be distinguished) [35] may be used to
represent the logic flexibilities in a circuit. It is likely that
SPFDs are more suitable than don’t-cares for XAIGs, where
any 2-input function takes only one node. Our future work
will focus on the development of a more general redundancy
addition/removal and SPFD-based optimization for XAIGs.

We used BDDs in our back-end engine. Although BDDs are
not scalable, it worked fine for the selected benchmark suite
with functions of up to 6k nodes in an optimized AIG. To
scale up for larger circuits, some kind of partitioning would
be necessary. Simulation, SAT solving, and combination of
them [36] should be evaluated against BDDs for the best
quality/runtime trade-off.

REFERENCES

[1] Problems and results of IWLS 2022 programming contest. [Online].
Available: https://github.com/alanminko/iwls2022-ls-contest.

[2] S. Muroga et al., “The transduction method-design of logic networks
based on permissible functions,” IEEE TC, vol. 38, no. 10, pp. 1404–
1424, 1989.

[3] A. Mishchenko et al., “SAT-based complete don’t-care computation
for network optimization,” in Proc. DATE, 2005, pp. 412–417.

[4] K.-T. Cheng et al., “Multi-level logic optimization by redundancy
addition and removal,” in Proc. EDAC, 1993, pp. 373–377.

[5] S.-C. Chang et al., “Fast boolean optimization by rewiring,” in Proc.
ICCAD, 1996, pp. 262–269.

[6] N. Een, personal communication.
[7] A. Mishchenko et al., “Scalable don’t-care-based logic optimization

and resynthesis,” in Proceedings of FPGA, 2009, pp. 151–160.
[8] Berkeley Logic Synthesis and Verification Group, ABC: A system for

sequential synthesis and verification. [Online]. Available: http://www.
eecs.berkeley.edu/∼alanmi/abc/.

[9] A. Mishchenko et al., “DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis,” in Proc. DAC, 2006, pp. 532–535.

[10] A. Mishchenko et al., “Scalable logic synthesis using a simple circuit
structure,” 2006, pp. 15–22.

[11] J. Cortadella, “Timing-driven logic bi-decomposition,” IEEE TCAD,
vol. 22, no. 6, pp. 675–685, 2003.

[12] S.-Y. Lee et al., “Customizable on-the-fly design space exploration for
logic optimization of emerging technologies,” in Proc. IWLS, 2023,
pp. 149–155.

[13] W. Yang et al., “Lazy man’s logic synthesis,” in Proc. ICCAD, 2012,
pp. 597–604.

[14] E. Testa et al., “Extending rewiring: Reshuffling don’t cares to unlock
more optimization,” in Proc. IWLS, 2022, pp. 34–40.

TABLE III
AIG SIZES BEFORE AND AFTER APPLYING THE PROPOSED FLOW WITH A ONE-HOUR TIME LIMIT AND TAKING THE MINIMUM OF 48 RUNS

Starting point After applying the proposed method
Benchmark strash collapse sop-fx &ttopt prev. strash collapse sop-fx &ttopt prev. Corr. Source of prev.

ex00 57 33 34 37 21 22 22 22 22 21 -
ex01 60 44 38 39 23 24 24 23 24 23 0.475
ex02 219 149 138 128 69 72 76 74 73 66 -0.518 GDM’23
ex03 132 75 55 36 24 24 28 28 24 24 -0.264
ex04 904 605 499 430 287 389 365 385 309 286 0.645 GDM’23
ex05 396 168 114 70 37 37 37 39 37 37 -0.336
ex06 3389 2267 1643 1437 966 1780 1480 1454 1149 966 0.918
ex07 1822 1327 887 243 112 508 131 126 128 106 0.751 GDM’23
ex08 1450 1097 866 765 513 682 665 639 591 513 0.891
ex09 1443 1091 848 763 515 673 661 645 590 515 0.814
ex10 24 12 12 12 10 10 10 10 10 10 -
ex11 69 26 24 24 20 20 20 20 20 20 -
ex12 143 44 40 40 30 30 30 30 30 30 -
ex13 302 66 61 60 40 42 40 40 42 40 0.566 TUW’23
ex14 638 94 91 84 52 56 58 54 58 52 -0.177 GDM’23
ex15 1358 126 143 112 68 69 74 72 78 68 -0.764 TUW’23
ex16 70 32 22 20 18 18 18 18 18 18 -
ex17 128 50 36 30 24 24 24 24 24 24 -
ex18 204 70 49 42 32 32 32 32 32 32 -
ex19 310 96 72 56 38 38 38 38 38 38 -
ex20 464 124 99 72 46 50 50 50 50 46 - GDM’23
ex21 668 158 132 90 56 62 62 58 62 56 0.318
ex22 1006 194 164 110 63 74 74 72 74 63 0.320 GDM’23
ex23 1445 234 208 132 72 72 90 86 90 72 -0.977 GDM’23
ex24 2195 274 255 156 88 82 108 127 110 78 -0.881
ex25 3160 322 238 182 90 92 128 106 128 90 -0.807 GDM’23
ex26 4861 372 285 210 99 95 156 141 148 97 -0.971
ex27 7009 426 588 240 119 107 174 186 170 108 -0.973
ex28 185 141 105 80 39 39 39 39 39 39 -
ex29 185 71 57 49 35 35 35 35 35 35 -
ex30 4099 1159 759 1103 68 68 68 68 68 68 -
ex31 3664 2880 1997 1893 1205 1769 1683 1552 1382 1205 0.919
ex32 153 62 54 87 44 44 44 44 44 44 -
ex33 215 205 141 162 70 69 69 69 69 70 - TUW’23
ex34 372 187 135 128 44 46 46 46 46 44 - GDM’23
ex35 32 17 17 24 15 15 15 15 15 15 -
ex36 3328 3190 1986 2081 1345 2008 1992 1672 1382 1297 0.893 EPFL’22
ex37 1056 482 214 365 138 135 135 135 135 133 - TUW’23
ex38 90 72 53 57 27 27 27 27 27 27 -
ex39 3898 1224 675 817 163 167 164 164 168 163 0.362
ex40 1821 940 409 968 178 178 178 179 178 178 -0.714
ex41 59 39 25 34 17 17 17 17 17 17 -
ex42 143 116 62 66 28 28 28 28 28 28 -
ex43 230 172 90 91 37 37 37 37 37 37 -
ex44 332 172 115 129 49 48 48 48 48 48 -
ex45 2135 894 470 906 179 182 182 182 181 179 0.181 TUW’23
ex46 70 55 54 55 31 31 31 31 31 31 -
ex47 380 129 25 48 25 25 25 25 25 25 -
ex48 3371 2135 866 1288 406 685 580 483 500 406 0.997 TUW’23
ex49 199 133 111 76 39 39 39 39 39 39 -
ex50 67 35 23 21 18 18 18 18 18 18 -
ex51 191 97 90 51 26 26 26 26 26 26 -
ex52 38 28 26 28 18 18 18 18 18 18 -
ex53 122 82 61 61 34 34 34 34 34 34 -
ex54 31 14 14 18 12 12 12 12 12 12 -
ex55 405 316 263 245 112 115 112 113 118 111 -0.218
ex56 160 70 39 35 29 29 29 29 29 29 -
ex57 916 1342 902 272 81 103 301 188 88 80 0.838 GDM’23
ex58 295 209 162 145 73 72 71 71 71 70 0.915
ex59 1435 847 617 412 182 292 247 299 206 173 0.582 GDM’23
ex60 221 139 100 106 53 54 54 54 54 53 -
ex61 5885 5024 3594 2508 1319 2882 2794 2991 1853 1310 0.703 GDM’23
ex62 273 88 55 66 40 40 40 40 40 40 -
ex63 8618 17695 10504 1500 168 3821 11405 9976 1063 168 0.910 GDM’23
ex64 2050 1407 1016 599 317 738 696 604 377 302 0.903 GDM’23
ex65 15213 8989 5929 2407 1182 5761 3744 4277 1595 1182 0.904 GDM’23
ex66 1485 960 707 438 239 445 396 429 300 237 0.767 GDM’23
ex67 13502 10860 6949 7070 4911 7209 6655 6179 5470 4842 0.914 EPFL’22
ex68 1347 925 615 392 118 373 225 227 194 113 0.912 GDM’23
ex69 1176 865 538 439 106 292 146 207 174 105 0.621 GDM’23
ex70 1972 1491 655 448 92 640 158 103 94 91 0.839 GDM’23
ex71 1851 1272 932 582 137 636 517 581 253 133 0.801 GDM’23
ex72 2839 2507 1207 802 142 942 616 633 255 136 0.829 GDM’23
ex73 1532 966 676 534 89 108 156 137 105 87 -0.131 GDM’23
ex74 3888 2524 1805 939 194 1487 1253 1205 330 170 0.865
ex75 3239 2421 1512 822 175 1044 1078 732 376 163 0.920 GDM’23
ex76 1529 808 580 347 167 348 260 229 189 156 0.997 GDM’23
ex77 1250 967 706 436 224 400 368 370 250 212 0.872 GDM’23
ex78 2047 1002 840 458 290 603 430 436 306 289 0.976 GDM’23
ex79 1847 1248 946 575 188 707 413 571 294 179 0.823 GDM’23
ex80 3184 2599 1711 663 435 1328 1367 1050 463 434 0.947 GDM’23
ex81 2233 1332 929 485 215 586 504 517 300 206 0.843 GDM’23
ex82 4208 2936 1965 858 523 1705 1619 1362 511 523 0.898
ex83 4398 2768 1985 792 549 1818 1480 1459 535 549 0.904
ex84 572 292 248 194 112 117 115 111 110 107 0.879 GDM’23
ex85 818 511 383 261 168 209 174 194 171 158 0.768 GDM’23
ex86 745 406 296 257 144 171 142 153 144 141 0.850
ex87 1574 992 814 491 322 638 489 557 328 310 0.873 GDM’23
ex88 1445 949 697 397 261 435 363 409 268 254 0.801 GDM’23
ex89 1791 941 692 283 172 186 255 217 172 164 0.039 GDM’23
ex90 3316 1965 1390 614 413 1102 996 891 422 413 0.875 GDM’23
ex91 1486 838 553 307 200 361 244 243 205 198 0.969 GDM’23
ex92 128 51 37 39 29 28 28 28 28 28 -
ex93 164 73 59 60 39 39 39 39 39 39 -
ex94 239 100 71 60 33 33 33 33 33 33 -
ex95 248 152 115 85 58 56 56 56 56 56 -
ex96 388 240 177 98 67 66 66 66 66 66 -
ex97 459 194 119 87 55 55 57 57 57 55 -0.964
ex98 1014 599 342 179 128 132 126 128 125 125 0.844 GDM’23
ex99 380 228 155 119 76 75 73 74 74 74 0.537
Ratio 7.120 3.591 2.582 2.026 1.000 1.425 1.366 1.343 1.121 0.984

[15] S.-C. Chang et al., “Perturb and simplify: Multilevel boolean network
optimizer,” IEEE TCAD, vol. 15, no. 12, pp. 1494–1504, 1996.

[16] S. Chatterjee et al., “Reducing structural bias in technology mapping,”
IEEE TCAD, vol. 25, no. 12, pp. 2894–2903, 2006.

[17] J. Rajski et al., “The testability-preserving concurrent decomposition
and factorization of Boolean expressions,” IEEE TCAD, vol. 11, no. 6,
pp. 778–793, 1992.

[18] J. Daemen et al., “The block cipher rijndael,” Lecture Notes in
Computer Science - LNCS, vol. 1820, pp. 277–284, 1998.

[19] ESPRESSO benchmark. [Online]. Available: https://ptolemy.berkeley.
edu/projects/embedded/pubs/downloads/espresso/index.htm.

[20] Y. Umuroglu et al., “Logicnets: Co-designed neural networks and
circuits for extreme-throughput applications,” in Proc. FPL, 2020,
pp. 291–297.

[21] R. K. Brayton et al., “The decomposition and factorization of Boolean
expressions,” in Proc. ISCAS, 1982, pp. 29–54.

[22] S.-i. Minato, “Fast generation of prime-irredundant covers from binary
decision diagrams,” in Proc. SASIMI, 1992, pp. 64–73.

[23] O. Coudert et al., “Implicit prime cover computation: An overview,”
in Proc. SASIMI, 1993.

[24] Problems and results of IWLS 2023 programming contest. [Online].
Available: https://github.com/alanminko/iwls2023-ls-contest.

[25] Y. Miyasaka, “Transduction method for AIG minimization,” in Proc.
ASP-DAC, 2024, pp. 398–403.

[26] A. Costamagna et al., “IWLS2022 contest - EPFL team,” presented at
the IWLS, 2022, [Online]. Available: https://youtu.be/qUnB-01oMiQ.

[27] F. Reichl et al., “Circuit minimization with exact synthesis: From QBF
back to SAT,” in Proc. IWLS, 2023, pp. 98–105.

[28] A. Hillier et al., “Learning to design efficient logic circuits,” presented
at the IWLS, 2023, [Online]. Available: https://drive.google.com/file/
d/1hjZA3PalPRtjE 8z85MhJhl9GVhhheJt/view?usp=sharing.

[29] V. Bertacco et al., “The disjunctive decomposition of logic functions,”
in Proc. ICCAD, 1997, pp. 78–82.

[30] J. Jacob et al., “Unate decomposition of Boolean functions,” in Proc.
IWLS, 2001, pp. 66–71.

[31] A. Oliveira et al., “Learning complex boolean functions: Algorithms
and applications,” in Proc. NeurIPS, 1993.

[32] W. Haaswijk et al., “SAT-based exact synthesis: Encodings, topology
families, and parallelism,” IEEE TCAD, vol. 39, no. 4, pp. 871–884,
2020.

[33] K.-C. Chen et al., “Timing optimization for multi-level combinational
networks,” in Proc. DAC, 1991, pp. 339–344.

[34] L. A. Entrena et al., “Timing optimization by an improved redundancy
addition and removal technique,” in Proc. EURO-DAC, 1996, pp. 342–
347.

[35] S. Yamashita et al., “SPFD: A new method to express functional
flexibility,” IEEE TCAD, vol. 19, no. 8, pp. 840–849, 2000.

[36] L. Amarú et al., “SAT-sweeping enhanced for logic synthesis,” in Proc.
DAC, 2020, pp. 1–6.

