
Post-Mapping Resubstitution
For Area-Oriented Optimization

Andrea Costamagna
EPFL

Lausanne, Switzerland

Alessandro Tempia Calvino
EPFL

Lausanne, Switzerland

Alan Mishchenko
UC Berkeley

Berkeley, California, USA

Giovanni De Micheli
EPFL

Lausanne, Switzerland

Abstract—The paper focuses on area minimization for circuits
already mapped to a technology library, possibly under delay
constraints. In contrast, traditional methods first optimize a
technology-independent representation and then perform tech-
nology mapping to a library. A common assumption behind the
traditional approach is that reducing the number of technology-
independent nodes correlates with reduced area after mapping.
This paper investigates the validity of this assumption and inves-
tigates the use of technology-dependent algorithms. We propose
an area-oriented engine for mapped circuits that relies on a
database of mapped sub-networks to achieve efficient resynthesis.
Experimental results on EPFL and IWLS benchmarks after ag-
gressive technology-independent area-oriented optimization and
mapping show that the proposed method leads to an additional
area reduction of 2.50% without worsening the delay.

Index Terms—Optimization, Mapped circuits, Standard cells

I. INTRODUCTION

DENNARD scaling of transistors enabled over fifty years
of area-minimization of digital circuits, resulting in

cheaper electronics, higher performance, and reduced power
consumption [1]. While the demand for better performance
continues to grow, financial and physical limits hinder deliver-
ing higher performance by using transistor scaling alone, and
prolonging sustainable growth in computing power requires
higher optimization effort at the design level.

State-of-the-art logic synthesis tools optimize technology-
independent representations and map them to a technology li-
brary. In this paradigm, reducing the number of gates and logic
levels in the technology-independent representation, named
subject graph, is considered an effective heuristic for reducing
area and delay after mapping. However, high-effort optimiza-
tion of the technology-independent representation does not
always correlate with improved mapped quality.

Technology-aware logic synthesis has recently gained sub-
stantial momentum as a new paradigm to improve the qual-
ity of mapped circuits [2]–[4]. This approach integrates
technology-dependent information into logic optimization pro-
cesses, thereby improving the quality of the resulting mapped
circuits. By embracing this paradigm, this paper presents a
novel technology-aware logic synthesis algorithm for area-
oriented optimization, possibly under delay constraints.

This paper proposes an area-oriented optimization engine
for circuits mapped using a library of standard cells. We adopt
a rewriting approach, dividing the optimization process into
two sub-problems: support selection and resynthesis. During
support selection, the algorithm identifies divisors to serve
as inputs for the resynthesis sub-network, while combining
structural and Boolean techniques to maximize optimization

This research was supported in part by Synopsys inc., in part by SRC
Contract 3173.001 "Standardizing Boolean transforms to improve quality and
runtime of CAD tools".

opportunities. In the resynthesis phase, the sub-network is
constructed. We achieve scalability by using a database of
high-quality mapped sub-networks and enhance optimization
quality by leveraging don’t care information during resynthe-
sis.

Experiments on the EPFL and IWLS benchmarks con-
firm that aggressive area optimization of the technology-
independent representation is a good heuristic, however, it
does not always lead to the largest area reduction after
mapping. This justifies the need for area optimization of
mapped networks. We apply our technology-aware resubstitu-
tion algorithm to mapped designs after aggressive technology-
independent optimization. Our method achieves an additional
2.50% average area reduction without impacting delay.

II. BACKGROUND AND MOTIVATION

Combinational circuit synthesis is a fundamental problem
when realizing efficient hardware for a computing system:

COMBINATIONAL CIRCUIT SYNTHESIS

Given: 1) A Boolean function f : Bn → Bm.
2) A given library of gates L.
3) A cost function.

Find a network of gates from the library L to represent
f while minimizing the cost function.

The cost function considered is the circuit area, with op-
tional timing constraints. The end goal is a network, in which
each node is a physical gate, placed at a location of a 2D grid,
connected to other nodes through a layered wiring system, and
characterized using an interconnect-dependent delay model.
Designing this complex system while minimizing the cost
function is done by the design flow, which progressively
lowers the level of abstraction while optimizing increasingly
more detailed circuit representations [5]. This section gives the
background on area-oriented optimization at the logic level of
abstraction.

A. Logic Circuit Representations

Logic synthesis is a key design step that transforms the
specification of a function into a network of gates. The front-
end of logic synthesis represents functional specifications as
technology-independent logic models and optimizes them by
algorithmic transformations. The back-end of logic synthesis
uses the optimized representation obtained by the front-end
to derive a technology-dependent representation, consisting of
a network of gates from a technology library. The latter step

Fig. 1: Coverage of a subject graph with cells from a tech-
nology library. Each cell is characterized by its functionality,
area information, and fixed pin-to-pin propagation delays.

is often simplified by assuming that the delay of the gates is
load-independent under the gain-based delay model [6], i.e.,
each gate has a fixed worst-case pin-to-pin propagation delay.

A Boolean network is a directed acyclic graph, in which
nodes represent logic gates and edges represent wires. A
technology independent representation is a Boolean network,
in which inverters have zero cost and nodes have simple func-
tions. For instance, each node of an and-inverter graph (AIG)
is a two-input and-gate. An xor-and-inverter graphs (XAIG)
extends AIG with two-input xor-gates, while a majority-
inverter graph (MIG) uses 3-input majority gates as primitives.
These representations, particularly AIGs, are extensively used
in logic synthesis to manipulate circuit specifications.

A mapped network is a Boolean network where each node
is a cell from a technology library. The attributes of a
node include its functionality, area, and pin-to-pin propagation
delays. Figure 1 shows two cells from the 7nm technology
library asap7 [7]. Technology-independent representations
can be seen as mapped networks where each node has a unit
delay, unit area, and a simple logic function.

B. Strengths and Limitations of the Two-Step Optimization
State-of-the-art logic synthesis follows a two-step approach

of optimizing an AIG, called the subject graph, followed by
covering it with cells from a technology library. Figure 1
illustrates a portion of a subject graph covered with standard
cells.

The motivation behind the two-step approach is the desire
for better quality and scalability. Indeed, the simplicity of
AIGs enables applying optimization algorithms to industrial
size designs. In this way, the mapping algorithms can minimize
the time spent on optimization and focus on the complexity of
mapping to different technologies. This partition of the tasks
also improves quality since the simplicity of AIGs compared
to mapped networks allows for more intensive optimization
within the same runtime, improving overall quality.

To obtain a mapped circuit optimized for a cost func-
tion, AIG optimization is guided by technology-independent
assumptions, i.e., heuristic criteria estimating the correlation
between AIG optimizations and improvements after mapping.
A common assumption for area optimization is the following:

Assumption 1. Reducing the number of nodes in the subject
graph correlates with reduced area after mapping.

This assumption has been fostering research on technology-
independent optimization for decades. However, when striving
to achieve better area, the following question arises:

Q1. To what extent does Assumption 1 hold?

Assumption 1 is related to the notion of structural bias:
the structure of the mapped netlist strongly depends on the
structure of the subject graph. While structural bias is essential
for the success of the two-step process, mitigating it during
mapping generally increases the quality of the resulting cir-
cuit [8]. Traditionally, this mitigation is achieved by increasing
the capabilities of the mapper to evaluate alternative solutions
in the mapped design space. A complementary approach
comes from addressing the following question:

Q2. Can we improve the circuit quality after mapping, with
technology-aware area-oriented optimization?

This challenge requires enriching technology-independent op-
timization algorithms with information about the technology.

C. Boolean Networks Terminology
In a Boolean network, if there is a path from a node xi to

a node x, then xi is in the transitive fanin (TFI) of x, and
x is in the transitive fanout (TFO) of xi. The primary inputs
(PIs) are nodes without fanins in the network and the primary
outputs (POs) are nodes without fanouts in the network.

The maximum fanout free cone (MFFC) of node x is the
subset of nodes in the TFI of x such that every path from a
node in the subset to the POs passes through x. The MFFC
of a node contains the portion of the circuit used exclusively
to compute the functionality of x. When removing a node, its
MFFC can also be removed.

A structural cut C of a Boolean network is a pair (x, L),
where x is a node, called root, and L is a set of nodes, called
leaves, such that 1) every path from any primary input (PI)
to node x passes through at least one leaf and 2) for each
leaf v ∈ L, there is at least one path from a PI to x passing
through v and not through any other leaf.

Given a cut C = (x,L), the paths connecting the leaves
to the root identify a sub-network synthesizing a Boolean
function named cut functionality. If all the leaves are PIs, the
cut functionality is the global function of the node.

A simulation signature for a node x is a Boolean vector
approximating the global function of node x. Analyzing the
simulation signatures of a network enables identifying mutual
relationships between the nodes’ functions, which can be
exploited to identify non-local optimization opportunities.

The (controllability) don’t-care set for a cut C is the set
of minterms in B|L| never appearing at the leaves of the cut.
This gives the flexibility to choose an arbitrary value for the
cut functionality at the missing input patterns so as to identify
the function synthesized with the smallest-cost sub-network.

The presence of don’t cares in a logic circuit is related to
the existence of reconvergences, i.e. portions of the circuit
in which the paths from a set of leaf nodes to a target
node tend to diverge before reconverging to the target node.
A reconvergence-driven cut of size k is a structural cut of
size k constructed to maximize the number of nodes and
reconvergencies included in the cut [9].

The arrival time of a node τAx is the time at which the
output signal of the node stabilizes after the inputs become
stable. Given a delay constraint at the primary outputs, the

required time τRx of a node is the maximum allowed arrival
time meeting the delay constraint. A node’s slack is the timing
flexibility of the node, defined as the difference between its
required time and arrival time.

D. Characterizing Resubstitution
Boolean resubstitution is a transformation that attempts to

resynthesize the function of a node using a set of candidate
nodes, named divisors, already present in the network [9]. The
transformation is accepted if the area of the new sub-network
is smaller than the area of the MFFC.

Most resubstitution algorithms target one node at a time
and identify a sub-network named window, consisting of the
MFFC and a set of candidate divisors. This set is initialized
with the nodes on the paths between the MFFC leaves and the
leaves of a reconvergence-driven cut. Then, this set is enlarged
until reaching a maximum size by adding any node outside the
TFI of the target with both the fanins in the divisor set.

We characterize resubstitution as follows:
1) Window-based resubstitution: This implies that each

window is exhaustively simulated, obtaining the local function
of each divisor. Next, heuristic resynthesis tries to identify a
resubstitution candidate, and if its area is smaller than the area
of the MFFC, the substitution is performed.

2) Simulation-guided resubstitution: This means that the
nodes’ functions in the window are represented using simula-
tion signatures, with the advantage of using global functional
information. However, the signatures are approximations of
the global functions, and equivalence checking is needed to
verify the correctness of the transformation [10], [11].

After collecting functional information through simulation,
a Boolean resubstitution engine uses it to check if the MFFC
of the target node can be replaced with a smaller-area sub-
network. State-of-the-art resubstitution engines use on-the-
fly decomposition heuristics, simultaneously identifying useful
divisors and adding them to the resynthesis sub-network.
These resynthesis engines differ considerably from each other
even for simple representations, e.g., AIGs, XAIGs, and
MIGs. Consequently, on-the-fly decomposition is impractical
for mapped networks since it requires developing separate
resynthesis engines for each technology library.

E. Support Selection, Resynthesis, and Dependency Cuts
In contrast to on-the-fly decomposition, alternative ap-

proaches to resubstitution divide the process into two phases:
divisor selection and synthesis [11], [12]. During the divisor
selection phase, the goal is to identify a subset of nodes
C = (x,L) that is not (necessarily) a structural cut in
the current topology but has the potential to become one.
Named dependency cut, this subset exists if there is a function
f :B|L|→{0, 1, ∗} such that x = f(L). The synthesis phase
then generates a sub-network implementing this function.

Dependency cuts can be found using sets of pairs of func-
tions to be distinguished (SPFDs). Given a Boolean function
x : Bn 7→ {0, 1, ∗}, its SPFD is a mathematical construct
Υx : Bn×Bn → B encoding the Boolean function’s ability
to distinguish the points of its input space into onset, offset,
and don’t care sets [13], [14]. Theoretically, a set of nodes L
identifies a dependency cut for a node x if the SPFDs of these
nodes satisfy the covering condition [12], [13], [15]:

Υx ⊆
⋃
y∈L

Υy ⇔ C = (x,L) is a dependency cut. (1)

A structural cut inherently qualifies as a dependency cut. Thus,
enumerating structural cuts presents a straightforward means
of identifying solutions to Eq. 1. However, dependency cuts are
not always structural cuts. It’s from identifying non-structural
dependency cuts that non-local optimizations emerge.

Recent advancements in technology-independent resubsti-
tution have led to the development of scalable algorithms
focused on identifying dependency cuts through solving Eq. 1
for the SPFDs of simulation signatures. However, this ap-
proach lacks optimality guarantees regarding the size of the
synthesized sub-network and faces scalability issues with large
gate libraries, making it unsuitable for mapped networks.

Dependency cuts and the algorithms for finding them
offer powerful tools for exploiting non-local dependencies.
The functional nature of SPFDs allows their application to
any representation, including mapped networks. This paper
demonstrates that once a dependency cut is identified, its
cut functionality can be extracted from simulation signatures.
Heuristic resynthesis can then be replaced with database-
based rewriting, offering a scalable approach with optimality
guarantees. This method can be systematically applied to any
new network representation, including mapped networks.

F. Boolean Matching and Rewriting

Let f : Bk → B be a completely specified Boolean function.
The NPN-class of f is the set of Boolean functions that can be
obtained from f by negating inputs and outputs and permuting
inputs [16]. Similarly, the P-class of f is the set of Boolean
functions that can be obtained from f by input permutation.
The representative of a class is a function of the class.

Boolean matching [17] determines the NPN-class or P-class
of a function, and efficient algorithms addressing this problem
are known [18]. Boolean matching is used in rewriting, a
key logic optimization technique based on extracting the cut
functionality of a node and replacing the current sub-circuit
with a pre-computed optimum version, stored in a database.

If a cut function has don’t cares, it can match more than
one class. Boolean matching with don’t cares leverages this
flexibility to match incompletely specified functions with the
sub-circuits in a database having the minimum cost [17], [19].

G. Cut-Based Technology Mapping

The operation of modern technology mappers relies on two
primary principles: Boolean matching and the utilization of
supergates, which are mapped sub-networks constructed using
gates from the technology library [20], [21]. The process of
cut-based mapping can be summarized into five key steps:

1) Enumerate a set of structural cuts for each node [22].
2) Compute the Boolean function of each cut.
3) Match the functions with the supergates.
4) Sort the matches based on the target heuristic.
5) Select the optimal cover during a graph traversal.
It’s important to note that the cuts considered during

mapping are structural, meaning that introducing non-local
rewiring in mapping is not feasible. While this limitation
is partially addressed before mapping, further optimization
opportunities may arise afterward. This paper aims to identify
and exploit these opportunities.

Cut-based mappers mitigate structural bias by considering
different implementations of local sub-structures in the subject
graph, named choices [20], [23]. Using choices effectively

identifies better-quality circuits because the mapper can ex-
plore a region of the mapped design space around the network
obtained without choices. Optimization in the mapped design
space is orthogonal to this approach: it further enlarges the
explored region of the mapped design space while allowing
for iterative refinements over multiple runs.

III. TECHNOLOGY-AWARE RESUBSTITUTION

In this section, we introduce novel contributions enabling
post-mapping design space exploration.The algorithms we
developed rely on the observation that dependency cuts en-
able combining the global restructuring capabilities of re-
substitution with database rewriting, which is scalable, and
representation-independent. This observation results in differ-
ent contributions. First, by integrating support for dependency
cuts-selection, we enhance classical algorithms, thus broaden-
ing their applicability and effectiveness. Second, it leads to
formulating a simple yet effective algorithm for optimizing
the area of mapped networks. This algorithm addresses the
following key sub-problems:

1) How to use dependency cuts for non-local rewriting?
2) How to synthesize mapped networks using don’t cares?
3) How to efficiently account for timing information?

By proposing solutions to these sub-problems, our contri-
butions transfer the expertise in technology-independent op-
timization to the mapped design space, thereby fostering
advancements in post-mapping design space exploration.

A. Bridging Rewriting and Resubstitution
This section investigates the potential of enriching

structural-based rewriting with dependency cuts selection. We
consider the algorithm rewrite [19], which is implemented
in the open-source logic synthesis library Mockturtle [24].
Rewrite explores circuits in a topological order, enumer-

ates structural cuts for each node, and replaces the current
node implementation when the cut functionality can be syn-
thesized with a smaller area than the current implementation.
This algorithm performs database-based rewriting, supports
Boolean matching with don’t cares (see Section II-F), and
can be applied to AIGs, XAIGs, and MIGs. Furthermore, it
can preserve the depth of the network when required.

To investigate the benefits of non-local restructuring in
rewrite, we enrich this algorithm with dependency cuts-
selection, resulting in a modified engine named rewrub.
This engine integrates window-based resubstitution features
in rewrite. For each target node, we construct a window
and exhaustively simulate it. Next, we extract one dependency
cut C = (x,L) using greedy-support selection. Analyzing the
exhaustive simulation signatures of the windows, we obtain the
incompletely specified cut functionality f : B|L| → {0, 1, ∗},
where the don’t cares are present because some patterns do
not appear at the leaves of the cut.

We consider three representations: AIGs, XAIGs, and
MIGs. For each EPFL benchmark, we read the unoptimized
AIG as the input representation, and optimize it with the
two engines. When using rewrite, we optimize the graphs
by enumerating nine 4-input structural cuts at each node
and selecting the rewriting step that minimizes the number
of nodes. We repeat the optimization with rewrub, which
also enumerates eight 4-input structural cuts along with one
dependency cut. The window is obtained with a reconvergence
driven cut of size 8 and including at most 150 candidate

divisors. We run both algorithms twice. The runtime compar-
ison can be observed in table I, showing acceptable runtime
increases when adding the dependency cut selection.

Table I shows the results: in all the considered setups,
introducing dependency cuts increases the optimization qual-
ity. While rewrub always exploits don’t cares by using
simulation signatures, Boolean matching for the structural
cut functionality can optionally use don’t cares. Furthermore,
we consider optimization with and without delay constraints.
This motivating experiment shows that dependency cuts enable
combining the global restructuring capabilities of resubstitu-
tion with database rewriting. Using don’t cares does not help
rewrub to the degree it helps rewrite. This is because
rewrub can identify most of the available don’t care-based
optimizations.

While global restructuring using technology-independent
representations can be addressed by running resubstitution
after rewriting, this approach is highly representation-specific
and not applicable to mapped networks (Section II-E). In
contrast, our formulation enables resynthesis through database-
based rewriting, which makes the approach scalable and
representation-independent. Furthermore, since modern map-
pers only rely on structural cuts, this experiment motivates
exploring optimization after mapping.

B. Optimization Engine

To enable novel optimization opportunities within mapped
circuits, we rely on resubstitution to leverage non-local func-
tional information, not-accessible during mapping. The nov-
elty of this engine lies in integrating dependency cuts with
database-based rewriting, which allows us to perform resubsti-
tution on networks mapped onto standard cells. Additionally,
we incorporate structural cuts into graph traversal to account
for structural optimization opportunities that can emerge after
non-local restructurings. Algorithm 1 outlines the proposed
engine, which depends on the following parameters:

• τRmax is the maximum required time at the outputs.
• P is the allocated size for each simulation signature.
• Cw is the maximum input size of the window.
• Dw is the maximum size of the window.
• E is the number of enumerated structural cuts.
• N is the maximum number of resubstitution attempts.

If no delay constraint is required, we impose τRmax =∞.
The algorithm starts by generating a set of P -dimensional

simulation signatures for the network’s nodes, and extracting
the timing information if delay constraints are imposed. Next,
for each node we construct a window, and attempt resynthesiz-
ing the target node to reduce the area occupied by its MFFC.
Three types of resubstitution are attempted, as detailed in the
Section III-C. A resubstitution candidate is successful when its
reward is larger or equal than a threshold value ϵ. Setting ϵ = 0
enables logic restructuring even when the substitution does not
result in area reduction, which can be beneficial for design
space exploration [25]. When resubstitution is successful, we
update the simulation and timing information.

This algorithm can be applied to any network representation
for which a database of high-quality sub-networks can be
constructed. Hence, in addition to enabling resubstitution for
networks mapped to standard cells, this algorithm offers a new
resubstitution approach that is representation-independent, a
desirable feature in logic synthesis development [26].

TABLE I: Rewriting with don’t cares based on structural cuts and dependency cuts. A indicates the area, d indicates the depth,
δ indicates the percentage improvement compared to the value pre-optimization, and t indicates the average run time.

preserve depth don’t cares library δArewrite[%] δArewrub[%] δdrewrite[%] δdrewrub[%] trewrite[s] trewrub[s]

no

with
AIG −11.98 −14.22 −4.90 −4.04 0.65 0.80
XAIG −21.03 −22.76 −8.30 −7.60 0.58 0.73
MIG −20.02 −22.63 −15.90 −12.71 0.74 0.91

without
AIG −9.77 −14.16 −1.08 −4.14 0.44 0.74
XAIG −18.55 −22.56 −3.97 −7.40 0.36 0.62
MIG −16.85 −22.00 −10.96 −15.10 0.60 0.83

yes

with
AIG −11.21 −13.58 −6.48 −6.60 0.62 0.77
XAIG −19.88 −21.74 −10.00 −10.70 0.54 0.68
MIG −18.09 −20.59 −14.38 −13.08 0.83 2.07

without
AIG −8.82 −13.43 −2.48 −6.56 0.26 0.43
XAIG −17.22 −21.60 −5.57 −10.57 0.21 0.36
MIG −14.87 −19.92 −9.82 −15.38 0.43 0.68

Algorithm 1: Technology-Aware Resubstitution

Data: A mapped circuit with required time τRmax
Result: A new mapped circuit optimized for area
Bsig ← Sample P patterns at random from Bn;
σP ← Functional simulation of G using BP ;
for x ∈ G do

if τRmax ̸=∞ and x is marked then
update the required times τR;

Build a window of input size Cw for node x;
Cs,Rs ← Find the best structural cut;
Cd,Rd ← Dependency cut from local information;
if (Rs ≥ ϵ or Rd ≥ ϵ) then

xnew ← Resynthesize the best cut;
Substitute x with xnew

else
for N iterations do
Cd,Rd ← Find a candidate dependency cut;
if satisfying reward (Rd ≥ ϵ) then

xnew ←Resynthesize Cd;
if xnew and x are globally equivalent

then
Substitute x with xnew;
Go to the next node;

else
Save the counter-example in Bcex;
if |Bcex| is equal to a word length

then
σ64 ← Simulate G using Bcex;
Replace the oldest signatures;
Bcex ← ∅ ;

if successful resubstitution and τRmax <∞ then
Update the arrival times τA;
Mark the TFI of xnew;

Return the optimized circuit;

C. Combining Different Cut-Selection Strategies for Efficiency

We employ three cut-selection techniques to capitalize on
the strengths of different approaches.

First, we enumerate E structural cuts. For each cut, we
assess the area of the MFFC portion contained between the
cut’s leaves and the target node. We determine the reward as
the difference between this area and the area of the circuit
synthesizing the cut functionality, obtained through Boolean

matching with pre-computed sub-networks in a database.
The second cut-selection technique focuses on identifying

dependency cuts through the analysis of the exhaustive sim-
ulation signatures of a window. After local simulation of
the window’s divisors, we rely on their SPFDs to find a
dependency cut. Since optimizations involving MFFC nodes
are already accounted for in the structural exploration, we
restrict candidate divisors to nodes outside the MFFC. Boolean
matching with don’t cares identifies the smallest sub-network
in the database that is compatible with the cut functionality,
and we compute the reward as the difference between the area
of MFFC and that of this sub-network.

The third cut-selection technique also targets identifying
dependency cuts from the analysis of simulation signatures, but
it relies on global simulation signatures. Consequently, it can
identify optimization opportunities missed by the other meth-
ods by leveraging global don’t cares. This step is attempted N
times. Each attempt requires six steps, as shown in Figure 2:

1) A dependency cut C = (x,L) is selected.
2) The cut functionality f : B|L| → {0, 1, ∗} is extracted.
3) The cut functionality is resynthesized.
4) We verify if the new implementation reduces the area.
5) We verify if functional equivalence is preserved.
6) We substitute the node with the new implementation.

The equivalence checking step is necessary because this
approach relies on simulation signatures approximating the
global node functionality. Therefore, unlike the other cut-
selection methods, the substitution candidate is not guaranteed
to preserve the functional equivalence of the circuit. Upon
failure, the SAT solver provides a counter-example, that is a
minterm from Bn disproving the validity of an optimization
found with the current approximations of the network nodes’
functionalities. To enhance scalability, we allocate fixed mem-
ory for signatures, simulating the network when the number
of counter-examples reaches the length of a machine word (64
bits) and overwriting the oldest word in the signature.

Given the significantly faster performance of the first two
strategies compared to the third one, if any of the cuts
identified in these stages results in successful rewriting, we
commit the best candidate and skip the simulation-guided step.

D. Functionality Extraction
Let us consider a window for which we have simulation

signatures, which can represent the complete truth table or its
approximation.We identify a dependency cut by solving the set
covering problem defined in Eq. 1. We solve set covering with

Fig. 2: Core of the resubstitution engine.

TABLE II: On-the-fly mapping and database matching.

design ∆Amap[%] ∆Amatch[%] tmap[s] tmatch[s]

c432 −2.69 −2.24 7.57 0.28
c1908 −1.95 −3.60 39.70 0.30
c3540 −1.66 −1.75 71.29 0.34
c5315 −0.62 −0.48 138.16 0.45
c6288 −0.15 −0.25 244.93 0.38
c7552 −0.36 −0.76 135.53 0.36

a greedy algorithm [12], [27]. The algorithm is randomized,
so it can generate different dependency cuts if called multiple
times. It is worth mentioning that randomization is intrinsic
in the greedy set covering algorithm, which is the underlying
algorithm used to solve support selection [27]. Since greedy
set covering algorithm is an approximation algorithm with
optimality guarantees, the presence of randomization should
not be seen as a limitation, but as a feature of the engine. In
any case, the algorithm is seeded, so that the stochasticity is
only pseudo-random.

Given a candidate dependency cut C = (x,L), we extract
its function from the simulation signature of its leaves σL.
Functionality extraction requires three steps:

1) Check which minterms of B|L| are present in σL.
2) Save the corresponding value of σx in a truth table.
3) Consider the missing patterns as don’t cares.
This process returns the cut functionality f : B|L| →

{0, 1, ∗}, ready for synthesis. If the signatures come from
exhaustive window simulation, the don’t cares are guaranteed
to be correct. Otherwise, they may stem from the suboptimality
of simulation signatures.

TECHNOLOGY-AWARE RESYNTHESIS

Given: 1) A function f : Bn → {0, 1, ∗}.
2) A library of standard cells.

Find a circuit with a small area representing f .

E. Synthesis of Mapped Networks with Don’t Cares

Leveraging don’t cares in the synthesis phase is important
to increase the efficiency of resubstitution. Figure 3 illustrates
the two heuristics discussed in this section.

The first possibility to achieve don’t cares-aware synthesis
is to adopt the two-step approach: we fist perform don’t

(a) AIG synthesis followed by on-the-fly mapping.

(b) Boolean matching and database look-up.

Fig. 3: Synthesis strategies exploiting don’t cares.

care-aware synthesis of an AIG, and we then map it on-
the-fly. At each step, if the support size is smaller than 5,
Boolean matching with don’t cares completes AIG synthesis.
Otherwise, a decomposition step combining disjoint support
decomposition and shannon decomposition is performed to
reduce the support size [28]. We choose the branching variable
as the one with with the highest correlation with the function
being decomposed, as this metric maximizes the number
of don’t cares in the reminder function. Finally, on-the-fly
technology mapping generates the dependency sub-network.

The alternative approach is to rely on a database of mapped
networks for completely-specified functions and use don’t
cares during Boolean matching. Since inverters have a cost, the
database contains one network for each P-class of the 4-input
Boolean functions. We find the optimum-size AIG of each
P-representative and map it with area-oriented technology
mapping using the library.

For Boolean matching with don’t cares on mapped sub-
networks, simple enumeration proves effective and reasonably
fast. For instance, statistics collected when optimizing the
EPFL benchmarks show that the average number of don’t
cares per optimization is upper-bounded by 2, corresponding
to an average number of database look-ups of 4 per optimiza-
tion attempt. When presented with an incompletely-specified
Boolean function f , we systematically enumerate all possible
completely specified functions by allocating the don’t care
minterms to either the onset or the offset, and we commit a
sub-network if its area is smaller than the current MFFC.

The comparison in Table II shows the significance of
database rewriting and minimizing on-the-fly mapping: the
overhead incurred by allocating the mapper results in reduced
mapping effort, adversely affecting both quality and runtime.

To maintain delay awareness during area optimization, we
cannot focus solely on area or delay. We therefore populate
the database with "good-enough" solutions derived from the
two-step logic synthesis paradigm (Section II-B) on a smaller
scale, without guaranteeing optimality. Two factors contribute
to this lack of optimality: 1) the database excludes gates with
more than 4 inputs, and 2) we employ the two-step approach.
This choice is justified by two observations. First, gates with
many inputs have larger areas, making them less likely to
be successful resubstitution candidates. Second, the 4-input
database contains almost 4000 substructures, and experimental
results show that optimizations are possible without fully
exploiting the features of the technology library.

The goal is not to rewrite with the optimal sub-network but
to use "good-enough" substructures. This choice is acceptable
since local optimum rewriting does not guarantee the best
overall optimization, especially during multiple optimization
runs. Additionally, storing a database for gates with more than
4 inputs is impractical. If gates with more than 4 inputs are
necessary, AIG synthesis with on-the-fly mapping can be used.

F. Timing Analysis and Minimizing Updates
Given a delay constraint on the required time τRmax, delay

tracing is required to guide the optimization and verify if a
candidate transformation satisfies the delay constraints.

The first step of the delay tracing is to collect the nodes of
the network in a topological order. Next, the nodes are visited
in this order and the arrival time of each node is computed
as τAn =maxxi∈FI(n) τ

A
xi

+ dxi
. If τACP is the arrival time of

the critical path, we initialize the required times of the POs to
the value τACP +∆t. Next, we traverse the graph in a reverse
topological order while annotating each node with the required
time τRn =minxi∈FO(n) τ

R
xi
− dxi

.
Effective resubstitution influences the arrival times of the

TFO of the target node and the required times of the TFI of the
new sub-network. While we must update the arrival times after
every optimization step, the required times should be updated
when necessary to minimize the impact of the timing updates
on the algorithm’s runtime. We observe that the required time
of a node is needed only if it is a resubstitution target at a
later stage. Hence, we mark the TFI nodes of each successful
resubstitution, and if any of these nodes is the target node at a
later stage, we update the required times of the entire network
and remove the marks from the nodes.

IV. EXPERIMENTS

This section presents experiments with technology-aware
optimization using the 7nm standard cell library asap7 [7].
For technology mapping, we utilize the state-of-the-art mapper
emap, implemented in Mockturtle [24]. The results are
collected on a Linux machine with an Intel i7-1365U CPU.

A. Validity of Technology-Independent Assumptions
In this experiment, we investigate the correlation between

node minimization in the subject graph and reduced area after
technology mapping. We consider an aggressive optimization
flow, which runs the following area-oriented commands and
scripts in ABC: rw, rs, rf, resyn2rs, and compress2rs.
Before applying any optimization, the AIG is functionally
reduced using command fraig. As soon as one heuristic
successfully reduces the number of AIG nodes, we map the
AIG to technology and plot the number of AIG nodes and the
area. We use one-pass commands rw, rs, rf at the beginning
to ensure slower convergence to a minima, to better visualize
the correlation between technology-independent optimization
and area after mapping. We iterate this procedure as long as
the proposed heuristics lead to changes in the subject graph.

Figure 4 shows the typical trends observed on the EPFL
and IWLS benchmarks. For most benchmarks, at least in the
first few optimization steps, we observe a good correlation
between AIG minimization and area reduction. For instance,
in highly non-optimized AIGs, such as mem_ctrl (top-
left of Figure 4), the correlation between AIG minimization
and area reduction is consistently strong, without significant
fluctuations. However, there are benchmarks in which the

Fig. 4: Correlation between the node count in the subject graph
and the area after mapping. The plots reflect typical optimiza-
tion trends observed for the EPFL and IWLS benchmarks. The
crosses represent the results of post-mapping optimization.

initial correlation between the optimization metrics becomes
noisy after a few iterations and additional improvements in
the AIG size can have an adverse effect when area after
mapping increases by several percent. This is true for log2,
system_caes, sin in Figure 4, and other test cases from
the EPFL and IWLS benchmark suites.

These observations agree with the existing literature on
array-based designs [29], but observing similar behaviors for
standard cells-based design is more surprising due to the
presence in the technology library of small gates with small
area, offering higher flexibility to follow the updates of the
subject graph compared to the unitary cost of the nodes in
array based designs. Figure 4 also suggests that resyn2rs
is the source of the noticeable "jumps" in the behavior.

B. Post-Mapping Area Optimization
To evaluate the proposed technology-aware resubstitution

algorithm, we consider two points in the optimization process
described in Figure 4:

1) Start: when the subject graph is not optimized.
2) End: when the AIG could not be further optimized.

We run the proposed resubstitution in two ways:
1) Single traversal of the graph.
2) Iterative traversal of the graph until convergence.

The percentage improvement, compared to the initial mapped
network, is shown in Figure 4 by crosses. In the case of
mem_ctrl, log2, system_caes, and sin, despite the
high-effort AIG optimization, the proposed algorithm can
achieve further area reduction. Furthermore, it is interesting
to observe that in mem_ctrl, log2, and sin, the best
optimization result is not achieved with the two-step process,
but rather by directly optimizing the network mapped using
the unoptimized subject graph.

C. Area under Delay Constraints
This experiment proposes a detailed analysis on the EPFL

and IWLS benchmarks. Also in this case, we consider the

TABLE III: The worst-case analysis of the improvement of technology-aware resubstitution. The benchmarks are those with
less than 200K nodes from the EPFL and IWLS benchmark suites. The benchmarks are optimized with high-effort AIG
optimization before mapping. The best possible delay is used as the delay constraint.

Design Ai[nm
2] δA1

i [%] δA∞
i [%] Ae[nm2] δA1

e[%] δA∞
e [%] De[ps] δD1

e [%] δD∞
e [%] t1e[s] t∞e [s]

div 3914.60 −13.83 −22.19 1296.90 −5.05 −9.53 60248.23 0.00 0.01 4.82 60.04
sqrt 1372.25 −11.84 −15.70 1171.15 −3.04 −5.24 78957.63 −0.04 −1.22 4.01 63.66
arbiter 557.84 −14.36 −39.17 557.84 −14.08 −43.85 999.95 0.00 −23.82 1.78 17.53
cavlc 36.17 −1.19 −2.90 34.27 −0.15 −1.20 247.45 0.00 0.00 0.20 1.52
mem_ctrl 2547.32 −7.63 −17.56 2063.01 −5.56 −12.25 1649.46 −5.79 −10.64 19.26 184.25
aes_core 1198.55 −3.59 −5.50 1106.60 −0.65 −1.47 434.52 −2.07 −0.02 6.28 118.31
des_perf 5182.91 −3.61 −4.47 4615.59 −0.44 −1.08 584.17 0.00 0.00 73.93 215.58
ethernet 4411.85 −2.83 −3.62 3123.35 −0.39 −2.41 588.34 0.00 0.00 51.24 216.18
iwls05_i2c 66.32 −6.72 −9.92 49.96 −1.28 −1.26 288.07 0.00 0.00 0.20 0.39
sasc 40.46 −1.58 −2.37 31.72 −0.54 −1.39 191.00 0.00 0.00 0.15 0.61
simple_spi 54.77 −4.51 −6.46 41.58 −0.58 −1.88 287.00 0.00 0.00 0.17 1.48
spi 205.45 −2.25 −7.81 167.59 −0.88 −1.69 489.49 0.00 0.00 0.38 4.02
systemcaes 611.55 −2.52 −5.50 530.89 −3.08 −3.60 784.00 0.00 0.00 1.06 10.42
systemcdes 172.17 −5.81 −11.76 142.22 −0.79 −1.58 530.29 0.00 0.00 0.32 3.70
usb_phy 28.82 −5.97 −11.69 23.97 −0.83 −1.96 179.06 −7.79 −7.11 0.15 0.74

−5.07% −9.68% −1.06% −2.50% −0.62% −1.27% 8.58 38.67

subject graphs when they are unoptimized and when they
are highly optimized. High-effort optimization is achieved
by iteratively applying resyn2rs and compress2rs until
the subject graph cannot be reduced, and merging equivalent
nodes with the command fraig before applying any script.
After the high-effort optimization, we map the network using
area-oriented mapping and optimize the network with the most
stringent delay constraints, i.e., we do not allow for any delay
increase on the critical path. Table III shows the following
quantities for this experiment:

• Ai: The mapping area using an unoptimized AIG.
• Ae: The mapping area using an optimized AIG.
• De: The mapping delay using an optimized AIG.
• δQ1

i,e: Improvement after one optimization round.
• δQ∞

i,e: Improvement after iterative optimization.
We use fixed simulation signatures of size 210, and the

windows are limited to at most 10 inputs and 256 divisors.
Table III reports the results for the EPFL and IWLS

benchmarks. We consider 39 designs whose subject graphs
initially have less than 200K nodes due to the high runtime of
the flow including both AIG optimization and mapping. The
average values at the bottom of the tables are computed for
all 39 benchmarks, but we only report the most remarkable
results for space limitation reasons. Table III shows that post-
mapping resubstitution leads to noticeable reductions in area
while reducing or preserving the worst-case delay.

One specific benchmark to discuss is the arbiter. At the
subject graph level, neither resyn2rs nor compress2rs
can optimize it. On the other hand, our experiment shows
that performing optimization on the mapped design space
unlocks impressive optimization opportunities. Statistics on
this benchmark show that the mapped network exhibits a large
number of don’t cares, which increase the number successful
matches during resubstitution.

D. Design Space Exploration
In the last experiment, we investigate design space explo-

ration for mapped circuits. Table IV shows the results for the
EPFL benchmarks. The average improvements are over all the
EPFL benchmarks, excluding the hypothenuse. We optimize
the subject graphs with two iterations of the script "fraig;
compress2rs; resyn2rs". Next, we technology map the

subject and optimize it under stringent delay constraints. In
one case (column δA∞), we iterate optimization until conver-
gence. In the other case (column δA5×5), after 5 iterations
of technology-aware resubstitution, we unmap the network
resulting in an AIG, remove redundancies, and balance it [30].
This step attempts moving to a different region of the design
space. Finally, we map back to technology and restart area-
oriented optimization. We report the best encountered results
where each benchmark also satisfies the delay constraints.
This experiment shows that our engine effectively introduces
logic restructuring in mapped networks, with direct benefits in
design space exploration.

TABLE IV: Mapped design space exploration.

Design A[nm2] δA∞[%] δA5×5[%] t∞[s] t5×5
e [s]

bar 149.13 −0.04 −3.24 0.50 7.88
div 1302.07 −9.96 −15.54 91.97 75.89
sin 289.47 −0.24 −1.41 2.58 35.02
sqrt 1171.15 −3.99 −5.98 28.14 89.16
arbiter 557.84 −45.59 −55.49 11.74 19.71
cavlc 34.53 −0.96 −1.13 0.85 6.90
ctrl 5.90 −2.71 −3.90 0.29 4.92
i2c 59.23 −0.95 −1.08 0.62 6.09
mem_ctrl 2164.98 −13.96 −11.38 187.81 256.89
priority 27.66 −0.29 −2.75 0.30 5.34

−4.23% −5.47%

V. CONCLUSION

This work proposes a technology-aware resubstitution al-
gorithm for post-mapping area-oriented optimization. The ap-
proach is motivated by the diminishing correlation between
technology-independent and technology-dependent optimiza-
tion after a few iterations. We customize the proposed resubsti-
tution method to work for standard cell designs. Experiments
on the EPFL and IWLS benchmarks show that applying our
method after aggressive logic minimization and area-oriented
technology mapping further reduces area by 2.5% on average
and up to −43.85% for some test cases. The results are
obtained with the delay constraints. These encouraging results
suggest a new line of research: applying Boolean methods in
technology-aware logic optimization.

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous,
and A. R. LeBlanc, “Design of ion-implanted MOSFET’s with very
small physical dimensions,” IEEE Journal of solid-state circuits, vol. 9,
no. 5, pp. 256–268, 1974.

[2] L. Amarú, P. Vuillod, J. Luo, and J. Olson, “Logic optimization and
synthesis: Trends and directions in industry,” in Design, Automation &
Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017,
pp. 1303–1305.

[3] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, P.-E. Gail-
lardon, J. Olson, R. Brayton, and G. De Micheli, “Enabling exact delay
synthesis,” in 2017 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD). IEEE, 2017, pp. 352–359.

[4] A. T. Calvino, A. Mishchenko, H. Schmit, E. Mahintorabi, G. D.
Micheli, and X. Xu, “Improving standard-cell design flow using factored
form optimization,” in Proc. DAC, 2023.

[5] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-
Hill Higher Education, 1994.

[6] B. Hu, Y. Watanabe, and M. Marek-Sadowska, “Gain-based technology
mapping for discrete-size cell libraries,” in Proc. DAC, 2003.

[7] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

[8] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 25,
no. 12, pp. 2894–2903, 2006.

[9] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure,” in Proc. IWLS, vol. 6, 2006, pp. 15–22.

[10] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2573–2586, 2021.

[11] J. S. Zhang, S. Sinha, A. Mishchenko, R. K. Brayton, and
M. Chrzanowska-Jeske, “Simulation and satisfiability in logic synthesis,”
computing, vol. 7, p. 14, 2005.

[12] A. Costamagna, A. Mishchenko, S. Chatterjee, and D. M. Giovanni, “An
enhanced resubstitution algorithm for area-oriented logic optimization,”
2024, accepted at the International Symposium On Circuits And Systems
(ISCAS).

[13] Y.-S. Yang, S. Sinha, A. Veneris, and R. K. Brayton, “Automating logic
rectification by approximate SPFDs,” in 2007 Asia and South Pacific
Design Automation Conference. IEEE, 2007, pp. 402–407.

[14] S. Sinha, SPFDs: A new approach to flexibility in logic synthesis.
University of California, Berkeley, 2002.

[15] J.-H. R. Jiang and R. K. Brayton, “Functional dependency for veri-
fication reduction,” in Computer Aided Verification: 16th International
Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004. Proceedings
16. Springer, 2004, pp. 268–280.

[16] L. Benini and G. De Micheli, “A survey of Boolean matching
techniques for library binding,” ACM Trans. Design Autom. Electr.
Syst., 1997. [Online]. Available: https://doi.org/10.1145/264995.264996

[17] F. Mailhot and G. De Micheli, “Technology mapping using boolean
matching and don’t care sets.” in EURO-DAC, vol. 90, 1990, pp. 212–
216.

[18] X. Zhou, L. Wang, and A. Mishchenko, “Fast exact npn classification
by co-designing canonical form and its computation algorithm,” IEEE
Transactions on Computers, vol. 69, no. 9, pp. 1293–1307, 2020.

[19] A. Tempia Calvino and G. De Micheli, “Scalable logic rewriting using
don’t cares,” in Proc. DATE, 2024.

[20] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” in ICCAD-2005.
IEEE/ACM International Conference on Computer-Aided Design, 2005.,
2005, pp. 519–526.

[21] B. Robert, M. Alan, C. Satrajit, X. Kam, and T. Wang, “Technology
mapping with boolean matching, supergates and choices.”

[22] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[23] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decom-
position during technology mapping,” Trans. CAD, vol. 16, no. 8, pp.
813–834, 1997.

[24] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, S.-Y. Lee, A. T. Calvino, D. S. Marakkalage et al., “The
epfl logic synthesis libraries,” arXiv preprint arXiv:1805.05121, 2018.

[25] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.

[26] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amarù,
G. De Micheli, and M. Soeken, “Scalable generic logic synthesis: One
approach to rule them all,” in Proceedings of the 56th Annual Design
Automation Conference 2019, 2019, pp. 1–6.

[27] V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathe-
matics of operations research, vol. 4, no. 3, pp. 233–235, 1979.

[28] Bertacco and Damiani, “The disjunctive decomposition of logic func-
tions,” in 1997 Proceedings of IEEE International Conference on
Computer Aided Design (ICCAD). IEEE, 1997, pp. 78–82.

[29] G. Liu and Z. Zhang, “A parallelized iterative improvement approach to
area optimization for lut-based technology mapping,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2017, pp. 147–156.

[30] A. Mishchenko, R. Brayton, S. Jang, and V. Kravets, “Delay optimiza-
tion using SOP balancing,” in 2011 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD). IEEE, 2011, pp. 375–382.

