
Information Graph-Based Resubstitution
For Networks of Look-Up Tables

Andrea Costamagna
EPFL

Lausanne, Switzerland

Alessandro Tempia Calvino
EPFL

Lausanne, Switzerland

Alan Mishchenko
UC Berkley

Berkley, California

Giovanni De Micheli
EPFL

Lausanne, Switzerland

Abstract—This paper addresses the problem of minimizing
the area of circuits represented as networks of look-up tables.
This optimization problem is crucial for achieving high-quality
synthesis for FPGA designs. Furthermore, any combinational
logic cone can be seen as an interconnection of look-up tables, in-
creasing the impact of the proposed optimization. Resubstitution
is a powerful logic minimization method that can identify non-
local logic dependencies and restructure sub-networks to reduce
area. Existing resubstitution-based algorithms for look-up table
networks rely heavily on SAT solving, limiting the number of
optimization attempts and the size of the resubstitution sub-
networks to 1 node [1]. The methods discussed in this paper
rely on circuit simulation to increase the number of considered
optimization candidates and enable resubstitution using sub-
networks with more than 1 node. The experiments show that
the proposed heuristics can identify optimization opportunities
missed by state-of-the-art methods, improving 11 out of 23 best-
known results in the ongoing EPFL synthesis competition, and
resulting in a 4% smaller area, compared to state-of-the-art
approaches for the EPFL benchmarks.

Index Terms—FPGA, logic synthesis, area optimization

I. INTRODUCTION

OVER the last decades, configurable hardware has grown
in importance because its versatility enabled rapid pro-

totyping, adaptability to changing requirements, energy ef-
ficiency, resource optimization, and overall democratization
of electronic development. Field-programmable gate arrays
(FPGAs) are configurable hardware components, in which
combinational circuits are represented as networks of look-
up tables (LUTs). Minimizing the LUT count is a crucial for
meeting the resource constraints of FPGAs.

In the design flow, logic synthesis tools contribute to area
minimization by optimizing technology-independent represen-
tations and mapping them to a target technology. However, as
Figure 1 shows, technology-independent logic minimization
does not always guarantee an improved area after LUT map-
ping. This insight motivates us to develop algorithms aimed at
optimizing mapped networks. Since any combinational logic
cone can be seen as an LUT network, efficient algorithms for
optimizing LUT networks can broadly impact logic synthesis.

Resubstitution is a powerful logic minimization method that
tries to resynthesize the function of a node using a set of
candidate nodes in the network called divisors. Resubstitution
can identify non-local logic restructuring opportunities missed
by even high-effort area-oriented technology mappers.

Existing resubstitution-like algorithms for LUT networks,
such as mfs [1], optimize circuit parts called windows. For
each node of the network, called pivot, mfs solves a support
selection problem, i.e., it identifies a subset of divisors that can

This research was supported in part by Synopsys inc., in part by SRC
Contract 3173.001 "Standardizing Boolean transforms to improve quality and
runtime of CAD tools".

Fig. 1: Correlation between technology-independent size opti-
mization and area after technology mapping to 6-input LUTs
for different networks extracted during logic optimization.

be used to express the function of the pivot. The larger the
window size, the more global information is used, resulting
in higher optimization quality. The capability of mfs to
perform logic restructuring is a key component of design
space exploration commands such as &deepsyn in ABC [2].
However, mfs heavily relies on SAT solving for support
selection, limiting the window size that can be used, and only
resynthesizes sub-networks by introducing 1 node (1-resub).

Simulation-guided resubstitution [3], [4] is an optimiza-
tion paradigm aiming at improving scalability beyond that
of the conventional resubstitution methods [1]. Rather than
computing support by SAT solving and resynthesizing the
pivot afterward, a simulation-guided algorithm relies on partial
simulation to solve the support computation problem and to
resynthesize the pivot. Due to the incomplete specification
used for simulation, a SAT-based verification of the correctness
of the replacements is needed. This method replaces SAT-
based support selection with SAT-based equivalence checking,
which is considerably more efficient.

In this paper, we adopt the simulation-guided paradigm [3]
for optimizing LUT networks and propose a number of novel
solutions to address the limitations of mfs. In particular, two
related problems are solved:

1) How to efficiently do support selection without SAT?
2) How to enable resubstitution with more than 1 LUT?

First, we propose an algorithm to address the support selection
problem. Next, we define a new heuristic for decomposing
large look-up tables into smaller ones, while taking don’t-cares
into account. Finally, we combine these methods to develop a
novel resubstitution engine, which focuses on extracting global
information to enable high-effort design space exploration.

The experiments show that our heuristics identify optimiza-
tion opportunities missed by state-of-the-art engines, improv-
ing 11 "best results" in the EPFL competition. Furthermore,
our heuristic proves effective for design space exploration,
resulting in a 4% smaller area for the EPFL benchmarks, when
replaced to mfs2 (a variant of mfs) in an optimization flow.

II. PRELIMINARIES

This section introduces the background and formalizes the
theoretical notions underlying the proposed algorithms.

A. Logic Synthesis and Optimization Basics

A k-input look-up table (k-LUT) network is a directed
acyclic graph, in which nodes represent k-input logic func-
tions, and edges represent wires. If there is a path from a node
xi to a node x, xi is in the transitive fanin (TFI) of x, and x
is in the transitive fanout (TFO) of xi. The maximum fanout
free cone (MFFC) of a node x is the set of nodes, including
x and those TFI nodes whose fanouts are in the MFFC. The
primary inputs (PIs) are nodes without fanins in the network.

A structural cut of a node x is a set of nodes, called leaves,
such that any path from a PI to x passes through at least one
leaf. The Boolean sub-network defined by a node x and a cut
C of size k identifies the Boolean function of the cut of node
x, also called the structural cut. If the cut contains only PIs,
the function of the cut is the global function of the node. The
possible input patterns are called minterms. An approximate
function of node x computed by simulating a subset of all
possible input patterns is called the simulation signature.

The don’t-care set of a cut C is the set of the input
patterns never appearing at the leaves of the cut. The don’t-
care minterms can be characterized by the care function, which
takes value 0 for don’t-care minterms and 1, otherwise.

The presence of don’t-cares in logic circuits is related to the
existence of reconvergences, i.e., portions of the circuit where
the paths from a set of leaf nodes to a target node diverge
before reaching the target node. A reconvergence-driven cut
of size k is a structural cut of size k constructed to include
as many reconvergencies as can be captured within the depth-
limited TFI/TFO cone [5].

Given a node x, characterized by its global function, or
by an approximation of its global function called simulation
signature, xM is the value of the function at minterm M . This
identifies three sets:

• Onset : ONx = {M ∈ Bn : xM = 1}
• Offset : OFx = {M ∈ Bn : xM = 0}
• Don’t-care set : DCx = {M ∈ Bn : M /∈ ONx ∪ OFFx}

The main advantage of using simulation signatures is that they
contain global information, and include satisfiability don’t-
cares. The don’t-care set of a simulation signature might
include care values of the global function. Some authors name
these minterms don’t-knows, so that a signature is a function
x : Bn → {0, 1, ∗, ?} [6].

B. Resubstitution and Functional Cuts
Boolean resubstitution is a logic optimization method that

restructures the TFI of the node to reduce the area of the
network. The new node is the output of a newly generated
TFI having a smaller area than the current MFFC. We name
the inputs to this sub-network functional cut.

Definition II.1. Given a target node x, a functional cut C is
a set of nodes not in the TFO of the target such that there is
a function f : B|C| → {0, 1, ∗} realizing x = f(C).

This function exists if, for each pattern appearing at the
leaves of the functional cut, there is a unique value of
the global function of the target. This intuitive statement is
formalized as the dependency theorem [7]:

Theorem 1. Given a function x and a set of functions C =
{xi}ki=1, x, xi : Bn → B, there is a function f : Bk →
{0, 1, ∗} such that x = f(C) iff ∀Mi,Mj ∈ Bn,

xMi
̸= xMj

⇒∃xl ∈ C s.t. xl,Mi
̸= xl,Mj

. (1)

If such a function exists, it is called a dependency function.

Finding a functional cut is the support selection problem.
Finding the dependency sub-network for a functional cut is
the resynthesis problem. A resubstitution engine consists of
a support selection heuristic and a resynthesis heuristic. This
paper proposes a new resubstitution engine for LUT networks.

A key observation is that a structural cut is also a functional
cut, but a functional cut is not necessarily a structural cut.

C. Previous Works on Optimizing Look-Up Table Networks
Several existing algorithms address area optimization of

LUT networks and are implemented in the tool abc [2].
Command mfs [1] uses resubstitution with don’t-cares to

re-express the target node using a single k-LUT with reduced
fanins number. The support selection problem is solved as an
instance of a satisfiability problem, and an SAT solver verifies
if the dependency theorem is satisfied by a subset of k or
fewer divisors. Unlike mfs, our approach is not limited to a
single k-LUT. Furthermore, our support selection method is
entirely based on simulation signatures, while SAT solving is
only used to verify functional equivalence.

Command lutpack [8] employs Boolean decomposition
to re-express LUT sub-networks using fewer k-LUT. However,
the support selection strategy consists of finding structural cuts
and is agnostic of global don’t-cares. Our technique considers
global don’t-cares and relies on the notion of functional
cuts. Furthermore, our resynthesis algorithm enhances Boolean
decomposition with a new strategy based on don’t-cares.

D. Information Graphs and Edge Covering
This work relies on information graphs introduced by

Józwiak [9], and making intuitive the concept of sets of pairs
of functions to be distinguished (SPFDs) [10]–[13].

Definition II.2. An Information graph (IG) of a Boolean
function x : Bn → {0, 1, ∗} is a set of bipartite graphs in
which a vertex is a minterm, and the parts of each element
are the onset (Px

1 = ONx) and the offset (Px
0 = OFx).

Υx = {(Px
0 |Px

1)} (2)

Our definition preserves the information of the Boolean
attributes of the minterms. The top-part of Figure 2 shows the

Fig. 2: Example of an IG and a covering process. At each step,
the edges in common with the covering graph are removed.

IG for a simulation signature, where the vertices associated to
the offset and onset minterms are colored in red and blue.

Given two Boolean functions x, xi, and the corresponding
IGs Υx,Υxi

, we define the edge covering of Υx by Υxi
as

Υx ≻ Υxi
= {(Px

0 ∩ P
xi
0 |Px

1 ∩ P
xi
0), (Px

0 ∩ P
xi
1 |Px

1 ∩ P
xi
1)}

The covering operation returns an IG whose edges are all the
edges contained in Υx, but not in Υxi

, inducing a partition of
an IG into non-connected bipartite sub-graphs. The left-hand
side of Figure 2 shows how removing from the initial IG the
edges in common with another IG gives a 1-covered IG, in
which we can recognize the two complete bipartite sub-graphs.

Definition II.3. Given a set of functions C = {xi}Ti=1, the
covering process induced by C Υ0

x → · · · → ΥT
x reads

Υ0
x = {Px,0

0 = (Px,0
0,0 |P

x,0
0,1)}

.
= Υx (3)

Υt
x = {Px,t

i i ∈ [0, 2t)} (4){
Px,t
2m = (Px,t−1

m,0 ∩ Pxt
0 |P

x,t−1
m,1 ∩ Pxt

0)

Px,t
2m+1 = (Px,t−1

m,1 ∩ Pxt
1 |P

x,t−1
m,1 ∩ Pxt

1)
(5)

At step t, the covering process removes the edges in
common with Υxt : we say that Υt

x is t-covered. The number
of bipartite sub-graphs in Υt

x is upper-bounded by 2t.

Remark 1. Given a set C = {xi}Ti=1, and a target node x,
Theorem 1 is satisfied iff C fully covers Υx [14].

For instance, in Figure 2, the two divisors whose IG is used
for the covering process would satisfy Theorem 1.

E. Information Graph Representations

Practically useful simulation signatures have size p ∼ 210.
Hence, representing IGs using their adjacency matrix is infea-
sible from the memory size perspective, as it would require
O(p2) bits, assuming one bit per an onset/offset minterm
pair. Recent advances in resubstitution [14] were possible by
observing that IGs can be constructively represented during a
covering process. This corresponds to a data structure tailored
for performing covering processes on IGs.

Given a p-dimensional simulation signature for node x,
and a care function µ, the bitstring pair (x, µ) uniquely
distinguishes its onset from its offset:

Υx = {(Px
0 |Px

1)} → {(µ, x)} (6)

The edge covering of Υx by Υxi yields an IG whose edges
are the minterm pairs that have not yet been covered:

Υ1
x =

{
Px,1
0 = (Px

0 ∩ P
xi
0 |Px

1 ∩ P
xi
0)→ (x′

iµ, x)

Px,1
1 = (Px

0 ∩ P
xi
1 |Px

1 ∩ P
xi
1)→ (xiµ, x)

Similarly, after the covering process Υx ≻ Υxi
≻ Υxj

Υ2
x → {(x′

ix
′
jµ, x), (x

′
ixjµ, x), (xix

′
jµ, x), (xixjµ, x)}

Essentially, every partition Px,t
i of a t-covered IG can be

identified by two bitstrings of length p: a mask µt
i and

the signature of the target node. The mask is the result of
intersecting the care set of the initial target with the literals of
the covering divisors identifying the sub-graph in the partition.
We name this representation the covering representation, and
it allows us to evaluate the number of edges as

||Υt
x||E =

2t−1∑
i=0

||Px,t
i,0 ||1||P

x,t
i,1 ||1 =

2t−1∑
i=0

||µt
ix

′||1||µt
ix||1 (7)

The memory requirement for storing a t-covered information
graph is M [Υt

x] = p(2t+1), so it is preferable to the adjacency
matrix representation as long as 2t < p, i.e., t < 10.

Recent research on support selection has proposed to con-
struct functional cuts via a covering process, where at each
step a divisor is sampled from a probability distribution

p(xi;β, t) ∝ e−β||Υt
x≻Υxi

||E (8)

This distribution and its parameters was given as an ansatz in
the original paper [14]. This paper shows how to infer models
for the probability distribution from experimental data.

III. THE RESUBSTITUTION ENGINE

To devise a simulation-guided resubstitution algorithm for
LUT networks, we must address two sub-problems:

1) How to find a functional cut?
2) How to synthesize LUT networks using don’t-cares?

This section discusses the algorithm’s structure.

A. The Simulation-Guided Algorithmic Structure
Algorithm 1 illustrates our resubstitution engine. Follow-

ing the simulation guided paradigm, we randomly sample p
minterms from the Boolean space Bn, where n is the number
of PIs of the circuit. Next, we simulate the input patterns,
generating a simulation signature of size p for each node.

For each node x, a structural exploration of the network
identifies the MFFC and the candidate divisors by computing
a reconvergent driven cut. The cut is then expanded to include
a fixed number of nodes that are not in the TFI of x, but whose
fanins are candidates divisors.

The algorithm’s core (Section III-B) relies entirely on sim-
ulation signatures to identify a resubstitution candidate. If the
area of this sub-network is smaller than the area of the MFFC,
we check functional equivalence and commit the result.

In the case of failure, the counter-example returned by the
SAT solver can be used to update the simulation signatures,
as suggested by the simulation guided paradigm [3]. While
present in our framework, in this work we only use the random
signatures generated at the beginning of optimization, and we
investigate how much we can improve the quality of the results
by refining the support selection heuristics.

Algorithm 1 LUT_RESUB(ntk, K)

1: generate random simulation patterns
2: simulate the network
3: for all x ∈ ntk do
4: D ←collect some divisors
5: R ←collect the mffc
6: for a number of trials do
7: C ← functional support from D (|C| ≤ K)
8: f ← dependency function from C
9: if database.has(f) then

10: subntk← database[f]
11: else if on the fly is enabled then
12: subntk← synthesize on the fly
13: if area(subntk) ≤ area(R) then
14: if subntk is equivalent to x then
15: substitute x with subntk
16: else
17: save the counter example
18: if 64 counter-examples then
19: σ ←update the simulations

Fig. 3: Template of simulation-guided resubstitution for LUT
networks, with a detail on LUT-decomposition.

B. The Resubstitution Engine

Figure 3 illustrates the core of the engine. First, we solve the
support selection problem. Section IV discusses our approach,
which relies on sampling functional cuts according to a
probability distribution inferred from experimental data.

Given a functional cut C for a pivot node x, we extract
f : B|C| → {0, 1, ∗} by considering each minterm M ∈ B|C|,
and assigning it to ONx, OFx, or DCx based on its appearance
and the value of the target signature.

In the next step, the algorithm generates a k-LUT sub-
network representing the dependency function f . Section V
discusses the proposed approach, which consists of a decom-
position algorithm which can take don’t-cares into account. If
the area of this sub-network is smaller than the area of the
current MFFC, we verify the functional equivalence of the
target node with the new sub-network, and we commit the
result if all the checks have passed.

C. Support Selection, Resynthesis, and Generalization

Remark 1 states that the support selection is a set covering-
problem. Our goal is to find an optimal functional cut:

Fig. 4: Representation of the support selection problem as a
set covering problem over the minterm pairs, and some sub-
spaces of the search space. On the right, each node is a copy
of the drawing on the left, where the set of the divisor added
at the node is colored more brightly.

Definition III.1. A functional cut found from the analysis
of simulation signatures is optimal if it yields the smallest
resynthesis sub-network generalizing to the don’t-knows.

There is no guarantee that the minimum-size solution to the
set covering problem using simulation signatures yields the
optimal functional cut. However, we claim that targeting the
minimization of the functional cut size is an educated guess.
Indeed, on average, smaller supports yield smaller resynthesis
sizes, with higher chances of meeting the size constraints
imposed by the MFFC. Furthermore, by adopting the Minimum
Description Length principle (MDL), smaller supports should
be chosen because they correspond to compact descriptions of
the observations, which have higher likelihood of generalizing
to unseen patterns [15].

Previous works on supervised learning with Boolean net-
works showed that, in the presence of input-output corre-
lations, the Boolean network is more likely to generalize
to the don’t-knows [6], [16], [17]. A Boolean function is
correlated (anti-correlated) to one of its variables when its IG
is highly covered by the IG of the variable. This motivates
investigating greedy support selection algorithms, where at
each step we add a highly correlated variable to the support.
However, single-variable information can be misleading since
groups of variables could collectively contain more effective
information. The next section addresses this issue.

IV. SUPPORT SELECTION

K-SUPPORT SELECTION

Given: 1) A target node x.
2) A set of candidate divisors D = {xi}Di=1.

Find a subset C ⊆ D, |C| ≤ K satisfying Theorem 1.

A. Set Covering And Limitations Of Greedy Approaches
The covering representation of IGs was introduced to build

functional cuts, one divisor at the time. Greedy support selec-
tion (GSS) is the simplest approach of this type: at each step,

TABLE I: ISCAS benchmarks: average percentage area varia-
tion after applying mfs, mfs2, and algorithm 1 with random,
GSS, and enumeration support selection.

mfs mfs2 rnd gss enu
⟨δ100⟩[%] −1.35 −1.46 −0.43 −1.94 −2.61

we select the divisor whose IG covers most of the remaining
edges. Ties are broken at random [14]. GSS is fast but can
fail to find some solutions. For instance, Figure 4 shows that
greedy support selection cannot find a solution when imposing
a size constraint of 3. Indeed, GSS can only explore a sub-
space of the search space, highlighted in yellow in the example
of Figure 4. Consequently, it fails to find the existing solution
with 3 divisors, for which non-greedy choices should be made.

A computationally expensive alternative to GSS is enumer-
ation. We consider all possible combinations of K divisors,
increasing K from 1. For each combination we verify if
the divisors satisfy Theorem 1. After considering all possible
combinations of size K, if no solution is found we increase
K by one. Enumeration continues until finding one support
satisfying Theorem 1, or until K reaches a threshold value
for the support size. We use enumeration as a reference to test
our algorithms and explore the properties of valid solutions.

We consider the ISCAS benchmarks, after technology-
independent optimization and 4-LUT mapping (resyn2rs;
fraig; st; dch; if -a -C 12 -K 4). For each of
them, we run Algorithm 1 setting the number of support
sampling attempts to 100, for each pivot node. In the enu-
meration case, the number of attempts denotes the number of
permutations of the search spaces, while in the GSS case, they
denote the ways of breaking ties at random. As a baseline, we
also report the result of choosing the next divisor at random at
each branching point of the search tree. We limit the support
size K to 4 to compare the performances with mfs and mfs2.
Table I reports the average results. For a fair comparison, in
both mfs and mfs2 we activate high-effort resubstitution, we
set the number of windows to the number of nodes in the
mapped network, and we allow 200 levels of depth increase
for aggressive area optimization. The key observations are:

1) GSS can beat the state-of-the art in area optimization.
2) GSS misses optimization opportunities.

The result for enumeration gives an idea of what quality we
can hope to achieve by refining the tree search exploration,
but it does not scale to industrial designs. The challenge is to
achieve the enumeration quality with the GSS scalability, i.e.,
to find more efficient ways to explore the search space.

B. Empirical distribution
Runtime constraints force us to limit the exploration to a

small portion of the search space. Hence, it would be desirable
to have a metric estimating which step to take at each branch
of the search tree. This leads to the following ansatz:

Ansatz 1. Let Υt
x be a t-covered IG, and D = {xi}Di=1 a set

of divisors. Then, the normalized cost

H(xi,Υ
t
x) =

||Υt
x ≻ Υxi ||E −minxj∈D ||Υt

x ≻ Υxj ||E
||Υt

x||E −minxj∈D ||Υt
x ≻ Υxj

||E
(9)

is a good metric to guide tree search exploration.

The normalized cost is a real number in the range [0, 1]. The
divisors with the normalized cost at 0 are the ones covering

most of the edges, i.e., the ones that GSS would choose. The
divisors with 1 normalized cost are the ones not covering any
edge. This metric can be effective only if it allows us to model
the cases in which the enumeration succeeded.

We repeat the experiment in the previous section, but rather
than committing the valid resubstitutions, we keep saving
the functional cuts found by enumeration. For each cut, we
artificially define a covering process that, at each step, takes the
divisors with the smallest normalized cost from the functional
cut, and covers the graph. If the greedy approach can find the
solution, the normalized cost of the divisor chosen at each step
is 0. Otherwise, the normalized cost is some value higher than
0. By plotting the frequency of the normalized costs, we obtain
the empirical frequency associated with the probability that a
divisor has a normalized cost, given that it is chosen as the
next support divisor: P̂ (H(xi,Υ

t
x)|V ALID). Figure 5 shows

that most of the divisors in the valid support can be identified
by GSS. However, the normalized cost is larger than 0 in many
cases, in correspondence with supports missed by GSS.

Figure 5 also shows the empirical distribution of the normal-
ized costs P̂ (H(xi,Υ

t
x)). Using Bayes’ Theorem, we estimate

the posterior probability that a divisor should be included in
the solution, given its normalized cost (Figure 5).

P̂ (V ALID|H(xi,Υ
t
x)) ∝

P̂ (H(xi,Υ
t
x)|V ALID)

P̂ (H(xi,Υt
x))

(10)

Fig. 5: Empirical distributions of the normalized cost, of the
likelihood of a normalized cost given that the divisor belongs
to a valid functional cut, and the estimator of the probability
that a divisor is valid, given its normalized cost.

C. Models For The Transition Probability

We fit the posterior distribution with three models. The first
model mirrors the ansatz of the paper [14].

p1(V ALID|H) = α1e
−β1H

As Figure 5 shows, this model fits well with the main behavior
but underestimates the probability that an functional cut might
distribute the information more evenly among the divisors. The
second model is an hyperexponential [18]:

p2(V ALID|H) =
2∑

i=1

αie
−βiH

This model takes into account that the distinguishing power of
a valid support divisor either highly correlates with that of the
target function or shares the information with other divisors.

TABLE II: EPFL and IWLS benchmarks: comparing GSS with
mfs, mfs2, and the three models p1, p2 and p3. We used
10 and 100 support samplings for each node. We report the
average area improvement, and the average optimization time.

mfs mfs2 gre p1 p2 p3

⟨δ100⟩[%] −0.92 −1.07 −1.17 −1.40 −1.78 −1.99
⟨T100⟩[s] 53.96 1.72 22.93 21.74 19.74 20.33

⟨δ10⟩[%] −0.92 −1.07 −1.06 −1.26 −1.55 −1.53
⟨T10⟩[s] 53.96 1.72 5.30 5.72 5.84 6.08

The third model encodes the distribution of this information
with peaks at specific values of the normalized cost.

p3(V ALID|H) =
2∑

i=1

αie
−βiH +

4∑
i=3

αie
− (H−µi)

2

2σ2
i

This model accounts for the fact that some values of the
normalized cost are more likely than others (Figure 5).

Algorithm 2 shows how to use these probability distribu-
tions to guide the tree exploration for support selection. To
avoid overfitting the parameters, we infer them on the ISCAS
benchmarks and validate the models on the IWLS and EPFL
benchmarks. These models for the posterior distributions are

Algorithm 2 SUPPORT SELECTION<MODEL>(x,D;K)

1: while trials < maxtrials AND !solution found do
2: C ← ∅ t← 0
3: while |C| < K do
4: evaluate the normalized costs H
5: sample a divisor d ∼ pMODEL(V ALID|H)
6: C ← C ∪ {d}
7: Υt+1

x ← Υt
x ≻ Υd

8: t← t+ 1
9: if C satisfies Theorem 1 for the signatures then

10: return C

not guaranteed to extend to other circuit representations and
optimization objectives. This paper only shows that fitting
them with some benchmarks and for some target objectives
generalizes to other benchmarks when optimizing them for
the same target objectives. Instead, the fact that the normalized
cost is a good optimization metric is a general observation.

Table II reports the results of the three methods for the
IWLS and EPFL benchmarks, and for different sampling
numbers per node: 10 and 100. We observe a monotonic
improvement when going from greedy to the second model.
Instead, the third model performs better for high numbers of
samplings but loses accuracy for 10 samplings. Again based on
the MDL, we prioritize the second model due to its simplicity.

V. LOOK-UP TABLE SYNTHESIS WITH DON’T-CARES

Given a functional cut, it is possible to obtain the de-
pendency function f : BK → {0, 1, ∗} by looking at the
simulation signatures and filling in the entries of a k-LUT
based on the patterns appearing at the leaves of the cut. If
a pattern does not appear, we treat it as a don’t-care. This
section discusses how to decompose a K-LUT into a k-LUT
network, with k < K while taking don’t-cares into account.

LUT SYNTHESIS WITH DON’T-CARES

Given: 1) A function f : BK → {0, 1, ∗}.
2) A maximum fanin size is k

Find a k-LUT network synthesizing f .

A. Information Graph Transformations
We start by defining some IG transformations needed to

understand the proposed decomposition.

Definition V.1. Let Υt
x be a t-covered IG, and A be the

adjacency matrix of the IG. The adjacency preserving trans-
formations {∆m}2

t−1
m=0 are the transformations

∆m(Υt
x) = {∆m(Px,t

i) i ∈ [0, 2t)}

∆m(Px,t
i) = (mPx,t

i,0 |
mPx,t

i,1) =

{
(Px,t

i,0 |P
x,t
i,1) if mi = 1

(Px,t
i,1 |P

x,t
i,0) if mi = 0

mi is the i-th bit of the binary representation of m.

These transformations are the IGs obtained by inverting the
Boolean attributes of the partitions of the covered information
graph, which are not detached from the IG. The adjacency
matrix A is an invariant of this transformation, the number of
partitions is upper-bounded by 2t.

Definition V.2. Let Υt
x be a t-covered IG, and ∆m an

adjacency-preserving transformation. The projection operator
Π is the operator collapsing the IG ∆m(Υt

x) into a Boolean
function π = Π(∆m(Υt

x)). πM is set by the Boolean attributes
of the minterm M , and the don’t-care set reads

DCπ = {Px,t
i,a s.t. (Px,t

i,a |∅) ∈ Υt
f∨(∅|P

x,t
i,a) ∈ Υt

f i ∈ [0, 2t)}

The result of the covering process is twofold:
1) From one covered IG, many functions can be derived,

all sharing the same IG.
2) DCx ⊆ DCπ , i.e., the don’t-care set of the projected

function can be enlarged by the process.
DCx\DCπ is the set of minterms detached during the process.

Definition V.3. Let x : BK → {0, 1, ∗} be a Boolean function,
Υt

x ≻ · · · ≻ Υxt
be a covering process, Υt

x the resulting t-
covered IG, and ∆m an adjacency-preserving transformation.
These transformations on Υx are support-reducing if the
support size after the projection is smaller than n.

The term reduced support is used for the support of the
function obtained after a support-reducing transformation.

B. Decomposition of Look-Up Tables
Remark 2. Let x : Bn → {0, 1, ∗} be a Boolean function,
and C = {xi}ni=1 be a set of functions satisfying Theorem 1,
and k be a desired fanin size. If it is true that:

1) n ≤ 2k − 1.
2) There is a subset CT ⊂ C, named top subset, |CT | = k−1

for which there is a support-reducing transformation.
3) The reduced support CB ⊂ C satisfies |CB | ≤ k.

Then, x can be decomposed using two k-input functions.

x = g(CT , h(CB)) g, h : Bk → B (11)

Proof. By definition of support-reducing transformation, the
IG of the function h(CB) covers the (k − 1)-covered IG
obtained with the covering process defined by the variables
CT . Hence, the set CF ∪{h} satisfies Theorem 1, implying the
existence of a dependency function g : Bk → B.

This remark provides an operational definition of the key
engine of our decomposition, which is reported in Algorithm 3.

Algorithm 3 2_decompose(x)

1: χ←sort_by_coverage(x1, . . . , xn)
2: for all

(
n

k−1

)
support subsets CT = {xi}k−1

i=1 ⊂ C do
3: Υk−1

x ← Υx ≻ Υx1 ≻ Υx2 ≻ · · · ≻ Υxk−1

4: m←get_m_minimizing_ones()
5: iter← 0
6: while iter ≤ 1 + effort · 2k−2 do
7: h← Π(∆m(ΥK−1

x))
8: CB ← get_support(h)
9: if |CB | ≤ k then

10: return g(CF , h(CB));
11: iter←mod(iter,2k−1) m++

The first step sorts the divisors by coverage of Υx, so
that in the enumeration of all possible top subsets, we will
first consider the input variables leading to the highest IG
coverage, i.e., correlating the most with the target function.
This choice was empirically verified to speed up synthesis.
Next, we consider all the possible combinations of k − 1
divisors as the input of the top LUT, and we cover the IG with
them. Using remark 2, a decomposition composed of 2 LUTs
exists if and only if there is a k-input function covering the
remaining edges of the IG. This function can be the projection
of any adjacency-preserving transformation. Iterating through
all the possible transformations would allow us to find a
solution when present, but it requires an exponential number
of trials in the worst case. To reduce the runtime effort, we
introduce the parameter effort, in the range [0, 1], where 0
corresponds to only one adjacency preserving transformation,
and 1 considers all of them. To maximize the chances that a
solution is found in the first few iterations, the first adjacency-
preserving transformation we consider minimizes the number
of ones in the projected function. This choice detects many
decompositions with the lowest effort.

We attempt this decomposition every time the support size
is K ≤ 2k − 1. When the decomposition fails, or when
K > 2k−1, we try performing one step of top disjoint-support
decomposition, and fallback to Shannon decomposition in
case of failure. We use as the branching variable the one
covering most edges in the IG, and we recursively apply the
decomposition to the cofactors, after updating their care-sets
with the branching variable.

VI. EXPERIMENTS

A. The LUT Decomposition
Table III shows the success rate of our decomposition when

trying to decompose a K-LUT in a sub-network composed
of two 4-LUTs. The table considers practical functions, i.e.,
Boolean functions frequently appearing in modern hardware
designs. The results refer to the case in Algorithm 3 when
the effort is set to the maximum value. Except for the 6-
variables case, our algorithm gets the best result faster than

TABLE III: Decomposition of the practical functions.
5 vars (1233) 6 vars (7351) 7 vars (41071)

success time[s] success time[s] success time[s]
DSD 55.31% 0.25 23.30% 1.81 16.52% 11.8
lpack 91.08% 0.34 45.65% 2.11 18.70% 12.72
IG44 96.67% 0.45 63.77% 31.64 20.86% 740.27
SAT 96.67% 1.47 64.22% 34.98 20.86% 766.11

TABLE IV: Quality and effort in decomposition.
effort 5 vars (1233) 6 vars (7351) 7 vars (41071)

success time[s] success time[s] success time[s]
0% 95.94% 0.033 60.94% 0.52 18.90% 10.26
20% 96.59% 0.046 62.88% 1.64 19.32% 47.71
40% 96.67% 0.073 63.44% 2.77 19.77% 83.28
60% 96.67% 0.063 63.69% 3.97 20.26% 122.29

a SAT formulation. The failure in the 6-variables case is
because, for runtime reasons, our support reduction algorithm
is not exact but heuristic, and thus it misses some optimization
opportunities. Due to the small optimality gap, our heuristic
achieves better results than disjoint support decomposition and
other methods used in lutpack [8].

To ensure scalability we try to reduce the effort as much
as possible. Table IV shows that the heuristics of Algorithm 3
allow us to identify most opportunities for 2-decomposition in
a single attempt. By increasing effort, other optimizations are
identified. However, already in this configuration, the success
rate is higher than both DSD and lutpack.

Finally, we test our algorithm in the presence of don’t-cares.
We take all the practical functions, for which there is no
2-decomposition, and we randomly generate a care-set. We
compare our don’t-cares-aware heuristic IG44∗ with IG440,
which sets to 0 all the don’t-cares, and IG44p, which assigns
a random value to them. Table V shows that leveraging don’t-
cares yields superior resynthesis quality.

B. Resubstitution Statistics
In this experiment, we investigate the statistics of an opti-

mization run. We consider the IWLS and EPFL benchmarks
with less than 300000 AIG nodes, optimize them with one
round of resyn2rs, and map them using the area-oriented
LUT mapper with structural choices in ABC (dch; if -a
-K 4). Table VI reports the optimization statistics, including
the number of attempted substitutions, the sizes of the resyn-
thesis sub-networks, the number of successes, and the average
number of don’t-cares exploited by the accepted substitutions.

C. High Effort Optimization of 4-LUT networks
This experiment analyzes the design-space exploration ca-

pabilities of our algorithm. The test cases are the EPFL com-
binational benchmarks. Since we are interested in dramatically
reducing the area without relying on AIG optimization, we use
only one run of the ABC script resyn2rs. Next, we perform
SAT sweeping to remove combinationally equivalent nodes
using command (fraig). Then, we map the networks into

TABLE V: Successful 2-decomposition with don’t-cares.
5 vars (123300) 6 vars (128350) 7 vars (260620)

IG44p 28.39% 0.00% 0.00%
IG440 70.91% 4.94% 0.46%
IG44∗ 99.88% 92.60% 38.39%

TABLE VI: Statistics on the EPFL and IWLS benchmarks for
the two models p1 and p2 described in section IV.

1-resub 2-resub 3-resub 4-resub 5-resub

gre
valid 37606 2441 0 4 1
trial 40697 3712 1 7 1
⟨|DCx|⟩ 10% 28% 0% 32% 25%

p1
valid 33419 2919 1 9 1
trial 36447 4298 1 17 2
⟨|DCx|⟩ 11% 28% 25% 27% 13%

p2
valid 36281 3923 5 9 3
trial 39306 5466 13 25 5
⟨|DCx|⟩ 13% 30% 31% 26% 17%

TABLE VII: Design space exploration for 4LUT-networks.
The area is a, The depth is d, and the time is t.

design aABC aIRS dABC dIRS tABC tIRS

div 4323 4268 2121 2118 1.00 177.00
log2 9752 9613 144 150 88.00 629.00
max 949 928 111 111 1.00 11.00
multiplier 7231 7116 130 130 1.00 396.00
sin 1849 1718 81 94 6.00 634.00
sqrt 6506 5246 2558 2118 3.00 616.00
square 5310 4897 123 123 7.00 611.00
arbiter 4139 4138 31 30 5.00 13.00
cavlc 261 244 9 10 3.00 33.00
ctrl 47 45 5 5 0.00 4.00
i2c 381 351 10 10 1.00 17.00
int2float 74 76 8 8 1.00 8.00
mem_ctrl 13065 11513 58 53 59.00 618.00
priority 183 187 30 30 1.00 5.00
router 55 56 12 12 1.00 4.00
voter 2475 2028 19 22 4.00 387.00

−5.49% −9.50%

4-LUTs using the area-oriented LUT mapper with structural
choices (dch; if -a -K 4). This is our baseline. We
compare two simple design-space exploration flows. The first
one runs mfs2 and lutpack until convergence, or until a
runtime limit of 10 minutes per benchmark is met. The second
one replaces mfs2 with our resubstitution engine. In both
cases, we require no depth increase to avoid depth explosion
during area optimization. Table VII shows the results for the
EPFL benchmarks. The higher runtime of the second algorithm
is partly due to the higher effort imposed, and partly because
new optimizations are found at each attempt: the algorithm
terminates when the runtime limit is reached.

D. Restructuring 6-LUT networks
We now examine the engine’s behavior under stricter run-

time constraints. We focus on 6-LUT networks, comparing the
previously discussed flows with a 60-second runtime limit,
allowing processes started before the end time to complete.
The results are shown in Table VIII. Higher performances are
achieved, thanks to superior restructuring capabilities. Com-
bined results from this and the previous section demonstrate
that our engine enables higher restructuring capabilities.

Future research could explore filtering strategies to speed up
optimization and improve scalability. Nonetheless, as shown in
the next section, this engine is significant for its restructuring
capabilities, allowing us to identify optimization opportunities
beyond the reach of state-of-the-art engines.

E. EPFL Best Results
The EPFL Combinational Benchmark Suite consists of 23

combinational circuits used to benchmark logic optimization

TABLE VIII: Design space exploration for 6LUT-networks.
The area is a, The depth is d, and the time is t.

design aABC aIRS dABC dIRS tABC tIRS

div 4118 4076 2028 1994 3.00 66.00
log2 7465 7344 141 142 68.00 276.00
max 731 730 88 87 0.00 10.00
multiplier 5682 5567 126 126 8.00 99.00
sin 1455 1399 70 70 6.00 62.00
sqrt 4911 4263 2252 1850 3.00 123.00
square 3985 3579 122 122 9.00 64.00
i2c 268 244 8 7 1.00 24.00
int2float 45 46 5 5 1.00 2.00
mem_ctrl 9395 9724 45 44 50.00 99.00
priority 143 141 28 28 1.00 7.00
router 39 40 9 9 1.00 1.00
voter 1885 1726 17 17 13.00 67.00

−1.04% −3.20%

tools. The challenge includes deriving a 6-LUT network with
the smallest LUT count. If a heuristic can optimize these
benchmarks, then it introduces novel optimization capabilities
in design space exploration, compared to the state-of-the-art.
We apply a flow to the best LUT networks available in 2023.
We iteratively apply our heuristic using model 2 for support
selection, and setting the support size to 6. In the case of
failure, we increase the support size to 8. Table IX shows
that this flow allows us to improve the best-known results
for 11 out of 23 test cases from the competition. We report
two different results. The first one stops optimization if, at
the beginning of an optimization cycle more than 10 minutes
have passed. The second one involves randomly varying the
parameters indefinitely, until optimization is possible.

TABLE IX: Best area results for the EPFL benchmarks [19].

OLD BEST FLOW≤600s FLOW∞
Design 6-LUTs Depth 6-LUTs Depth 6-LUTs Depth

div 3090 1100 3090 1100 3085 1102
hyp 36836 4384 36814 4535 36491 4633
log2 6076 243 6043 252 6012 257
mul 4330 178 4316 211 4314 208
sin 1053 86 1025 112 1023 110
sqrt 2983 1382 2978 1180 2966 1185
square 2959 170 2939 206 2935 200
i2c 177 9 176 10 176 9
memctrl 1708 14 1696 14 1694 14
priority 93 30 92 30 92 30
voter 1180 28 1178 30 1175 29

VII. CONCLUSION

This paper presentes a new resubstitution algorithm for com-
binational logic represented as a LUT network. The algorithm
has two novel features:

1) An algorithm with customizable runtime effort to select
divisors during resubstitution.

2) A decomposition strategy for synthesizing LUTs into
networks of smaller LUTs.

The resubstitution engine combining these heuristics enables
new optimization opportunities, compared to state-of-the-art
engines. Future works will investigate the implications of the
non-local restructuring capabilities of our method on other
network representations, including resubstitution on networks
mapped to standard cell, beyond existing methods [20].

REFERENCES

[1] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable don’t-
care-based logic optimization and resynthesis,” ACM Transactions on
Reconfigurable Technology and Systems (TRETS), vol. 4, no. 4, pp. 1–
23, 2011.

[2] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

[3] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2573–2586, 2021.

[4] S.-Y. Lee and G. De Micheli, “Heuristic logic resynthesis algorithms at
the core of peephole optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2023.

[5] A. M. R. Brayton and A. Mishchenko, “Scalable logic synthesis using
a simple circuit structure,” in Proc. IWLS, vol. 6, 2006, pp. 15–22.

[6] A. Costamagna and G. De Micheli, “Accuracy recovery: A
decomposition procedure for the synthesis of partially-specified boolean
functions,” Integration, vol. 89, pp. 248–260, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167926022001791

[7] J.-H. R. Jiang and R. K. Brayton, “Functional dependency for veri-
fication reduction,” in Computer Aided Verification: 16th International
Conference, CAV 2004, Boston, MA, USA, July 13-17, 2004. Proceedings
16. Springer, 2004, pp. 268–280.

[8] A. Mishchenko, R. Brayton, and S. Chatterjee, “Boolean factoring
and decomposition of logic networks,” in International Conference of
Computer-Aided Design (ICCAD). IEEE, 2008, pp. 38–44.

[9] L. Józwiak, “Information relationships and measures: an analysis appa-
ratus for efficient information system synthesis,” in EUROMICRO 97.
Proceedings of the 23rd EUROMICRO Conference: New Frontiers of
Information Technology (Cat. No. 97TB100167). IEEE, 1997, pp. 13–
23.

[10] J. S. Zhang, S. Sinha, A. Mishchenko, R. K. Brayton, and
M. Chrzanowska-Jeske, “Simulation and satisfiability in logic synthesis,”
computing, vol. 7, p. 14, 2005.

[11] S. Sinha, SPFDs: A new approach to flexibility in logic synthesis.
University of California, Berkeley, 2002.

[12] R. K. Brayton, “Understanding SPFDs: A new method for specifying
flexibility,” in Notes of International Workshop on Logic Synthesis
(IWLS’97), May, 1997.

[13] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney, “The
transduction method-design of logic networks based on permissible
functions,” IEEE Transactions on Computers, vol. 38, no. 10, pp. 1404–
1424, 1989.

[14] A. Costamagna, A. Mishchenko, S. Chatterjee, and G. De Micheli, “An
enhanced resubstitution algorithm for area-oriented logic optimization,”
2024, accepted at the International Symposium On Circuits And Systems
(ISCAS).

[15] J. Rissanen, “Modeling by shortest data description,” Automatica,
vol. 14, no. 5, pp. 465–471, 1978. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/0005109878900055

[16] S. Rai et al, “Logic synthesis meets machine learning: Trading exactness
for generalization,” in 2021 Design, Automation and Test in Europe
Conference and Exhibition (DATE), 2021, pp. 1026–1031.

[17] A. Oliveira and A. Sangiovanni-Vincentelli, “Learning complex boolean
functions: Algorithms and applications,” Advances in Neural Informa-
tion Processing Systems, vol. 6, 1993.

[18] A. Feldmann and W. Whitt, “Fitting mixtures of exponentials to long-
tail distributions to analyze network performance models,” Performance
evaluation, vol. 31, no. 3-4, pp. 245–279, 1998.

[19] L. Amarú, P. E. Gaillardon, and G. De Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

[20] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson,
R. Brayton, and G. De Micheli, “Improvements to boolean resynthesis,”
in 2018 Design, Automation & Test in Europe Conference & Exhibition
(DATE). IEEE, 2018, pp. 755–760.

