
Recovering Hierarchical Boundaries in a Flat Netlist
Kuo-Wei Ho1, Yu-Wei Fan1, Jie-Hong R. Jiang1,2, Alan Mishchenko3, Robert Brayton3, Sean A. Weaver4

1Graduate Institute of Electronics Engineering, National Taiwan University
2Department of Electrical Engineering, National Taiwan University

3Department of Electrical Engineering and Computer Sciences, University of California, Berkeley
4Laboratory for Advanced Cybersecurity Research, U.S. National Security Agency

Abstract—In a typical integrated circuit design flow, a hier-
archical design specification is optimized and mapped into a
library by a synthesis tool, resulting in a flat netlist without
hierarchical instances. However, in some practical scenarios, it
may be important to reintroduce into the mapped netlist the
boundary of some instances defined in the specification. This
paper presents an automated recovery method that works even in
those cases when synthesis completely removes the original nodes
on the boundary. The paper also discusses several use cases of
the recovered boundary in synthesis, verification, and engineering
change orders.

I. INTRODUCTION

The hardware design flow is a sequence of transformations
automatically applied by a computer-aided design (CAD)
toolchain to a hardware design description. The design is
typically given as a register-transfer-level (RTL) specification,
composed of modules combined together to implement specific
functions in the given design. The toolchain working on the
RTL specification applies transformation one by one, resulting
in a sequence of intermediate representations. For example,
the RTL specification may be internally flattened leading to
the loss of the hierarchical information. Next, the word-level
operators introduced after flattening are elaborated and replaced
by functionally-equivalent bit-level circuits. These circuits
are synthesized and mapped by other parts of the toolchain,
resulting in a flat netlist, which may be written out into a file
before applying physical design tools.

Although in a typical design flow described above, the
toolchain produces a variety of intermediate representations,
they are typically not visible to the user, who sees only the
RTL specification at the beginning and the mapped netlist
at the end of synthesis and mapping. The resulting netlist
is ”flat” in the sense that it does not contain hierarchical
information present in the original specification. However, this
hierarchical information may be important in a number of
practical applications described below.

It may be observed that the boundaries between the instances
can be maintained by customizing the synthesis script. However,
in many cases, doing so compromises the quality of synthesis,
since the logic network is not optimized across the fixed
instance boundaries. The designer may also be working on
previously synthesized designs, for which rerunning synthesis
may be impractical or impossible, and yet recovering the
boundaries may be desirable.

Before we further motivate the need for recovering hierar-
chical boundaries, it should be noted that this task is greatly

simplified by assuming that the flat netlist contains nodes that
are functionally equivalent to the nodes found on the boundary
in the hierarchical specification. This assumption rarely holds
in practice because logic synthesis often restructures the netlist
in such a way that the intermediate nodes are removed while
the functions of the primary outputs are preserved. Additionally,
some instances may have outputs that do not have external
drivers. After elaboration, such outputs without fanout are
typically removed by the data-structure cleanup before logic
synthesis begins.

The goal of this paper is to develop an automated method to
recover hierarchical boundaries in the flat netlist after synthesis
and mapping, without assuming that the mapped netlist has
nodes equivalent to the boundary nodes in the specification.

The problem is solved in several steps. First, the hierarchical
specification and the flat implementation are both transformed
into an equivalent and-inverter-graph (AIG) to enable efficient
simulation and SAT solving. Next, SAT sweeping of the AIG is
used to identify equivalent node pairs across the implementation
and the specification. Next, the instance in the implementation
that corresponds to the given instance in the specification is
localized by analyzing the available node equivalences, resulting
in the ”extended instance”. The extended instance is a superset
of the logic nodes found in the target instance, including logic
nodes found between the target instance and the closest pairs of
equivalent nodes. Finally, by replacing the extended instance in
the implementation with the copy of the extended instance taken
from the specification, the boundary of the original instance
can be successfully recovered. The details of this procedure
are presented in Sections IV and V.

Potential applications of the proposed method are as follows:
1) Synthesis: In some cases, the designer who runs industrial

tools on the hierarchical design may be unsatisfied with the
quality of the resulting synthesized/mapped netlist. It may
be, for example, due the fact that the design has some novel
features, which are not widely supported by the tools, or just
an accidental quality degradation. At the same time, it may
be obvious for the designer that some parts of the design
should be synthesized differently, in particular, by using manual
transformations or applying another tool on a part of the
target design. However, typical industrial tools do not maintain
hierarchical instances, and even if they do, they typically
maintain only some but not all boundaries; otherwise, the
quality of synthesis can be substantially reduced. In such cases,
if the designer has a hierarchical RTL design and the flat
netlist produced by the tool, we may recover the boundary of
a module using the proposed method and insert the result of



manual synthesis. This may improve the quality of the design
(delay, area, power, etc).

2) Model checking: Consider a flat synthesized/mapped
design that needs to be verified and a verification tool that uses
the abstraction-refinement methodology. It may be helpful to
abstract specific functionalities that are present in the RTL but
are not clearly visible in the flat netlist. If we can transfer the
boundary to the flat netlist, abstraction-refinement can proceed
with better guidance.

3) Equivalence checking: For example, when an instance is
a large multiplier, SAT sweeping may time out in the transitive
fanout of the multiplier, and as a result, the proposed boundary
recovery method may not be applicable. In such cases, we may
be able to use simulation to find equivalent node candidates,
as opposed to exact equivalences found by SAT sweeping. If
we succeed in this case in reconstructing the boundary based
on candidates rather than exact equivalences, we can divide
the equivalence-checking proof into two parts: (a) prove the
multiplier to be equivalent to its specification using, for example,
algebraic methods. (b) prove the netlist after logic grafting to
be equivalent to its specification.

4) Engineering change order (ECO): In a typical ECO
scenario, the hierarchical specification changes due to a bug
fix or a new feature addition. If this happens at the end of
the design cycle, when the synthesized and mapped netlist is
already generated, possibly after weeks of painstaking effort
by the design team, it may be costly or impossible to rerun
synthesis from scratch on the updated specification. However,
if the change of the specification can be localized, we can
define a hierarchical instance containing the change in the RTL.
The boundary of this instance indicates the boundary of change
due to the last-minute bug fix or new feature. In this context,
the proposed method provides an efficient and simple solution.
We first apply the proposed method to recover this instance
in the implementation, by comparing it against the original
specification before it is changed by ECO. If the boundary
recovery is successful, we can transfer the changes from the
modified specification directly, by replacing the recovered
instance. This way we can update the implementation without
the need to resynthesize it from scratch. Furthermore, defining
the recovered instance to only contain the necessary changes
also minimizes the patch.

5) Logic block annotation: It may be helpful to associate
signals in the netlist after physical design with those in the
original RTL. This association allows for annotating parts
of RTL with the design information, such as timing, area,
or power, derived by physical design. The RTL parts with
labeled physical information can serve as the training data for
machine learning. To perform this annotation, we consider the
relevant region in the physical netlist as a target instance in the
specification and treat the RTL netlist as the implementation.
We can use the proposed boundary recovery method to identify
an extended instance in the RTL netlist containing the region
of the physical netlist, thus enabling the transfer of the physical
design information to the RTL netlist.

The rest of the paper is organized as follows. Section II
describes the preliminaries. Section III outlines the problem
formulation. Section IV presents the method used to solve the

problem. Section V presents an enhancement to our method
with speculative reduction, followed by the experimental results
in Section VI, a discussion in Section VII, and conclusions in
Section VIII.

II. PRELIMINARIES

A Boolean netlist is a directed-acyclic graph (DAG) with
nodes corresponding to logic gates and edges corresponding to
the interconnections between these gates. We use netlist and
circuit interchangeably to refer to a Boolean netlist. Given a
graph G, we use the notation NODES(G) to denote the set of
nodes of G. The source nodes and the sink nodes of a netlist
are called the primary inputs (PIs) and the primary outputs
(POs), respectively. The internal nodes are all nodes excluding
PIs and POs. And-Inverter Graph (AIG) represents a Boolean
netlist consisting of only two-input AND gates and inverters,
where the inverters are annotated on the edges. In this work,
we consider a netlist as an AIG. We say n is a fanin of n′ and
n′ is a fanout of n if (n, n′) is an edge in the Boolean netlist.
Also, (n, n′) is a fanout edge of n and a fanin edge of n′. For
a node n, we use the notations FO(n) and FI(n) to denote the
set of fanouts and the set of fanins of n, respectively.

If there is a path from node n to node n′, then n called the
transitive fanin of n′ and n′ is called the transitive fanout of n.
Given a node n, the transitive fanin (fanout) cone, denoted as
TFI(n) (TFO(n)), is a subgraph with the set of nodes being

N = {n′ | n′ is a transitive fanins (fanouts) of n} ∪ {n} (1)

and the set of edges being

E = {(n′, n′′) | n′, n′′ ∈ N}. (2)

A cut C for (n, TFI(n)) is a set of nodes, called leaf nodes
or leaves, where every path from PIs to n passes through
exactly one node in C and n is called root node of C.
Symmetrically, C is a cut for (n, TFO(n)) if every path from
n to POs passes through exactly one node in C. Given a
set of nodes N , we say N is sufficient to form a cut for n
and TFO(n) (TFI(n)), if N ∩N ′ forms a cut with N ′ being
NODES(TFO(n)) (NODES(TFI(n))). In a netlist G, a fanout-
free netlist G′ is a subgraph where FO(n) ⊆ G′ for every node
n ∈ G′.

For each node n, we associate it with a Boolean variable xn

to represent the logic value of the gate output. An input pattern
is an assignment that maps the variables of all PIs to Boolean
values. Given an input pattern, we can simulate the AIG by
applying the following simulation rules to each and-node n in
a topological order.

xn =


¬xn1

∧ ¬xn2
, if both fanin edges have inverters,

¬xn1
∧ xn2

, if only (n1, n) has an inverter,
xn1
∧ ¬xn2

, if only (n2, n) has an inverter,
xn1
∧ xn2

, otherwise,
(3)

where n1 and n2 are the two fanins of n. This allows us to
uniquely determine the values of all nodes under an input
pattern. A node n is equivalent to another node n′, and vice
versa, if the value of xn equals that of xn′ under all possible
input patterns.



A hierarchical netlist G is a netlist containing an instance.
An instance is a fanout-free netlist TFO(NBI)∩TFI(NBO) ∈ G
with two sets of nodes NBI and NBO being its boundary inputs
and boundary outputs, respectively.

SAT sweeping [1] is a commonly used approach to perform
netlist optimization and verification represented as AIGs
through efficient detection of equivalent nodes. In this work, we
use SAT sweeping to compute the set of equivalent node pairs,
which are used by the proposed boundary recovery method.

III. PROBLEM FORMULATION

The problem can be stated formally as follows: Consider
two netlists, the hierarchical specification S and its flattened
implementation I , and the boundary BS in S composed of the
input and output nodes of a target instance. The solution to the
boundary recovery problem is the boundary BI’ in I ′ composed
of nodes that may not have existed in I , such that the Boolean
functions of BS and BI’ are equivalent and the modified I ′ is
equivalent to the original S. Also, we want to minimize the
changes to the logic of I ′ needed to recover the boundary of
the target instance.

IV. METHODS

A. Identifying Extended Boundary

Given an implementation netlist I and its specification S
with a hierarchical boundary, the boundary recovery is divided
into two parts: The first part identifies the equivalent pairs of
nodes belonging to I and S using SAT sweeping. The second
part uses structural analysis on I and S using the node pair
equivalence information as the guidance. This would include
computing a set of nodes in I , where their corresponding
equivalent nodes in S form a cut in the transitive fanin/fanout
cone composed of boundary inputs/outputs.

The main procedure IDENTIFY-EXTENDED-
BOUNDARY(I, S) is shown in Algorithm 1. Let NBI
and NBO be the set of nodes belonging to the boundary
inputs and boundary outputs in S, respectively. The sub-
procedure IDENTIFY-EQ-NODES(I, S) then identifies the
equivalent pairs of nodes in I and S using SAT sweeping. Let
EQ-NODE(n) be the equivalent node of n in another netlist,
and EQ-NODE(n) = ∅ if there are no equivalent nodes of n
in another netlist. Note that a node can generally be equivalent
to more than one node in another netlist. In this case, let
EQ-NODE(n) be the first node detected as equivalent to n by
SAT sweeping.

Once the equivalence information is computed, structural
analysis is performed as follows. For each boundary output
n, procedure FIRST-EQ-CUT-TFO(n) is used to find a set of
nodes in S that forms a cut in TFO(n). These nodes become
the extended boundary outputs (EBOs) NEBO. Similarly, we
can find a set of extended boundary inputs (EBIs) NEBI in S
using the procedure FIRST-EQ-CUT-TFI(n) for a boundary
input n. The procedure FIRST-EQ-CUT-TFO(n) is shown in
Algorithm 2. Given a root node n in S, the procedure performs
DFS traversal from n toward the fanouts until a valid cut with
all the nodes having equivalent nodes in I is found. We can
always find such a cut since the POs form a trivial cut.

Instance

Fig. 1: A part of the specification netlist near the boundary.

Procedure FIRST-EQ-CUT-TFI(n) is the same as Algo-
rithm 2, except that FO(ncur) in Line 10 is replaced by FI(ncur).

Recall that we found the nodes of NEBO in TFO(NBO) and
the nodes of NEBI in TFI(NBI), respectively. Such a boundary
may not be valid since the EBIs may not be sufficient to form
a cut for (n, TFI(n) with an EBO n. Fig. 1 shows part of the
netlist S. {n5, n6} and {n3, n4} are the boundary outputs and
inputs of the instance, respectively. The gray nodes are those
that have an equivalent node in I . In this example, the current
NEBO is {n8, n9} and the current NEBI is {n0, n1, n3}. It can
be seen that for an EBO n8, NEBI is not sufficient to form a
cut for n8 and TFI(n8).

To resolve this issue, for each EBO n in S, procedure FIRST-
EQ-CUT-TSI(n,NBI) shown in Algorithm 3. computes a set
of nodes Nret that, with equivalent nodes in I , form a cut
for (n, TFI(n) along with the original boundary outputs NBO.
These nodes are included in the EBIs in the main procedure.
Notice that in Line 8, we ensure that the additional EBI is not
in TFO(NBO). Otherwise, we may have an invalid EBI n with
a boundary output in TFI(n). Consider again the example in
Fig. 1. After the first call of the procedure FIRST-EQ-CUT-
TSI(n8, NBO), it returns the set of nodes Nret = {n1, n2} and
the NEBI will be updated by Nret as {n0, n1, n2, n3}. It can be
checked that the current NEBI is sufficient to form a cut for
both (n8, TFI(n8)) and (n9, TFI(n9)). After the second call
FIRST-EQ-CUT-TSI(n9, NBO), NEBI will remain the same.

B. Recovering Target Instance Boundary

After identifying the extended boundary in S, we can
easily reintroduce the boundary of the target instance into
the implementation by replacing the logic inside the extended
boundary of I . That is, for each node n on the EBO in S, we
substitute all its equivalent n′ in I with n. And, for each node
n on the EBI in S, n is substituted by one of its equivalent
nodes in I .

However, before the substitution, we check the validity of
the corresponding extended boundary in I . The boundary is
invalid if there is an EBI n in the transitive fanout cone of
an EBO n′. This could result in combinational loops after the
substitution. If this is the case, our method cannot be used to
reintroduce the logic in I . We found experimentally that this
happens in some rare cases.



Algorithm 1 Identify the extended boundary in specification S
using equivalent node pairs between implementation I and S.

1: procedure IDENTIFY-EXTENDED-BOUNDARY(I, S)
2: NBI, NBO ← BI(S), BO(S)
3: IDENTIFY-EQ-NODES(I, S)
4: NEBO, NEBI = ∅, ∅
5: for all node n ∈ NBO do
6: NC ← FIRST-EQ-CUT-TFO(n)
7: NEBO ← NEBO ∪NC

8: for all node n ∈ NBI do
9: NC ← FIRST-EQ-CUT-TFI(n)

10: NEBI ← NEBI ∪NC

11: for all node n ∈ NEBO do
12: NC ← FIRST-EQ-CUT-TSI(n,NBO)
13: NEBI ← NEBI ∪NC

14: return (NEBI, NEBO)

Algorithm 2 Compute the set of nodes that, with equivalent
nodes in implementation I , form a cut in TFO(n). Returned
are the nodes on the first-met cut that satisfies this property.

1: procedure FIRST-EQ-CUT-TFO(n)
2: Nret ← ∅
3: Nstack ← empty stack()
4: Nstack.push(n)
5: while Nstack is not empty do
6: ncur ← Nstack.pop()
7: if EQ-NODE(ncur) is not ∅ then
8: Nret ← Nret ∪ {ncur}
9: else

10: for all nnext ∈ FO(ncur) do
11: if nnext is not visited then
12: Nstack.push(nnext)
13: Mark ncur as visited
14: return Nret

V. ENHANCEMENT WITH SPECULATIVE REDUCTION

One potential weakness of the proposed method is that
it relies on SAT sweeping to compute the set of pairs
of equivalent nodes spanning across the specification and
the implementation. However, it is well known that, if the
design contains arithmetic logic structured differently in the
specification and in the implementation (for example, an array
multiplier in the specification and a Booth multiplier in the
implementation), the SAT solver may fail to prove some or all of
the intermediate equivalences and the SAT sweeper will not find
a substantial number of equivalent nodes pairs. In the worst case,
when there are no equivalences or if no equivalences can be
proved by SAT, the proposed method defaults to the trivial case
when the inputs (outputs) of the extended box are the primary
inputs (primary outputs) of the design. This is functionally
correct but practically useless because we recover the boundary
by replacing the implementation with the specification, without
reusing any of the original logic from the implementation.

Speculative reduction (SR) is the method proposed in [2] and
developed in [3] for simplifying a combinational or sequential
verification miter during SAT sweeping by merging candidate

Algorithm 3 Compute the set of nodes that makes NEBI forms a
complete cut in TFI(n). Returned are the nodes on the first-met
cut that satisfies this property.

1: procedure FIRST-EQ-CUT-TSI(n,NBO)
2: Nret ← ∅
3: Nstack ← empty stack()
4: Nstack.push(n)
5: while Nstack is not empty do
6: ncur ← Nstack.pop()
7: if ncur /∈ NBO then
8: if ncur /∈ TFO(NBO) and EQ-NODE(ncur) is

not ∅ then
9: Nret ← Nret ∪ {ncur}

10: else
11: for all nnext ∈ FI(ncur) do
12: if nnext is not visited then
13: Nstack.push(nnext)
14: Mark ncur as visited
15: return Nret

equivalent nodes without proving them. All the node pairs
merged without proof during speculative reduction are recorded
in the form of a speculative miter (SM) to be proved later.
The advantage of isolating hard equivalences in the speculative
miter is that the miter can be proved independently by the same
prover (the SAT solver) running with higher resource limits or
by a different prover (for example, by an engine that proves the
equivalence of arithmetic circuits by constructing arithmetic
polynomials [4]). However, the downside of the speculative
reduction is that, if any of the candidate equivalences are
disproved, the process has to be redone from scratch while not
merging disproved equivalence during sweeping.

We can use speculative reduction to enhance the proposed
method as follows. We run SAT sweeping with speculative
reduction enabled, resulting in the set of candidate equivalences
(as opposed to the set of proved equivalences). These equiva-
lences are used to perform boundary detection, as described
in this paper. If the boundary recovery is successful, we use
it to perform logic grafting by replacing the box logic in
the implementation by that of the specification, which often
simplifies the miter because both sides of the miter have the
same circuit structure within the boundary. If the verification
miter is proved under speculation, we still have the task of
proving the speculative miter. If this is successful, the hard
equivalence checking problem is solved.

VI. EXPERIMENTAL RESULTS

A. Boundary Recovery

The benchmarks used to evaluate the proposed methods come
from several sources:

1) Designs from the OpenCores repository [5]. In each of the
designs considered, one combinational instance or part of the
Verilog code is isolated as an instance and used for boundary
recovery. The design is read into Yosys [6] twice: to derive
the specification, all instances are flattened while the boundary
of one instance is maintained; to derive the implementation,
all instances are flattened.



2) Arithmetic test cases consisting of additions, multipli-
cations, and possibly some control logic. To generate such
benchmarks, we write Verilog description for expressions
similar to (a+b)*c+d and read them using ABC [7] to generate
a hierarchical specification. We then flatten the specification
netlist and apply synthesis scripts to generate the implementa-
tion.

3) ISCAS’85 hierarchical benchmarks [8]. The implemen-
tation is synthesized from the original ISCAS’85 gate-level
netlist and the specification is derived from the hierarchical
Verilog description. 1

For the detailed description of each benchmark and the target
instances, please refer to Table I. We will make all the used
benchmarks publicly available after the double-blind review
stage.

In each of the above cases, we synthesize the implementation
using different synthesis scripts in ABC shown in Table II and
report the results of boundary recovery after using each script.

In Table II, executing each script means running the corre-
sponding “Commands” for “#Iter” times. For the command
used, “&dc2” performs heavy AIG rewriting. “&dc4” and
“&dc3” both perform AIG balancing and technology map-
ping/unmapping with different parameters. “&dc4” additionally
performs shared logic extraction. The main idea is that script2
applies stronger synthesis than script1, and script3 applies even
stronger synthesis than script2.

The results are shown in Table III, where the columns
“#Spec,” “#Inst,” “#BI,” and “#BO” represents the number
of nodes in the specification, the number of nodes in the target
instance, the number of boundary inputs, and the number of
boundary outputs, respectively.

Then, for each script described in Table II, the columns
“#Impl” and ‘Equiv‘ represent the number of nodes in the syn-
thesized implementation and the percentage of the nodes in the
specification that have equivalent nodes in the implementation,
respectively. In the specification, let the number of nodes, the
number of nodes within the target instance, and the number of
nodes within the extended instance be Mspec, Minst, and Mext,
respectively. Then the column “Extend” is the ratio calculated
by the following equation:

Mext −Minst

Mspec −Minst
(4)

In other words, “Extend” is 0% if the extended instance is
the original target instance and 100% if it includes the whole
design.

For each specification netlist, we create three different test
cases by specifying different target instances. The names of the
test cases “arith-i-j,” “oc-i-j,” and “iscas-i-j,” indicate that
they are the jth test cases derived from the ith specification
netlist based on the arithmetic, the OpenCores, and the ISCAS
benchmarks, respectively.

The column “Extend” of each script shows that the size of
the extended instance is larger when a stronger synthesis is
applied. Although the extended instance is larger in script3, the
average values of “Equiv” are both 33% in script2 and script3.

1The hierarchical Verilog description can be found here https://web.eecs.
umich.edu/∼jhayes/iscas.restore/benchmark.html

This result suggests that, after some synthesis, the number
of equivalent pairs may not change a lot, but the changes in
the logic structure can make the task of identifying the target
instance more difficult.

The test cases arith-3-1 and arith-3-2 result in an invalid
boundary (boundary containing combination loops) in the
implementation synthesized using script2 and script3. This
issue is caused by the structural differences, as discussed in
Section VII-A. Although further extending the boundary toward
primary input is a simple solution, some structural analysis can
be done to decide what part of the boundary should be extended.
Improving the selection heuristics is deferred to future work.

B. Enhancement using Speculative Reduction

To demonstrate the runtime improvement in boundary re-
covery with speculative reduction, we perform the experiments
on two different benchmarks. The first one contains a set
of manually generated arithmetic circuits with structurally
different target instances between the specification and the
implementation. The second one contains selected designs used
in [9] from IWLS 2005 benchmarks [10]. The description of
these benchmarks is shown in Table IV. We note that, since
the speculative miter is often much smaller than the original
design, we perform additional synthesis (“&syn2; &dc2;”) to
reduce the size of the SM before proving it. We do not report
the additional synthesis runtime since it is negligible, compared
to the time spent on proving the SM.

Table V shows the results with and without speculative
reduction (SR). The columns “Bitwidth,” “#Spec,” “Time”
represent the input bitwidth of the target instance, the number
of nodes in the specification, the runtime in seconds without
SR, respectively The column “Time” and “EQ” under “SR”
show the runtime in seconds with SR the equivalent of the
designs with SR, respectively. The column “Time” and “EQ”
under “SM” show the runtime in seconds of proving SM and
the equivalence of SM, respectively. For notations, we use “EQ,”
“NEQ,” and “TO” to represent “equivalent,” “not equivalent,”
and “timeout”, respectively. For each test case, the conflict
limit of 1000 and the runtime limit of 1000 seconds are used,
and the resulting implementation with an extended boundary
is verified to be equivalent to the specification.

It should be noted that, in these cases, we could not formally
prove the speculative miter since it contains hard arithmetic
functions that are not verifiable by the current equivalence
checking in ABC. However, we applied extensive random
simulation (16 words, 10000 rounds) to the speculative miters
and did not disprove them. This gives us some degree of
confidence about their correctness because random simulation
is powerful enough to find bugs in arithmetic logic. We plan
to work on formal equivalence checking of hard arithmetic
functions as part of future work.

It can be seen that, for circuits that are hard for SAT sweeping,
SR can be used to obtain a solution faster. In particular,
column “PO” shows that, except for case n1 with bitwidth
32, all primary outputs are equivalent under speculation, and a
boundary recovery solution can be found in all cases.

Although we currently validate the correctness of the majority
of speculative miters only using simulation, the results for



TABLE I: The description of the benchmarks used in Table III

Design Description Case Target Instance

arith-1 6-bit arithmetic expression, (a+ b) ∗ c+ d
1 the multiplier
2 the lowest 5 bits of the multiplier
3 the first adder

arith-2 6-bit complex arithmetic expression
1 a multiplier
2 the lowest 3 bits of a multiplier
3 the lowest 5 bits of a multiplier

arith-3 16-bit complex arithmetic expression with control logics
1 a subtractor
2 an arithmetic block with multiplication and addition
3 an adder with some control logics

oc-1 module “dcach write” from design “ao486”, a processor
1 the lowest 2 bits of signal “line merged”
2 signal “line merged”
3 signal “write burst byteenable 1”

oc-3 module “crp” from design “des”, a crypto core
1 module “sbox8”
2 part of the module “sbox3”
3 module “sbox4”

oc-4 module “CPE” from design “nova”, a video controller
1 one of the module “CPE base”
2 one line in one of the module “CPE base”
3 one line in one of the module “CPE base”

oc-5 module “Inter pred CPE” from design “nova”, a video controller
1 one of the module “CPE”
2 one line in one of the module “CPE”
3 one line in one of the module “CPE”

iscas-1 “c2670,” a 12-bit ALU and controller
1 instance “UM4 4” of module “CLA12 XY”
2 instance “UM4 1” of module “MaskBus”
3 instance “UM6 0” of module “Mux9bit 2 1”

iscas-2 “c5315,” a 9-bit ALU
1 instance “M4” of module “CalcParity”
2 instance “M5” of module “MuxesPar 4”
3 instance “M11” of module “ZeroFlags”

TABLE II: The scripts for synthesizing implementations.

Script Commands #Iter

script1 &dc2; 2
script2 &dc3; &dc2; 2
script3 &dc3; &dc2; &dc4; &dc2; 3

examples n4 and n5 indicate that, at least in some cases, the
synthesized SM is easier to prove, compared to SAT sweeping
the original design.

C. A Case Study of Logic Block Annotation

This experiment is a case study of logic block annotation
mentioned in Section I for the design oc-1-1, demonstrating the
feasibility of annotating the relevant region in the specification
netlist with the physical information. Several studies on
placement-aware logic synthesis [11], [12], [13] have shown the
importance of the placement information during logic synthesis.
Therefore, as a proof of concept, we consider the physical
information in placement, which includes cell positions and
wirelength estimation of certain nets. We follow the procedure
described in Section VI-A to derive the specification netlist G1

and the implementation netlist G2 with script1. G2 netlist is
then transformed into a physical netlist Gp in the Bookshelf
format, where the and-gate is a standard cell with two input
pins and one output pin. For each node n, its output pin and
the connected input pins of FO(n) form a net. Note that we
have to remember the mapping of the nodes and the cells
between G2 and Gp in order to map the information from
Gp to G2. Gp is then given to the placer NTUPlace3 [14] to
derive the placement result. With the placement result and the
mapping between G2 and Gp, we are able to label the nodes

in G2 with their corresponding positions in Gp after placement.
Last, given the relevant region in G1, we perform boundary
recovery on G1 and G2. The extended boundary nodes in G1

are annotated with the physical locations based on the boundary
nodes in G2. The wirelength information in the region of G1

can be computed by summing up the half-perimeter wirelength
(HPWL) of all the nets in the extended boundary in G2.

VII. DISCUSSION

In this section, we discuss several limitations of the current
boundary recovery method and their possible solutions.

A. Structural Differences

The first limitation of our method stems from the assumption
that the boundary nodes would be presented as the equivalent
nodes between the implementation and the specification. In
some scenarios, the netlist may be largely restructured such that
the target instance still exists in the implementation but does
not have equivalent boundary nodes. For example, in Fig. 3, the
left-hand side is the specification netlist S and the right-hand
side is the implementation netlist I with the multiplier (MULT)
being the target instance. It can be checked that, although both
netlists implement the same function and the boundary of the
target instance present in both netlists, the BOs in S are not
equivalent to that in I and the left part of the BIs in S is also
not equivalent to that in I . If we apply the proposed boundary
recovery in this case, we will detect the POs as the EBOs and
the PIs as the EBIs, resulting in the trivial extended boundary,
even if the exact boundary is present in S and I .

In other cases involving complex logic structures, we may
end up with an EBI whose TFI contains an EBO, resulting in



TABLE III: Boundary recovery results and benchmarks statistics with different synthesis scripts.

Case #Spec #Inst #BI #BO
script1 script2 script3

#Impl Equiv Extend #Impl Equiv Extend #Impl Equiv Extend

arith-1-1 423 307 12 12 391 86% 2.59% 549 36% 37.93% 589 41% 60.34%
arith-1-2 509 96 10 5 391 83% 0.00% 549 36% 2.18% 589 40% 2.18%
arith-1-3 423 37 12 12 391 86% 0.00% 549 36% 0.00% 589 41% 0.00%
arith-2-1 752 307 12 12 642 72% 0.67% 850 32% 37.53% 995 35% 60.22%
arith-2-2 405 34 6 3 318 63% 0.00% 369 34% 2.43% 458 38% 2.43%
arith-2-3 501 96 10 5 407 63% 4.44% 474 32% 10.12% 569 36% 10.12%
arith-3-1 4529 107 32 16 3301 68% 1.42% 3932 32% 8.75% 4073 36% 8.41%
arith-3-2 4628 698 32 16 3301 68% 0.08% 3932 32% 7.74% 4073 35% 5.37%
arith-3-3 4529 125 35 16 3301 68% 0.00% 3932 32% 0.00% 4073 36% 1.45%
oc-1-1 22475 124 32 2 5159 49% 0.00% 4704 44% 0.00% 3475 34% 0.00%
oc-1-2 22359 21981 195 128 5059 20% 0.00% 4765 11% 0.00% 2901 8% 0.00%
oc-1-3 22357 23 5 4 5059 20% 0.00% 4765 11% 0.00% 2901 8% 0.00%
oc-3-1 2047 239 6 4 1523 35% 0.00% 1305 10% 0.00% 1315 13% 0.00%
oc-3-2 1995 16 3 2 1449 32% 0.00% 1264 10% 0.00% 1305 15% 0.00%
oc-3-3 2047 238 6 4 1523 35% 0.00% 1305 10% 0.00% 1315 13% 0.00%
oc-4-1 1773 441 16 14 1767 95% 0.83% 2386 45% 8.56% 2686 43% 23.12%
oc-4-2 1841 69 9 9 1828 94% 0.34% 2484 44% 2.09% 2800 43% 2.71%
oc-4-3 1834 62 12 9 1812 94% 0.56% 2449 44% 1.81% 2965 42% 2.88%
oc-5-1 6749 1773 46 8 5663 97% 0.00% 7830 50% 0.00% 9031 45% 0.00%
oc-5-2 6775 372 14 14 6006 97% 1.42% 8254 51% 1.58% 9562 47% 1.58%
oc-5-3 6473 70 22 14 5729 97% 1.42% 7986 50% 1.95% 9329 48% 3.40%
iscas-1-1 794 82 24 1 553 33% 3.79% 562 23% 4.49% 535 23% 5.76%
iscas-1-2 707 14 15 12 553 35% 13.71% 562 24% 14.43% 535 24% 15.58%
iscas-1-3 707 27 19 9 553 34% 0.00% 562 23% 0.00% 535 24% 12.65%
iscas-2-1 1810 307 45 2 1364 34% 0.00% 1336 27% 0.00% 1295 25% 0.00%
iscas-2-2 1724 46 15 4 1364 34% 0.00% 1336 27% 0.00% 1295 24% 0.00%
iscas-2-3 1724 32 36 4 1364 34% 0.00% 1336 27% 0.24% 1295 24% 0.47%

Average 68% 0.66% 33% 5.84% 33% 8.77%

TABLE IV: The benchmarks for speculative reduction.

Design Specification Implementation

n1 “(((a+ b) ∗ c) + d)” “((c ∗ (a+ b)) + d)” synthesized using “&dc3; &dc2”
n2 “((((e+ f) ∗ (a+ b)) + ((e+ f) ∗ c)) + d)” “(((e+ f) ∗ ((a+ b) + c)) + d)” synthesized using “&dc3; &dc2”
n3 “((m?0 : ((a+ b) ∗ c)) + d)” “(((m?0 : (a+ b)) ∗ c) + d)” synthesized using “&dc3; &dc2”
n4 Design “pci bridge32” synthesized using “&dc2; &syn2;” Design “pci bridge32” synthesized using “ifraig -s;”
n5 Design “netcard” synthesized using “&dc2; &syn2;” Design “netcard” synthesized using “ifraig -s;”

TABLE V: The result of boundary recovery with speculative
reduction.

Design BW #Spec Time
SR SM

Time EQ Time EQ

n1 8 678 56.52 0.36 EQ 68.96 EQ
n1 16 2218 TO 1.17 EQ TO N/A
n1 32 7794 TO 4.12 NEQ N/A N/A
n2 8 1356 TO 0.37 EQ TO N/A
n2 16 4436 TO 1.02 EQ TO N/A
n2 32 15588 TO 3.11 EQ TO N/A
n3 8 886 0.45 0.02 EQ 0.85 EQ
n3 16 2250 109.61 1.2 EQ TO N/A
n3 32 7858 TO 4.54 EQ TO N/A
n4 N/A 16392 441.17 0.14 EQ 0.01 EQ
n5 N/A 519206 TO 8.42 EQ 0.35 EQ

a combinational loop. The issues due to structural differences
can be alleviated by relaxing the EBI towards the PIs or POs.

B. Satisfiability Don’t Cares

When the proposed method for boundary recovery is used in
the ECO applications, the correct solution is guaranteed when
the logic cones outside the target instance in the specification
and in the implementation are equivalent. Therefore, our method
may not be applicable when the implementation is synthesized
using satisfiability don’t-cares (SDCs) produced by the target
instance.

This happens when certain assignments never appear at the
BOs, becoming SDCs for the TFO cones of the BOs, providing
the synthesis tool with flexibility for optimization.

An example is shown in Fig. 4. In these two netlists, the
transitive fanout cone of the boundary outputs are an XOR gate
and an OR gate, respectively. While the XOR gate and the OR
gate are in general not equivalent, the two netlists could be
equivalent if the assignment (1, 1) never appears on the BOs.
If such a condition happens, although we could still identify
the boundary using the equivalent nodes, the two netlists may
not be equivalent after replacing the logic inside the extended
boundary of the implementation with the patch. As mentioned
in the previous subsection, this issue can also be tackled by
further extending the boundary towards the primary input or
the primary outputs.

C. Logic Sharing

Logic sharing in the netlist may lead to non-equivalent
logic cones in the implementation and in the specification
outside of the target instance. This happens when one boundary
node in the implementation is equivalent to multiple nodes in
the specification. Because the implementation is assumed to
undergo some optimization and is usually more compact than
the specification, some equivalent nodes will likely be merged
in the implementation. When we change the functionality of



Instance

(a) Specification S (b) Implementation I (c) LS from S (d) LI from I (e) L′
I from I

Fig. 2: An example of non-equivalent logics outside the target instances caused by logic sharing. LS (LI ) is derived from S
(I) by replacing the boundary outputs with additional free inputs X . While LI is not equivalent to LS , L′

I keeps the original
connection for ii and is equivalent to LS .

MUX

MULT MULT

MUX

Fig. 3: The specification and implementation netlists with non-
equivalent boundary nodes.

Instance Instance

Fig. 4: An example of the specification netlist and the
synthesized implementation netlist after exploiting satisfiability
don’t-cares.

the target instance for the specification, we expect that only
the fanin cones of the equivalent nodes at the boundary should
change. However, since all the equivalent nodes are merged
into one node in the implementation, our approach patches the
changed logic of that node in the implementation. Alternatively,
the patch will change the logic of all those equivalent nodes,
resulting in the non-equivalence between the specification and
the implementation.

This is illustrated in Fig. 2 where Fig. 2a is the specification
and Fig. 2b is the implementation. If nodes n1 and n2 in
the specification and n3 in the implementation are equivalent,
when we choose n3 as the boundary output, the logic cones
on the outside of the boundary are not equivalent, as shown in
Fig. 2c and Fig. 2d. To make these logic cones equivalent, the
connection between the nodes n3 and i1 should be kept in the
implementation, as shown in Fig. 2e.

This issue can be alleviated by considering structural

information when choosing the corresponding equivalent node.

VIII. CONCLUSIONS

The paper presents a novel method for post-processing of a
flat netlist to recover a hierarchical boundary that existed in
the specification but was lost during elaboration and further
obfuscated during logic optimization. The method works even in
the case when the flat netlist does not have nodes corresponding
to those originally present on the boundary in the specification.
The computation uses a robust resource-aware implementation
of SAT sweeping and does not rely on other reverse engineering
techniques [15], [16], [17].

It can be observed that the boundary detection tends to be
harder in the following cases: when a more aggressive synthesis
script is used, when a more global restructuring is performed,
and when the logic of the implementation is relatively deep
and/or highly redundant. In all of the above cases, it is likely
that logic optimization leads to a substantial simplification
across the boundary, which obfuscates the boundary and makes
the recovery harder.

Experimental results confirm that the proposed method can
successfully recover hierarchical boundaries in many cases.
The method can be useful in a number of practical scenarios,
in particular, when a designer needs to update the result of
synthesis for a specific module or when a verification engineer
tries to simplify equivalence checking by using additional
constraints, such as uninterpreted function constraints, attached
to the cut points present in the specification but missing in the
implementation.

Future work may focus on increasing the robustness of the
method, which at present still fails on some examples when
high-effort synthesis makes significant structural changes. In
particular, the situation when one node in the implementation is
equivalent to several nodes in the specification can be addressed.
Another extension is make the method work for sequential
circuits by relying on sequential SAT sweeping for detecting
node equivalences [18].

ACKNOWLEDGMENTS

This work was supported in part by the National Science and
Technology Council of Taiwan under grant NSTC 111-2923-
E-002-013-MY3, and the NTU Center of Data Intelligence:



Technologies, Applications, and Systems under grant NTU-
113L900903. This research at UC Berkeley was supported
in part by the NSA grant “Novel methods for synthesis and
verification in cryptanalytic applications”, the SRC Contract
3173.001 ”Standardizing Boolean transforms to improve quality
and runtime of CAD tools”, and donations from AMD, Siemens,
and Synopsys.

REFERENCES

[1] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K.
Brayton, “FRAIGs: A unifying representation for logic
synthesis and verification,” UC Berkeley, Tech. Rep.,
2005.

[2] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman,
“Exploiting suspected redundancy without proving it,” in
Proceedings of Design Automation Conference, 2005,
pp. 463–466.

[3] H. Mony, J. Baumgartner, A. Mishchenko, and R. Bray-
ton, “Speculative reduction-based scalable redundancy
identification,” in Proceedings of Design, Automation &
Test in Europe Conference, 2009, pp. 1674–1679.

[4] D. Kaufmann, A. Biere, and M. Kauers, “Verifying large
multipliers by combining sat and computer algebra,”
in Proceedings of Formal Methods in Computer-Aided
Design, 2019, pp. 28–36.

[5] Opencores. [Online]. Available: https://opencores.org/.
[6] C. Wolf, Yosys open synthesis suite. [Online]. Available:

https://yosyshq.net/yosys/.
[7] R. Brayton and A. Mishchenko, “ABC: An academic

industrial-strength verification tool,” in Proceedings
of the International Conference on Computer-Aided
Verification, 2010, pp. 24–40.

[8] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling
the iscas-85 benchmarks: A case study in reverse
engineering,” IEEE Design & Test of Computers, vol. 16,
no. 3, pp. 72–80, 1999.

[9] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton,
and G. De Micheli, “A simulation-guided paradigm for
logic synthesis and verification,” IEEE Transactions on
CAD of Integrated Circuits and Systems, vol. 41, no. 8,
pp. 2573–2586, 2022.

[10] C. Albrecht, Iwls 2005 benchmarks. [Online]. Available:
https://iwls.org/iwls2005/benchmarks.html.

[11] H. Zheng, S. T. Gurumani, K. Rupnow, and D. Chen,
“Fast and effective placement and routing directed
high-level synthesis for fpgas,” in Proceedings of the
2014 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2014, pp. 1–10.

[12] J. Nam and D. Hyun, “Bayesian optimization for param-
eter tuning in placement-aware logic synthesis,” in 2023
20th International SoC Design Conference (ISOCC),
2023, pp. 353–354.

[13] D. Hyun, Y. Fan, and Y. Shin, “Accurate wirelength
prediction for placement-aware synthesis through ma-
chine learning,” in 2019 Design, Automation and Test
in Europe Conference (DATE), 2019, pp. 324–327.

[14] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and
Y.-W. Chang, “Ntuplace3: An analytical placer for large-
scale mixed-size designs with preplaced blocks and
density constraints,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 27,
no. 7, pp. 1228–1240, 2008.

[15] W. Li, Z. Wasson, and S. A. Seshia, “Reverse engineering
circuits using behavioral pattern mining,” in Proceedings
of the International Symposium on Hardware-Oriented
Security and Trust, 2012, pp. 83–88.

[16] M. Soeken, B. Sterin, R. Drechsler, and R. Brayton, “Sim-
ulation graphs for reverse engineering,” in Proceedings
of Formal Methods in Computer-Aided Design, 2015,
pp. 152–159.

[17] A. Mishchenko, B. Sterin, and R. Brayton, “Structural
reverse engineering of arithmetic circuits,” UC Berkeley,
Tech. Rep., 2017.

[18] A. Mishchenko, M. Case, R. Brayton, and S. Jang,
“Scalable and scalably-verifiable sequential synthesis,”
in Proceedings of the International Conference on
Computer-Aided Design, 2008, pp. 234–241.


