
Practical Boolean Decomposition for Delay-driven
LUT Mapping

Alessandro Tempia Calvino1, Alan Mishchenko2, Giovanni De Micheli1, Robert Brayton2
1Integrated Systems Laboratory, EPFL, Lausanne, Switzerland

2Department of EECS, University of California, Berkeley, USA

Abstract—Ashenhurst-Curtis decomposition (ACD) is a decom-
position technique used, in particular, to map combinational
logic into lookup tables (LUTs) structures when synthesizing
hardware designs. However, available implementations of ACD
suffer from excessive complexity, search-space restrictions, and
slow run time, which limit their applicability and scalability.
This paper presents a novel fast and versatile technique of ACD
suitable for delay optimization. We use this new formulation
to compute two-level decompositions into a variable number of
LUTs and enhance delay-driven LUT mapping by performing
ACD on the fly. Experiments with heavily optimized benchmarks
show an average delay improvement of 12.39% and an area
reduction of 2.20% compared to state-of-the-art LUT mapping,
with affordable run time. Additionally, our method improves
the best-known delay for 4 benchmarks in the EPFL synthesis
competition.

Index Terms—Logic synthesis, Boolean decomposition, tech-
nology mapping, FPGA

I. INTRODUCTION

Ashenhurst-Curtis decomposition (ACD) [1], [2], also
known as Roth-Karp decomposition [3], is a powerful tech-
nique that finds a decomposition of a Boolean function into a
set of sub-functions and a composition function with reduced
support. ACD finds applications in logic optimization and
technology mapping. The noteworthy use cases of ACD are
in mapping into standard cells [4] and field-programmable
gate arrays (FPGA) [5], decomposition of multi-valued re-
lations [6], and encoding of multi-valued networks [7].

Traditional applications rely on the original formulation of
ACD [1]–[3], breaking the input variables into two groups:
the bound set (BS) and the free set (FS). Other approaches
to ACD [5] allow for a shared set (SS) when one or more
LUTs in terms of the BS variables are single-variable functions
(buffers). The larger the SS size, the fewer LUTs are required.
For instance, Figure 1 shows an ACD of a function with
BS, FS, and SS resulting in three 5-input LUTs. In [5],
maximizing the SS is implemented using binary decision
diagrams (BDDs) [8]. More recently, truth-table-based imple-
mentations eliminated the need for explicitly constructing a
BDD, resulting in a faster decomposition [9], [10].

ACD has been applied to map into fixed lookup table (LUT)
structures [10] as a way to mitigate structural bias and improve
the quality of standard LUT mapping. This approach utilizes
heuristic variable re-ordering to find an ACD, supporting
up to 1 SS variable. Additionally, ACD has been used in
post-mapping resynthesis [9], when logic cones composed
of several LUTs are collapsed into single-output Boolean

Bound set Shared set Free set

L1

L2 L3

x0x1x2x3x4 x0x1x2x3 x5 x6x7

Fig. 1. ACD of an 8-input Boolean function into three 5-input LUTs with a
5-variable bound set (BS), a 1-variable shared set (SS), and a 2-variable free
set (FS).

functions and re-expressed using fewer LUTs. The authors
proposed to use disjoint-support decomposition (DSD) and
Shannon’s expansion to pack logic into LUTs while supporting
up to 3 SS variables.

Since ACD is often applied only to functions up to 11
or 16 inputs (for LUT structures composed of two or three
6-LUTs, respectively), state-of-the-art LUT mapping is per-
formed through local substitutions applied to an initial graph
representation, called subject graph. Generally, delay-optimal
mapping w.r.t. the subject graph is feasible in polynomial
time [11], while area-optimal mapping is NP-hard [12]. How-
ever, the structure of the subject graph highly impacts the
result. This phenomenon is known as structural bias. To
mitigate structural bias, methods in the literature generate a
set of structural choices (or decompositions) available during
mapping [13]–[15].

This paper offers two main contributions. First, we revisit
the formulation of ACD with SS to enhance its computation-
ally efficiency in LUT mappers and post-mapping resynthesis
engines performing delay optimization. Our algorithm is truth-
table-based and flexible in the number of FS, BS, and SS
variables, and in the number of BS functions. Our ACD runs
up to 2x faster, compared to [10], and up to 80x faster,
compared to [9] when performing decompositions into two 6-
LUTs. Furthermore, it also finds considerably more solutions.

Second, we use ACD for the delay optimization of LUT
networks. The idea is to compute functional decompositions
using the timing-critical variables in the FS and the rest of the
variables in the BS and SS. We integrate our ACD into the
state-of-the-art LUT mapper for delay optimization. To our
knowledge, this is the first practical and scalable work that

uses ACD for delay-driven LUT mapping.
We experimentally evaluate the performance of ACD and

compare mapping based on Boolean decomposition against
state-of-the-art methods:

1) We compare our ACD method against other decompo-
sition methods in ABC, showing better quality with a
competitive or better run time.

2) We demonstrate that mapping with ACD can efficiently
mitigate structural bias and considerably reduce the delay.
We compare the default LUT mapper in ABC, the LUT
mapper with Boolean decomposition in ABC, and the
proposed mapper with integrated ACD. We show that
mapping with ACD outperforms the other mappers in
delay by 7.52% on average with and without structural
choices [15]. Moreover, we show that an additional
mapping round using the network obtained by ACD as a
structural choice can further improve the delay, compared
to the standard LUT mapper, by 12.39% with an area
reduction of 2.20%.

3) We present 4 new best results in the EPFL competition.

II. PRELIMINARIES

This section introduces the basic notations and background
related to logic networks, decomposition, and LUT mapping.

A. Definitions

A Boolean function is a mapping from a k-dimensional
Boolean space into a 1-dimensional one: {0, 1}k → {0, 1}.

A truth table representation of a k-input Boolean function
f : {0, 1}k → {0, 1} can be encoded as a bit string b =
bl−1 . . . b0, i.e., a sequence of bits, of length l = 2k. A bit
bi ∈ {0, 1} at position 0 ≤ i < l is equal to the value taken
by f under the input assignment a⃗ = (a0, . . . , ak−1) where

2k−1 · ak−1 + · · ·+ 20 · a0 = i.

The positive cofactor of a Boolean function f with respect
to a variable xi, represented as fxi

, is the Boolean function
obtained by setting xi = 1. Similarly, the negative cofactor
fx̄i

is the Boolean function obtained by setting xi = 0.
In the classical representation, we refer to the leftmost input

column of a truth table as the most significant variable (ak−1)
and the rightmost input column as the least significant variable
(a0). A swap of two variables results in the interchange of
the corresponding two-variable cofactors, thereby altering the
truth table.

Figure 2 depicts two truth tables represented as bit strings,
one in binary and one in hexadecimal. Notably, the rightmost
truth table can be derived from the leftmost one by swapping
the variables x0 and x2. Marked next to both truth tables are
the cofactors with respect to two most significant variables.

A completely specified Boolean function f essentially de-
pends on a variable v if there exists an input combination
such that the value of the function changes when the variable
is toggled (∂f∂v = 1). The support of f is the set of all variables
on which function f essentially depends. The supports of two
functions are disjoint if they do not contain common variables.

x2 x1 x0 f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

f = 10110101

fx̄1x̄2

fx1x̄2

fx̄1x2

fx1x2

x0 ↔ x2 x0 x1 x2 f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

f = 0xA7

fx̄0x̄1

fx̄0x1

fx0x̄1

fx0x1

Fig. 2. Truth table representations and their encoding, cofactor extraction w.r.t.
the two most significant variables, and variable swapping of x0 with x2.

A set of functions is disjoint if their supports are pair-wise
disjoint.

A Boolean network is modeled as a directed acyclic
graph (DAG) with nodes represented by Boolean functions.
The sources of the graph are the primary inputs (PIs), the
sinks are the primary outputs (POs). For any node n, the
fanins of n is a set of nodes driving n, i.e. nodes that have an
outgoing edge towards n. Similarly, the fanouts of n is a set of
nodes driven by node n, i.e., nodes that have an incoming edge
from n. A k-LUT network is a Boolean network composed of
k-input lookup tables (k-LUTs) capable of realizing any k-
input Boolean function. An and-inverter graph (AIG) [16] is
a Boolean network where nodes are 2-input ANDs and edges
may implement inverters.

A cut C of a Boolean network is a pair (n, K), where n
is a node called root, and K is a set of nodes, called leaves,
such that 1) every path from any PI to node n passes through
at least one leaf and 2) for each leaf v ∈ K, there is at least
one path from a PI to n passing through v and not through
another leaf. The size of a cut is the number of leaves. A cut
is k-feasible if its size does not exceed k.

B. Ashenhurst-Curtis decomposition
Ashenhurst-Curtis decomposition (ACD) [1]–[3], of a

single-output Boolean function f can be expressed as follows:

f(x⃗bs, x⃗ss, x⃗fs) = g(⃗h(x⃗bs, x⃗ss), x⃗ss, x⃗fs), (1)

where x⃗bs is the bound set (BS), x⃗ss is shared set (SS),
and x⃗fs is the free set (FS). These sets are disjoint variable
subsets, which together form the support of f . The function
h⃗ may be multi-output with the number of outputs less than
the BS size. The single-output functions in h⃗ are referred
to as BS functions. The function g is referred to as the
composition function. When decomposing into k-LUTs, the
composition function is typically chosen to fit into one k-
input LUT. Figure 1 shows an ACD of an 8-input function
into three 5-input LUTs with a 5-variable BS, a 1-variable
SS, and a 2-variable FS. The decomposition generates two BS
functions (L2, L3) and a composition function (L1) with 5
inputs.

C. FPGA technology mapping
LUT mapping is the process of expressing a Boolean

network in terms of k-input lookup tables (k-LUTs). Before

mapping, the network is represented as a k-bounded Boolean
network called the subject graph, which contains nodes with
a maximum fanin size of k. The AIG is the most common
subject graph representation. The subject graph is transformed
into a mapped network by applying local substitutions to
sections of the circuit defined by cuts, which are computed
using cut enumeration [17]. A LUT mapper computes a
mapping solution by selecting a subset of the cuts that cover
the subject graph while minimizing a cost function. The state-
of-the-art LUT mapper computes cuts and refines the mapping
solution in several mapping passes using heuristics based on
delay, area, and edge count. For further details, refer to [18].

III. IMPROVEMENTS TO ACD

This section discusses a fast and versatile truth-table-based
implementation of ACD for single-output functions with sup-
port for a shared set. We propose several novelties that make
ACD practical within LUT mappers and resynthesis methods.
Figure 3 illustrates the ACD computation. The BS, SS, FS, and
the number of BS functions used are flexible and determined
during the decomposition. The composition function (L1)
is implemented as a multiplexer of cofactors with respect
to BS functions and the shared set. Functions dependent
on the FS (gi), called FS functions, are the data inputs of
the multiplexer found inside the composition function. BS
functions and the shared set are instead the selection inputs.

This definition of decomposition reflects the one used by
previous approaches [5]. Specifically, the decomposition is
generic, i.e., it includes other types of decomposition. For
instance, a Shannon’s expansion:

f = xfx + x̄fx̄,

where x is a selector of a multiplexer, can be re-expressed in
our ACD format:

f = fxfx̄1 + fxf̄x̄x+ f̄xfx̄x̄+ f̄xf̄x̄0,

where x is a FS variable, fx and fx̄ are BS functions, and FS
fuctions gi are 1, x, x̄, and 0.

In this section, we first present how to efficiently check the
existence of a feasible ACD and assign variables to the FS, BS,
and SS (Section III-A). Next, we show how to compute the
decomposition while minimizing the number of BS functions
and their support (Section III-B).

A. Finding a feasible decomposition

After defining the properties of ACD, in this section we
present an efficient method to check the existence of a Boolean
decomposition and find an assignment of support variables
to the FS and the BS (and SS). In particular, we focus on
decomposition into two levels of k-input LUTs. For simplicity,
in this section we consider SS variables a part of the BS.

The first step to derive a decomposition is to partition of
variables into FS and BS. Given a truth table, our approach
enumerates different free sets. Let N be the number of
variables in the support of a function to decompose. Let P be
the number of variables to consider in the FS. The remaining

00 01 10 11

f

L1

Bound set Shared set Free set

L2

g0 g1 g2 g3

Fig. 3. Illustrating the AC decomposition of a Boolean function

N − P variables are considered in the BS. The number of
different free sets is

(
N
P

)
. Regarding the choice of value P

when searching for a feasible two-level decomposition, for
an N -input function and k-input LUTs, it is convenient to
consider (N−k) variables in the FS, so that at most k variables
are considered in the BS. For instance, when N = 8 and
k = 6, we can choose P = 2 and evaluate 8 · 7/2 = 28
different 2-variable free sets.

For each FS, the truth table is transformed to have the
FS variables as the least significant ones, compared to the
BS variables. The variable reordering is performed using a
dedicated procedure, which swaps two variables. Note that
when enumerating all the free sets the first FS composed of
the P least significant variables in the support of the function
does not need variable swapping since the original truth table
already reflects this order. Then, every consecutive FS can be
derived from a previous FS by swapping one variable in xfs

with one in xbs. The complexity to explore all the FS is of(
N
P

)
swap operations. Figure 2 shows how a variable swap

affects the truth table.
Each input assignment to the BS variables selects one P -

input function in terms of the FS variables. Specifically, each
P -input function is a cofactor with respect to xbs. From a
truth table in this format, FS functions are easily computed
by extracting groups of 2P bits at i · 2P offsets with i ∈
[0, 2(N−P)). Informally, FS functions are listed next to each
other. Figure 2 graphically depicts the extraction of cofactors
with respect to the two most significant variables.

Example 1: Let us consider the 6-variable function rep-
resented in hexadecimal format as a truth table f =
0x8804800184148111. Let us assume that the FS variables
are the two least significant variables and the BS variables are
the four most significant ones. The functions in terms of FS
variables have truth tables with 2P = 22 = 4 bits. There are
2(N−P) = 16 of them, corresponding to hexadecimal digits in
the truth table (0x8, 0x8, 0x0, 0x4, etc). △

The target function can be realized using M bound set func-
tions if the number of unique FS functions, known as column
multiplicity µ, does not exceed 2M , hence M ≥ ⌈log2(µ)⌉. If

P +M ≤ k, the composition function can be implemented as
a k-LUT.

Example 2: Continuing Example 1, there are 16 FS func-
tions of which only 4 are unique. The FS functions are 0x8,
0x0, 0x4, and 0x1. Hence, the column multiplicity µ = 4,
which needs at least M = ⌈log2(4)⌉ = 2 BS functions.
Hence, this partition of variables into FS and BS produces
a feasible support-reducing decomposition into 4-input LUTs.
Using Figure 3, ACD assigns FS functions to gi. Then, two
BS functions of at most 4 inputs are necessary to select the
correct FS function. △

We employ the enumeration of free sets while counting the
number of unique cofactors to check if a support-reducing
decomposition exists. In practice, a sufficient condition for a
2-level decomposition is to have M +P ≤ k and N −P ≤ k,
i.e., the composition function is k-feasible, and the number of
remaining variables in the BS does not exceed k.

After identifying a partition of variables into FS and BS, and
the corresponding unique FS functions, our method uses the
techniques in Section III-B to produce a decomposition while
minimizing the number of BS functions and their support.

B. Functional encoding and support minimization
Once a partition of variables into FS and BS with a feasible

decomposition is found, the BS functions are extracted by
assigning each FS function to an encoding. Informally, an
encoding represents the assignment of FS functions to the data
inputs of the MUX of Figure 3 (e.g., the encoding of g1 is
01). While any encoding that distinguishes FS functions is a
valid solution, a good encoding also minimizes the number
of BS functions required (by maximizes the shared set), and
the functional support. In particular, it is crucial to find an
encoding that minimizes the support for three reasons. First,
if N − P > k, by minimizing the support, each BS function
would ideally fit into a k-LUT, and the decomposition is
feasible in 2 levels. Second, minimizing the support maximizes
the shared set (buffer BS functions), reducing the number
of required LUTs. Third, the number of edges required is
reduced, helping routability. Finding a feasible encoding is
similar to solving constrained encoding problems [19]–[21].

An encoding is an assignment of a code T = tM−1 . . . t0
of length M to each FS function. A variable ti takes one of
the three values, 1, 0, or −, indicating the ON-set, OFF-set,
and DC-set, respectively. Let i-sets be the set of µ Boolean
functions in terms of the BS variables encoding FS functions
using one-hot encoding. Precisely, an i-set represents one FS
function and takes value 1 when an input assignment to the
BS variables results in the corresponding FS function.

Example 3: Using Example 2, the i-set corresponding to the
FS function 0x8 is 1100100010001000 in binary format. Note
that the truth table has N −P variables and has value 1 when
the original function is 0x8. △

I-sets are used to derive a more compact encoding with a
two-step procedure. The first one enumerates candidate BS
functions. The second one solves a unate covering problem in
which columns are candidate BS functions and rows are pairs
of FS functions to be distinguished.

Candidate BS functions are functions depending on BS
variables whose output can used as ti to encode FS functions.
They are enumerated by combining i-sets. To leverage all the
functional degrees of freedom of a strict encoding, i-sets in a
BS candidate can be either in the ON-set, OFF-set, or don’t-
care (DC) set. Since candidate BSs are used as select inputs
of a multiplexer, BS candidates can distinguish elements in
the ON-set (takes value 1) against elements in the OFF-set
(takes value 0). In encoding problems, BS functions are called
dichotomies, while the pairs of functions to be distinguished
are referred to as seed dichotomies [21]. Don’t-cares in BS
candidates are also important to minimize the support, which
translates into fewer LUT edges.

Example 4: Continuing Example 3, let us consider the
candidate bound set function h that has the i-sets {0x8, 0x1} in
the ON-set and the i-set {0x4} in the OFF-set. Its function in
binary format is h =11-01--110101111 where “-” is a don’t
care. When h = 1, either 0x8 or 0x1 are selected. When
h = 0, 0x4 is selected. The corresponding dichotomy is {{0x8,
0x1},{0x4}}. In this case, function h distinguishes 0x8 from
0x4 and 0x1 from 0x4, covering the two seed dichotomies
{{0x8},{0x4}} (or {{0x4},{0x8}}) and {{0x1},{0x4}} (or
{{0x4},{0x1}}). △

A candidate bound set function is generated by assigning
each i-set to be in the ON-set, OFF-set, or DC-set. Hence, the
total number of possible BS candidates is 3µ. Nonetheless,
some BS candidates are interchangeable, i.e., one candidate
can be obtained by swapping the ON-set and the OFF-set
of another BS candidate. Our enumeration removes these
symmetries by fixing one i-set to be only in the ON-set or
DC-set, enumerating only 2 · 3µ−1 BS candidates. Moreover,
candidates not distinguishing any pair of FS functions are
removed. As a special case, if µ is a power of 2, the number
of possible BS candidates reduces to

(
M

M/2

)
/2 by splitting the

FS functions to be equally distributed between ON-set and
OFF-set, i.e., each BS candidate must distinguish half of the
FS functions against the other half.

One limitation of this method is that the number of BS
candidates is exponentially dependent on the column multi-
plicity. However, we may further reduce the number of BS
candidates when it is too large. In particular, for an ACD
into 6-LUTs the maximum column multiplicity to support is
16. Consequently, the highest number of BS candidates is
9.5 million for µ = 15. To maintain a reasonable number
of BS candidates, our method does not use don’t cares for
problems with µ > 8, enumerating 2µ−1 candidates and
reducing the highest number of candidates to 16 thousand.
Through experimentation, we have observed that imposing
this limitation scarcely affects the quality of the encoding,
while substantially enhancing run-time efficiency. Conversely,
extending this method to lower multiplicity values noticeably
compromises the solution quality.

Each BS candidate function is associated with a cost that
depends on the number of variables in its support. The
number of variables is computed with a special procedure that
considers don’t cares. Then, a covering table is constructed by

4 3 3
C9AF 1177 2727

{{0x8}, {0x0}} 1 0 1

{{0x8}, {0x4}} 1 1 0

{{0x8}, {0x1}} 0 1 1

{{0x0}, {0x4}} 0 1 1

{{0x0}, {0x1}} 1 1 0

{{0x4}, {0x1}} 1 0 1

Fig. 4. Covering table to solve the encoding problem.

having all the pairs of FS functions to be distinguished (seed
dichotomies) as rows and the BS candidates as columns. A
row-column entry (i, j) is 1 if the BS candidate of column j
distinguishes the seed dichotomy i. A solution that minimizes
the support is computed by solving a minimum-cost covering
problem [21]. The solution must cover all the rows while
minimizing the cost. We use greedy covering followed by local
search to compute cost-minimizing cover. A single iteration
of greedy covering extracts one column covering the most
non-covered rows while minimizing the cost. The process
is iterated until a solution is found. Then, the solution is
iteratively improved by replacing one column with another
having a lower cost.

Example 5: Figure 4 shows a covering table reflecting
the examples in this section. Each column in the table is a
candidate BS function shown as a truth table in hexadecimal
format on 4 variables. Each BS candidate has a cost based on
the number of variables on its support. Each row is a seed
dichotomy. An element (i, j) in the table is 1 if the BSj

distinguishes the seed dichotomy i. The best solution with
cost 6 takes the second and third columns and results in two
BS functions depending on 3 variables. △

Given a solution, an encoding of the FS functions is
obtained by assigning a code T = tM−1 . . . t0, in which each
variable ti corresponds to a selected BSi candidate.

Example 6: Continuing Example 5, a minimum cover in-
volves BS0 = 0x1177, by taking 0x4 and 0x1 in the ON-set,
and BS1 = 0x2727 by taking 0x0 and 0x1 in the ON-set.
Given the BS functions, the encoding of the FS functions
assigns the following codes to gi in Figure 3: T0x8 = 00,
T0x4 = 01, T0x0 = 10, and T0x1 = 11. Finally, the composition
function is computed using the FS and its encoding, resulting
in function 0x1048 when represented in hexadecimal format.
Consequently, the function has been successfully decomposed
using three 4-LUTs. △

IV. TECHNOLOGY MAPPING WITH ACD
In this section, we leverage the Ashenhurst-Curtis decom-

position (ACD) methods described in Section III to improve
the delay of LUT networks. ACD can be used in two ways: 1)
as part of LUT mapping or 2) as a post-mapping resynthesis
method to compact logic and decrease the delay. In this work,
we focus on the former usage since it has more flexibil-
ity and optimization opportunities. Although post-mapping
resynthesis is not covered in this work, its implementation

would follow a methodology similar to [9]. First, this section
discusses how to perform delay-oriented functional decompo-
sition for any number of FS variables and BS functions. Then,
it describes the integration of ACD in a technology mapper.

A. Delay-oriented ACD

Let us consider a node n in a k-LUT network and a cut C
rooted in n that contains leaves in the input sub-network of
n. Among all the leaves, some are timing-critical and some
are not. Let D be the latest arrival delay of a leaf in C. We
use ACD to find an implementation that realizes the function
of cut C with delay D + 1 where |C| > k, assuming a unit-
delay model. Specifically, we use the timing-critical leaves of
C in the FS and other non-critical ones in the BS or SS. This
transformation may reduce the worst delay of a LUT network
when applied on the critical path.

The ACD-based transformation is performed in two steps.
First, our method verifies the existence of a delay-minimizing
decomposition. Second, if a decomposition exists, it solves the
encoding problem and returns a solution.

1) Checking the existence of a decomposition: Algorithm 1
shows the procedure evaluate to check the existence of an
ACD. The algorithm receives the function represented as a
truth table tt of a large cut with size N where N > k. Set S
contains a list of timing-critical variables with delay D. First,
the truth table is transformed to have critical variables as the
least significant ones since they must be in the FS (at line 3).
The proposed approach limits N − P ≤ k to ensure a two-
level decomposition without solving the encoding problem.
Hence, the number of variables in the FS must be at least
P ≥ N − k, and P ≥ |S| to include all the delay-critical
variables (at line 6). For each FS of Pi variables, the column
multiplicity value is computed using the method described in
Section III-A, and the smallest one is returned (at line 7).
In this case, since delay-critical variables are always part of
the FS,

(
N

Pi−|S|
)

different combinations are enumerated. If the
smallest multiplicity found can be implemented using at most
k − Pi BS functions, a delay-minimizing ACD exists. In this
case, variables in the FS have the delay increase of 1 while
other variables have the delay increase of 2 (at line 14). If, on
the other hand, a decomposition with Pi does not exist, the
function is not decomposable.

The loop in line 6 begins checking the existence of a
decomposition with a smaller value of P . This approach
is based on the theoretical property that if a function is
not decomposable for the given value of P , it is also not
decomposable for P +1. Then, if a decomposition exists, the
loop attempts to increase the number of variables in the free
set. Specifically, maximizing the free set to include non-critical
variables has multiple benefits. Primarily, the decomposition
would have a reduced column multiplicity, which simplifies
the encoding problem. Additionally, maximizing the free set
may increase the required time of the associated non-critical
signals, facilitating the area-recovery process of technology
mapping.

Algorithm 1: ACD evaluation
1 Input : Truth table tt, LUT size k, Late vars set S
2 Output: Propagation delay
3 reorder variables(tt, S);
4 µbest ←∞;
5 xfs ← ∅;
6 for Pi ← max(num vars(tt)− k, |S|) to k − 1 do
7 {µ, x′

fs} ← compute smallest multiplicity(tt, Pi, |S|);
8 if µ ≤ 2k−Pi and µ < µbest then
9 µbest ← µ;

10 xfs ← x′
fs;

11 continue;

12 break;

13 if µbest ̸=∞ then
14 return compute propagation delay(tt, xfs);

15 return infinite propagation delay();

2) Computing the decomposition: After applying evaluate,
another procedure decompose is used to compute the actual
decomposition using the methods described in Section III-B.

B. LUT mapping with ACD

The methods described in Section IV-A have been integrated
into the LUT mapping algorithm in [18]. Each mapping
iteration computes k-feasible cuts rooted in nodes of the
subject graphs and selects one best cut for each node based
on cost functions and slack. Typically, enumerated cuts are k-
feasible, i.e., any cut abstracts a k-LUT. In our implementation,
cut enumeration computes large cuts up to size k < l ≤ 11,
where l is provided by the user. During cut enumeration,
the mapper computes cut functions as truth tables. For the
non-k-feasible computed cuts, the mapper uses Algorithm 1
to check the existence of a delay-minimizing decomposition
into k-LUTs. If a decomposition is not feasible, the cut is
discarded. If a decomposition exists, the cut delay is computed
using the propagation delay returned by Algorithm 1. The
area is computed pessimistically, neglecting the existence of
a shared set, i.e., Area = ⌈log2 µ⌉ + 1. To have precise
area information, i.e., the number of required LUTs, ACD
would need to solve the encoding problem and compute
the decomposition. However, experimentally, not running the
decomposition on the fly reduces the run time considerably
with negligible impact on the final circuit area.

The mapper uses l-feasible cuts with ACD in the delay map-
ping pass, while it uses k-feasible cuts in the following area
recovery iterations. Note that area-recovery aims at improving
the solution over non-critical paths and can always re-use the
best cuts from the previous pass, such that the required times
are met. After the last mapping pass, a cover is generated
consisting of k- and l-feasible cuts. At this stage, the mapper
decomposes the non-k-feasible cuts into k-LUTs.

V. EXPERIMENTS

This section presents an experimental evaluation of the
proposed LUT mapping with ACD. First, the ACD algorithm

proposed in this paper is compared with other state-of-the-
art methods for decomposing practical functions. Then, we
evaluate ACD for delay-driven LUT mapping. While the
experiments are reported for 6-input LUTs, similar improve-
ments have been obtained for 4-input LUTs as well.

The proposed methods have been implemented in ABC [22].
For our experiments, we use the EPFL combinational bench-
mark suite [23] containing several circuits provided as and-
inverter graphs (AIGs). The baseline has been obtained using
the commands and scripts “dfraig; resyn; resyn2;
resyn2rs; if -y -K 6; resyn2rs” in ABC, which
perform a high-effort size and depth AIG optimization. In
particular, it combines SAT sweeping [24], scripts for delay-
oriented AIG optimization [16], and lazy man’s logic syn-
thesis [25], which is the most aggressive depth minimization
command in ABC. The experiments have been conducted on
an Intel i5 quad-core 2GHz on MacOS. The results have been
verified using combinational equivalent checkering in ABC.
We extended the LUT mapper if in ABC to perform ACD as
discussed in Section IV. The following commands are used in
the experiments:

• dch (-f): computes structural choices used to mitigate
the structural bias [15], where -f stands for “fast”;

• if -K 6: performs delay-oriented technology mapping
with choices into 6-LUTs using 6-feasible cuts;

• if -s -S 66 -K 8: performs delay-oriented tech-
nology mapping using 8-feasible cuts and decomposes
logic for minimal delay into two 6-LUTs using a SAT-
based formulation (available in ABC but not published);

• if -Z 6 -K 8: performs technology mapping into
6-LUTs using the proposed implementation of delay-
oriented ACD described in Section IV for 8-feasible cuts;

• st: derives an AIG from an LUT network.

A. Decomposition success rate

In this experiment, we evaluate the performance of ACD in
decomposing functions by comparing it against other imple-
mentations in ABC. Specifically, we test the number of func-
tions that can be successfully decomposed into two 6-LUTs
and the run time needed. We run this experiment on practical
functions, i.e., functions that are observable in designs and
benchmarks, which include fully-, partially-, and non-DSD-
decomposable functions. We extract practical functions from
the EPFL benchmarks. Since the number of practical functions
can be large, we classify them into NPN -equivalence classes
employing the heuristic sifting algorithm [26], [27].

Table I shows the percentage of decomposable functions
and the runtime for different methods and support sizes. For
instance, the first column contains results for decomposing
practical 7-input functions, where (41071) indicates the num-
ber of unique NPN classes collected. Each row of the table
shows one ACD method. The first method lutpack [9] performs
a heuristic ACD using DSD and the Shannon’s expansion,
supporting up to 3-SS variables. The second method, S66 [10],
performs ACD using heuristic variable re-ordering supporting
at most 1-SS variable. Finally, we present two variants of our

TABLE I
DECOMPOSITION SUCCESS RATIO INTO TWO 6-LUTS FOR PRACTICAL FUNCTIONS USING DIFFERENT ACD METHODS.

ACD type 7 vars (41071) 8 vars (107466) 9 vars (195602) 10 vars (313649) 11 vars (404991)
Success (%) Time(s) Success (%) Time(s) Success (%) Time(s) Success (%) Time(s) Success (%) Time(s)

lutpack [9] 98.34% 20.39 83.47% 64.37 69.92% 154.38 48.95% 334.79 26.87% 897.55
S66 [10] 84.18% 0.60 69.24% 2.57 52.13% 4.99 37.36% 6.99 19.14% 9.79
66 1-SS 97.30% 0.28 82.23% 1.41 74.24% 4.20 63.06% 9.39 32.88% 16.43
66 M-SS 99.82% 0.30 92.94% 3.08 84.71% 9.92 63.06% 9.73 32.88% 16.58

TABLE II
SUCCESS RATIO WHEN DECOMPOSING PRACTICAL FUNCTIONS INTO 2

LEVELS OF 6-LUTS WITH THE GIVEN LATE-ARRIVING VARIABLES.

N late ACD type 7 vars 8 vars 9 vars 10 vars 11 vars

0 66 M-SS 99.82% 92.94% 84.71% 63.06% 32.88%
Generic 100.00% 100.00% 98.05% 90.20% 32.88%

1 66 M-SS 96.59% 79.60% 61.51% 37.35% 16.54%
Generic 100.00% 100.00% 97.57% 83.23% 16.54%

2 66 M-SS 86.22% 59.78% 39.28% 23.74% 10.95%
Generic 100.00% 100.00% 94.19% 66.56% 10.95%

3 66 M-SS 65.11% 36.37% 21.25% 13.78% 6.96%
Generic 93.78% 86.03% 76.82% 44.51% 6.96%

4 66 M-SS 36.96% 17.00% 8.62% 7.21% 4.43%
Generic 54.55% 40.42% 25.45% 23.70% 4.43%

5 66 M-SS 14.52% 5.42% 2.96% 2.84% 2.61%
Generic 14.52% 5.42% 2.96% 2.84% 2.61%

decomposition method restricted to use 2 6-LUTs. One uses
up to 1-SS variable (66 1-SS), the other (66 M-SS) has no
restrictions on the number of SS variables. The approaches
described in this paper outperform the state of the art in quality
for a competitive or better run time.

B. Decomposition success rate for delay optimization

We extend the previous experiment to evaluate delay min-
imization using the proposed ACD method. This experiment
tests the success rate of the decomposition for practical func-
tions given delay-critical variables, which are required to be in
the free set. Informally, for delay-critical variables with delay
D, this experiment checks the existence of a decomposition
with delay D+1. We only consider 66 M-SS and generic ACD
since other known methods do not perform delay minimization
using the input arrival time. For each function, we randomly
generate up to 10 unique sets of delay-critical variables and
test the decomposition for each one of them. While 66 M-SS
is limited to two LUTs, generic can use up to 4 LUTs.

Table II presents the success rate based on the number
of delay-critical variables, shown in the column “N late”.
The table highlights the advantage of supporting multiple BS
functions. Generic ACD has a high success rate in most cases.
Limitations occur when the number of delay-critical variables
exceeds 3 or the number of variables in the support is 10
or more. Generally, the decomposition of 11-input variables is
rare. However, many 10 input variables are still decomposable.

C. Delay-driven LUT mapping

Table III compares four technology mapping strategies for
delay minimization during mapping into 6-LUTs, assuming a
unit-delay model. Each strategy takes the baseline as an input
and computes structural choices before mapping. Structural
choices have not been used for the benchmark hyp due to a
known bug in ABC. The proposed method is compared against
standard LUT mapping and mapping into LUT structures.
Command ACD denotes our mapper with Boolean decom-
position using the sequence “dch; if -Z 6 -K 8”. We
do not compare against [10] and [9] because those methods
do not support delay minimization. Furthermore, we do not
compare against the recent mapper with gate decomposition
based on bin-backing [28]. Nevertheless, the mapper in [28]
would improve the average delay of ABC if by only 0.31%.

Mapping into LUT structure “66” composed of two 6-LUTs,
which is a SAT-based version of structural ACD, reduces depth
by 1.04% and the area by 2.57% on average, at the cost of
increasing the number of edges by 2.57%. The proposed LUT
mapping with ACD improves the depth of the LUT network
by 7.52% on average while increasing the number of LUTs
and edges by 8.13% and 7.87%, respectively.

Note that most of the improvement is concentrated in the
first 10 benchmarks since others are already close to their best
known depth [29]. For 4 of them, the delay reduction exceeds
20% and is up to 27.27%. Practically, part of the area increase
can be reduced by area-recovery methods [9], [30], [31], using
delay relaxation, or by an additional mapping step applied after
ACD. The rightmost strategy performs the latter option. The
LUT count and edge count are reduced considerably, leading
to an area improvement of 2.20%, compared to traditional
technology mapping with choices. Also, the logical depth
further decreases up to 54.55%. Specifically, the result after
ACD is used as a choice to improve the next round of tech-
nology mapping because choices extracted from mapping with
ACD are more structurally suited to delay-oriented mapping,
compared to the original AIG. Moreover, structural choices
help reduce the area over the non-critical paths. Note that a
second mapping round does not provide practical benefits if
applied to the default LUT mapper (leftmost column) since the
network after deriving the AIG is structurally similar to the
baseline. Furthermore, benchmark hyp is noticeably improved
by remapping both in area and delay without using structural
choices. Regarding the run time, mapping with ACD is faster
than mapping into LUT structures while being more general.

TABLE III
COMPARISON OF DELAY-DRIVEN LUT MAPPING, LUT MAPPING INTO LUT STRUCTURE “66”, AND LUT MAPPING USING ACD.

Benchmark ABC: dch; if -K 6 ABC: dch; if -s -S 66 -K 8 ACD ACD; st; dch -f; if -K 6
LUTs Edges Depth Time (s) LUTs Edges Depth Time (s) LUTs Edges Depth Time (s) LUTs Edges Depth Time (s)

adder 363 1433 22 0.18 362 1465 20 0.28 383 1519 16 0.20 353 1518 10 0.39
bar 1664 9344 4 0.44 1664 9344 4 0.57 1664 9344 4 0.47 1006 5274 4 0.76
div 8618 32394 406 6.62 9107 33665 397 13.42 11644 44496 326 7.16 9068 39167 271 21.19
hyp 58393 239097 1864 5.43 61701 247699 1840 31.82 65615 264998 1396 11.13 61769 263254 1034 19.76
log2 9712 43562 58 17.05 10172 44943 58 30.06 10313 46365 56 17.81 9429 42533 57 39.09
max 831 3804 14 0.37 840 3668 14 0.63 1211 5578 12 0.42 871 4277 11 1.39
multiplier 7383 34137 36 6.01 7334 32781 36 12.11 7693 35798 33 6.82 6800 31705 31 13.32
sin 1928 8445 30 1.31 1948 8463 30 4.94 2052 8913 29 1.50 1830 8178 30 2.91
sqrt 7515 29573 663 4.17 7972 30610 638 12.66 10156 38558 519 4.73 9292 36030 476 8.77
square 4122 17319 23 1.98 4165 17547 22 3.91 4107 17924 18 2.22 4118 18285 14 5.15
arbiter 1833 8982 6 1.64 1879 8836 6 2.02 1850 8987 6 1.70 2037 8780 6 3.33
cavlc 137 707 4 0.13 104 491 4 0.56 137 707 4 0.15 123 655 4 0.20
ctrl 30 133 2 0.07 28 127 2 0.08 30 133 2 0.08 29 126 2 0.08
dec 287 684 2 0.09 287 1404 2 0.1 287 684 2 0.10 284 816 2 0.12
i2c 312 1360 3 0.16 306 1316 3 0.36 319 1378 3 0.19 297 1329 3 0.27
int2float 52 258 3 0.08 46 205 3 0.18 52 258 3 0.09 50 251 3 0.11
mem ctrl 11037 48812 18 10.24 10830 46368 18 31.67 11232 49483 17 11.40 10398 45793 16 20.57
priority 178 725 6 0.11 182 736 6 0.18 185 736 6 0.12 171 698 6 0.17
router 89 285 4 0.09 61 283 4 0.14 92 290 4 0.09 89 279 4 0.12
voter 1838 8596 13 2.23 1784 8624 13 4.14 1838 8583 13 2.32 1777 8426 13 4.82

Improvement 2.57% -2.57% 1.04% -8.13% -7.87% 7.52% 2.20% -0.30% 12.39%
Total 58.40 149.83 68.70 142.52

TABLE IV
LUT MAPPING IN THE EPFL SYNTHESIS COMPETITION.

Benchmark Best [29] dch -f; if -K 6 dch -f; if -Z 6 -K 10
LUTs Depth LUTs Depth LUTs Depth

adder 347 5 360 6 445 5
bar 512 4 512 4 512 4
div 25318 175 23461 192 31526 175
hyp 182723 483 122394 511 154903 473
log2 8617 52 8778 60 9613 51
max 1114 6 1113 7 1250 6
multiplier 7785 25 6839 28 6903 25
sin 680530 10 1820 33 2379 27
sqrt 29593 162 30945 172 41626 156
square 3732 10 4189 11 4275 10

D. EPFL synthesis competition

This experiment shows that mapping using ACD can im-
prove well-optimized LUT networks, resulting in best known
results for 4 benchmarks in the EPFL synthesis competition.
The previous best results were obtained using a portfolio of
heavy logic optimizations applied to various representations,
such as AIGs and LUT networks. In recent years, results have
been further improved using design-space exploration (DSE)
techniques that incrementally generate optimization scripts.

We obtain the optimized AIGs by repeatedly running the
script used in the baseline of Table III along with additional
delay-oriented AIG commands in ABC. From the obtained
AIG, we compare traditional LUT mapping with choices to
LUT mapping with ACD. Notably, results from the traditional
mapper are quite far from the best results. This observation
shows, as expected, that our technology-independent opti-
mization finds worse AIGs than those used to obtain the
best results. However, LUT mapping with ACD matches or

improves the depth for almost all benchmarks. The improved
benchmarks are hyp, log2, multiplier, and square. Remarkably,
our method reduces the depth of hyp by 10 levels, compared to
the state of the art, while reducing area by 15%. In the bench-
mark multiplier, our result matches the depth but improves the
number of LUTs. Benchmark sin is the only one where there
is a large gap compared to the best result. In particular, the
best result for sin requires significant logic duplication that
is not performed in our synthesis flow. Contrarily to many
other methods used to produce the best results, our results
in Table III are obtained directly by LUT mapping without
employing post-mapping optimization.

VI. CONCLUSION

This work proposes a novel formulation of Ashenhurst-
Curtis decomposition (ACD) that enables efficient technology
mapping and post-mapping resynthesis. The algorithm is truth-
table-based and works for any size of the free set, bound set,
and shared set, which makes it well-suited for delay optimiza-
tion. We have shown that the proposed Boolean decomposition
improves state-of-the-art in the decomposition quality with
a competitive runtime. We have implemented and integrated
the proposed method into a delay-driven LUT mapper. The
experiments have shown that LUT mapping with ACD can
improve the average delay by 12.39%, compared to the tradi-
tional structural LUT mapping with choices. Furthermore, the
proposed approach has produced best results for 4 test cases
in the EPFL synthesis competition.

ACKNOWLEDGMENTS

This research was supported by the SNF grant “Supercool:
Design methods and tools for superconducting electronics”,
200021 1920981, and Synopsys Inc.

REFERENCES

[1] R. L. Ashenhurst, “The decomposition of switching functions,” 1957,
pp. 74–116.

[2] J. P. Curtis, “A new approach to the design of switching circuits,” 1962.
[3] J. P. Roth and R. M. Karp, “Minimization over boolean graphs,” IBM

Journal of Research and Development, vol. 6, no. 2, pp. 227–238, 1962.
[4] V. N. Kravets and K. A. Sakallah, “Constructive multi-level synthesis

by way of functional properties,” Ph.D. dissertation, 2001.
[5] C. Legl, B. Wurth, and K. Eckl, “Computing support-minimal subfunc-

tions during functional decomposition,” Trans. VLSI, vol. 6, no. 3, pp.
354–363, 1998.

[6] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel,
M. Nowicka, R. Malvi, Z. Wang, and J. Zhang, “Decomposition of
multiple-valued relations,” in Proc. Inter. Symp. on Mult.- Valued Logic,
1997, pp. 13–18.

[7] J.-H. Jiang, Y. Jiang, and R. K. Brayton, “An implicit method for multi-
valued network encoding,” in Proc. IWLS, 2001, pp. 127–131.

[8] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Trans. on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[9] A. Mishchenko, R. Brayton, and S. Chatterjee, “Boolean factoring and
decomposition of logic networks,” in Proc. ICCAD, 2008, pp. 38–44.

[10] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen,
“Mapping into LUT structures,” in Proc. DATE, 2012.

[11] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
Trans. CAD, vol. 13, no. 1, pp. 1–12, 1994.

[12] A. H. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table
minimization problem for FPGA technology mapping,” IEEE Trans.
CAD, 1994.

[13] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decom-
position during technology mapping,” Trans. CAD, 1997.

[14] G. Chen and J. Cong, “Simultaneous logic decomposition with technol-
ogy mapping in FPGA designs,” in Proc. FPGA, 2001, p. 48–55.

[15] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” in Proc. ICCAD,
2005.

[16] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure,” in Proc. IWLS, 2006.

[17] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[18] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in Proc. ICCAD, 2007.

[19] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli, “Optimal
state assignment for finite state machines,” Trans. CAD, vol. 4, no. 3,
pp. 269–285, 1985.

[20] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: state assignment of
finite state machines for optimal two-level logic implementation,” Trans.
CAD, vol. 9, no. 9, pp. 905–924, 1990.

[21] S. Yang and M. Ciesielski, “Optimum and suboptimum algorithms for
input encoding and its relationship to logic minimization,” Trans. CAD,
vol. 10, no. 1, pp. 4–12, 1991.

[22] R. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Computer Aided Verification, T. Touili,
B. Cook, and P. Jackson, Eds., 2010. [Online]. Available: https:
//github.com/berkeley-abc/abc

[23] L. Amarù, P.-E. Gaillardon, and G. D. Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

[24] A. Mishchenko, S. Chatterjee, and R. Brayton, “FRAIGs: A unifying
representation for logic synthesis and verification,” EECS Dep., UC
Berkeley, Tech. Rep., 2005.

[25] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,”
in Proc. ICCAD, 2012, p. 597–604.

[26] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast boolean
matching based on NPN classification,” in Intern. Conf. on Field-
Programmable Technology, 2013.

[27] M. Soeken, A. Mishchenko, A. Petkovska, B. Sterin, P. Ienne, R. K.
Brayton, and G. De Micheli, “Heuristic NPN classification for large
functions using AIGs and LEXSAT,” in Theory and Applications of
Satisfiability Testing, N. Creignou and D. Le Berre, Eds., 2016.

[28] L. Fan and C. Wu, “FPGA technology mapping with adaptive gate
decomposition,” in Proc. FPGA, 2023, p. 135–140.

[29] “EPFL synthesis competition best results [2023].” [Online]. Available:
https://github.com/lsils/benchmarks/tree/v2023.1/best results

[30] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable don’t-
care-based logic optimization and resynthesis,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 4, no. 4, 2011.

[31] B. Schmitt, A. Mishchenko, and R. Brayton, “SAT-based area recovery
in structural technology mapping,” in Proc. ASP-DAC, 2018, pp. 586–
591.

