
Synthesis of LUT Networks for Random-Looking Dense Functions with
Don’t Cares — Towards Efficient FPGA Implementation of DNN

Yukio Miyasaka1, Alan Mishchenko1, John Wawrzynek1, Nicholas J. Fraser2
1University of California, Berkeley, California, USA

2AMD Research and Advanced Development, Dublin, Ireland
yukio_miyasaka@berkeley.edu

Abstract— Many EDA applications deal with logic functions
representing complex mathematical computations. Although in
many cases, these functions depend on a small number of
inputs, they often resemble random functions, making it hard
to synthesize them using the traditional methods based on SOP
minimization. This paper describes efficient synthesis and LUT
mapping for this class of functions using a novel method that
implements BDD-based minimization based on truth tables. The
paper also investigates optimization with don’t cares, when the
outputs of a function are unspecified for some inputs, which is
particularly useful in machine learning applications that trade
accuracy for area. Compared to optimization and mapping used
in academic and industrial tools, our method works faster and
results in 1.5x smaller networks, while extra 20% area reduction
was possible with don’t cares at almost no accuracy cost.

I. INTRODUCTION

Logic synthesis takes Boolean functions in the form of
truth tables, sums-of-products (SOPs) or unoptimized cir-
cuits, and produces optimized circuits that are used to map
the design into a target technology, typically FPGAs or
standard cells. Improving logic synthesis methods remains
an important challenge for the developers of modern design
automation tools, especially given that design sizes keep
growing while users expect tools to get faster.

In practice, different types of functions call for different
logic synthesis methods. For example, Boolean functions
appearing in control logic blocks (such as state-machines)
are amenable to synthesis by algebraic methods [1] applied
to minimized SOPs [2]. These functions having compact
SOP representations can be described as sparse because their
primes tend to have relatively few literals and cover large
areas of Boolean space.

In contrast, dense Boolean functions are those that do not
have compact SOPs. A class of dense functions can be found
in router designs, where this type of logic is often expressed
almost exclusively using large multiplexers and one-hot-
encoded selectors. An effective way to handle these circuits
is to recognize the multiplexers (or avoid bit-blasting them
during elaboration) and perform restructuring, followed by
specialized logic sharing extraction. Another class of dense
functions are those rich in XOR gates, appearing in CRC
checkers and cryptographic applications.

Despite decades of research, a “universal” synthesis
method has not been discovered. Attempts to apply one
synthesis method to all types of logic leads to mediocre

results, prohibitive runtime, or both. For example, applying
algebraic methods to XOR-rich logic leads to poor quality,
while applying them to multiplexer-rich designs often gives
good results but only after many synthesis iterations, render-
ing such an approach impractical due to long runtime.

In this paper, we develop a novel synthesis method tar-
geting a class of logic functions, which can be characterized
as random-looking dense functions, especially for LUT map-
ping. Random-looking implies that these functions are hard
for synthesis but they are not random, because truly random
functions can be compacted only by brute-force cofactoring
[3]. On the other hand, the fact that the functions are dense
means that they do not have compact SOPs.

Random-looking dense functions arise in several appli-
cations. One of these applications is deep neural networks
(DNNs). For example, the Boolean functions of quantized
neurons computed in LogicNets [4] are random-looking and
dense. Synthesis and mapping of Boolean functions arising
in the LogicNets project has served as a primary motivation
for this work, while other arithmetic functions such as
exponentiation, sigmoid, or trigonometric functions are also
our potential target.

In some applications, especially DNNs, the functions do
not always have to be implemented exactly. Approximate
logic synthesis has been playing a roll for these applications
by trading accuracy for area [5]. Our method, in contrast,
can take an incompletely specified function as input, where
the acceptable errors are specified as external don’t cares by
the user before synthesis. In our experiment, we assigned the
patterns that are rarely observed in the training set to don’t
care. The results show that it can reduce the number of LUTs
about 20% with little accuracy drop.

We developed a method based on binary decision diagrams
(BDDs) [6], while our implementation uses truth tables as
a primary data structure. Since we are interested only in
the number of BDD nodes for area optimization, we do not
need to maintain BDDs explicitly with several auxiliary data
structures. Instead, we count unique cofactors on each level
in a top-down manner in truth tables, where a truth table is
seen as an expanded decision diagram. This way we can get
the exact number of nodes in the BDDs without actually
constructing them. Next, we perform variable reordering
in the truth table, as we would have done in the BDDs
while trying to minimize the number of BDD nodes, and



use the don’t cares if they are available. The don’t-care-
based minimization is similar to the known methods on BDD
minimization [7], as will be discussed in the background
section.

We note several advantages of not explicitly using BDDs:
• the runtime with truth tables is about 1.5x faster
• no need to develop or integrate a BDD package
• the code can be simplified by avoiding recursion
The contributions of the paper are:
• a novel truth-table-based method to perform logic syn-

thesis for LUT mapping with or without don’t cares
• isolating a practical class of functions, which allows for

an efficient solution using the proposed method
• experimental evaluation demonstrating 1.5x reduction

in area and 10x reduction in runtime, compared to the
methods implemented in the existing CAD tools

• with don’t cares, our method achieved extra 20% area
reduction with little accuracy drop for DNNs

The rest of the paper is organized as follows: Section II
gives some background on BDD. Section III describes the
proposed algorithm. Section IV lists experimental results.
Section V concludes the paper.

II. BACKGROUND

A BDD is a binary tree that represents a single-output
logic function [6]. Each non-leaf node is associated with an
input variable, and depending on the value of the variable,
one of its two child nodes is selected to determine the
output value. BDDs are ordered if the variable associated
with a node always precedes the variable associated with its
child node in a given variable order. BDDs are reduced if
every node has a unique function and is not redundant. A
redundant node is a node with a function that has identical
Shannon cofactors with respect to the associated variable.
Therefore, every node has two unique child nodes in a
reduced BDD. A child node may be shared by multiple
nodes. For a multi-output function, a BDD is built for each
output. The BDDs are shared if they are ordered using the
same variable order and reduced together. EDA applications
use ordered, reduced, and shared BDDs in order to achieve
compact representation and efficient manipulation. In this
paper, BDDs are always assumed to be ordered, reduced,
and shared unless otherwise stated.

To further compress the size of a BDD, complemented
edges are frequently used [8]. When a child node is con-
nected by a complemented edge, the function of the child
node is negated. With complemented edges, we need only
one leaf (constant) node. When evaluating the output, we
count the number of complemented edges passed from the
root node, and flip the output value accordingly. We assume
the use of complemented edges in this paper.

Since the size of a BDD depends on the variable order,
there have been many studies to find a good variable order
that makes the BDD small. Variable reordering by sifting [9]
is one of the successful approaches. After building a BDD,
this method picks up a variable with the largest number of

nodes and iteratively swaps its position with the adjacent
variable in the current variable order. The best position
where the smallest BDD was observed is remembered during
the iteration and restored at the end. The same procedure
is repeated for the rest of the variables. This approach is
efficient because each variable swap only affects the nodes
associated with the swapped variables [10].

BDD minimization using don’t cares was studied in [7].
In principle, BDDs can be minimized by merging nodes
while keeping their function unchanged on the care set—
the complement of the don’t-care set. They proposed three
matching criteria for merging nodes: one-sided don’t care
match (OSDM), one sided match (OSM), and two-sided
match (TSM), with two heuristics on the order of nodes to
compare as follows:

• Merging criteria
– OSDM: cj = 0
– OSM: (cj =⇒ ci) ∧ (cj =⇒ (fi = fj))
– TSM: (ci ∧ cj) =⇒ (fi = fj)

• Comparison order
– Sibling: child nodes of each node (depth-first)
– Level: set of nodes on a given level

where (fi, ci) and (fj , cj) are the pairs, containing the
function and the care set of the nodes to be compared.
The OSDM and OSM conditions are not symmetric, so the
comparison is performed both ways, and if it holds, (fi, ci)
replaces (fj , cj). If the TSM condition holds, both of the
nodes are replaced with a new node (fk, ck), which satisfies

(ci =⇒ (fi = fk)) ∧ (cj =⇒ (fj = fk)),

ck = ci ∨ cj .

For OSM and TSM, a complemented match is also consid-
ered, where fj in the condition is negated, and the merged
node will be pointed to by a complemented edge.

The sibling order starts the comparison from the root node
and recurs on each child node. If the child nodes have been
merged, it recurs only on the merged node. The level order
performs the comparison only for the pairs of nodes on
the same level, but including redundant nodes. Finding the
optimal order to pick up a pair is NP-complete, so they use
a heuristic where once the nodes are merged, the merged
node is compared with the rest of nodes before proceeding
to another pair. In the end, they proposed applying the sibling
order OSM first and then the level order TSM in a partitioned
BDD.

III. PROPOSED METHOD

A. Truth-table-based node counting

Our method is as simple as constructing and reordering
BDDs, but we implemented it in a novel way. The advantage
of our implementation comes from small memory usage.
Instead of storing the structure of BDDs as pointer-connected
nodes, we operate on the given truth table and its indices.

The proposed top-down procedure to count the number
of BDD nodes in the function represented by the truth



// number of inputs
int nInput;
// number of outputs
int nOutput;
// vector of unique indices for each level
vector<vector<int>> vvIdx(nInput);
// vector of redundant indices for each level
vector<vector<int>> vvRedIdx(nInput);

int FindOrAdd(int idx, int lev) {
if(IsConst0(idx, lev))
return -2;

if(IsConst1(idx, lev))
return -1;

for(int loc = 0; loc < vvIdx[lev].size(); loc++) {
if(IsEq(idx, vvIdx[lev][loc], lev))

return loc << 1;
if(IsComplEq(idx, vvIdx[lev][loc], lev))

return (loc << 1) | 1;
}
int loc = vvIdx[lev].size();
vvIdx[lev].push_back(idx);
return loc << 1;

}

int CountNodes() {
for(int idx = 0; idx < nOutput; idx++)
FindOrAdd(idx, 0);

for(int lev = 1; lev < nInput; lev++)
for(int idx: vvIdx[lev - 1]) {
int cof0 = FindOrAdd(idx * 2, lev);
int cof1 = FindOrAdd(idx * 2 + 1, lev);
if(cof0 == cof1)

vvRedIdx[lev - 1].push_back(idx);
}

int count = 1; // constant node
for(int lev = 0; lev < nInput; lev++)
count += vvIdx[lev].size() - vvRedIdx[lev].size();

return count;
}

Code 1. Counting the number of nodes

table is shown in Code 1. We use 0-based-indexing for all
potential (non-reduced) BDD nodes for each level as shown
in Fig. 1. For multi-output functions, there are as many nodes
as outputs on the 0th (top) level. The function of a node is
represented by a segment of the truth table. For example,
each node corresponds to a segment of 2N rows on the 0th
level, where N is the number of inputs. On the k-th level,
each node corresponds to a segment of 2N−k rows, while
the top k variables are not used in their functions.

For each level, our proposed procedure creates a vector of
unique indices, whose functions are unique and non-constant
(checked in the sub-procedure in Code 1). After the 0th
level, it only needs to check the indices that are the cofactors
of the unique indices on the previous level. Meanwhile, if
the cofactors are identical (confirmed by comparing their
locations in the vector, returned by the sub-procedure), the
unique index is redundant, so it is stored in another vector to
be exclude from the final count. To realize the complemented
edges, the function of each index is also compared with
the complemented functions of the unique indices already
existing in the vector. This complementary information is
returned by the sub-procedure along with the location, while
constants are expressed by negative locations.

For the function in Fig. 1, all indices are unique on the 0th
and 1st levels. On the other hand, index 0 is the only unique
index on the 2nd level: index 1 has the same function as

0

0 1 2 3

0 1

X=0 X=1

Y=0 Y=1 Y=0 Y=1 0

0

1

0

1

2

3

Non-Reduced BDD

Z=0 Z=1 Z=0 Z=1 Z=0 Z=1 Z=0 Z=1

Truth Table

0 01 1 1 10 1

X Y Z F
0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 1

1 0 1 0

1 1 0 1

1 1 1 1

F

Fig. 1. Indices of potential BDD nodes and the corresponding segments
of the truth table for a single output function F with input (X,Y, Z). The
constant node is duplicated without complemented edges for visibility sake.

index 0, index 2 has its complement, and index 3 is constant.
Since index 0 and 1 are the same on the 2nd level, index 0
on the 1st level is redundant. Therefore, this function takes 4
BDD nodes: 4 unique indices minus 1 redundant index plus
1 constant.

B. Variable reordering

We can perform variable swap in truth table simply by
sorting its entries. However, although sorting is simple, it
is not as efficient as variable swap in the form of BDD.
Reconstructing BDDs after variable swap takes a linear time
over the number of nodes in the level below. On the other
hand, sorting takes a linear time over the number of truth
table segments therein, which is an upper bound of the
former number.

The proposed implementation adopts a hybrid approach.
When counting the number of nodes for the first time, we
also memorize the cofactors of the unique indices. Then, we
perform variable swap in a traditional way while instantiating
a unique table. We reconstruct the lower level based on 2-
level cofactors using the unique table; refer to [10] for more
details. This unique table is a bit simpler than usual since it
uses only a pair of cofactors as a key. The unique indices
in the upper level remain the same, while their redundancy
will be reevaluated using the new cofactors.

C. BDD minimization using don’t cares

We implemented BDD minimization using don’t cares on
top of our truth-table-based algorithm. We adopted the level
order TSM, as presented in Section II. The sibling order
does not match our top-down algorithm. The reason why
we chose TSM is that, in the case of OSDM and OSM,
we have to check redundancy of nodes afterwards in a
bottom-up manner. Even if the child nodes look different
when they are checked, their functions could be modified by
node merging later. For example, let us assume that the 00-
cofactor and the 11-cofactor have the same function and no
don’t care, while the 01-cofactor and the 10-cofactor have
different functions but are entirely don’t care. Since the 0-
cofactor and 1-cofactor do not satisfy the merging condition,
they are regarded as different unique indices. However, when



checking their level, the 01-cofactor will be merged with
the 00-cofactor, and the 10-cofactor will be merged with
the 11-cofactor, having the same function. Then, not only
the 0-cofactor and 1-cofactor become redundant, their parent
node also becomes redundant. This does not happen in TSM
because, if a node can be redundant, its child nodes must
satisfy the condition and be merged immediately.

We can perform the minimization simply by replacing the
equivalence check of nodes with TSM. If an existing unique
index j matches the given index i, it updates the function
and the care set of j to (ITE(ci, fi, fj), ci ∨ cj), which is
one case of (fk, ck) shown above.

With BDD minimization using don’t cares, reordering is
no longer simple. The result of variable swap is affected
by the minimization performed previously. To see the actual
effect of variable reordering, we have to restore the original
BDDs before variable swap. While this looks complicated,
it can be integrated quite easily with our truth-table-based
implementation; we only need to reload and sort the original
truth table and rerun the minimization. Additionally, we can
save time by remembering the nodes above the swapped
level and how they were merged. This approach, performing
reordering based on the result of minimization, results in a
significant reduction in the number of nodes as compared to
just performing the minimization to reordered BDDs.

IV. EXPERIMENTAL RESULTS

A. Benchmarks

We used Boolean functions from the LogicNets project [4]
as our target. These are functions of quantized sparse neural
networks, where each neuron is represented as a truth table to
comprise a truth table network. Let β denote the bit-width of
each activation and γ denote the number of input activations
per neuron, which are uniform across each network. The
number of inputs is β × γ and the number of outputs is β
for each truth table. The properties of the neural networks
used to generate functions in our experiments are shown
in Table I. The LogicNets networks were trained on three
publicly available datasets: 1) jet substructure classification
(JSC) [11]; 2) network intrusion detection (NID) [12]; and
3) handwritten digit classification (MNIST) [13];

For some of the networks listed in Table I, the number of
inputs and outputs to each truth table is different for the first
and last layers of the network as shown below. The input bit-
width and the number of input activations in the first layer
are given by βi and γi, respectively. The number of input
activations for the last layer is given by γo, and the output
bit-width of the last layer is given by δ. The number of inputs
and outputs for each truth table is βi × γi and β in the first
layer, and β × γo and δ in the last layer.

• JSC_L: βi = 4, γi = 3, γo = 5, δ = 7
• NID_S: βi = 1
• NID_M: βi = 1
• NID_L: βi = 1, γi = 7
• MNIST_S: δ = 4
• MNIST_M: δ = 4

TABLE I
LOGICNETS BENCHMARK

Name Neurons per layer β γ Accuracy
JSC_S 64, 32, 32, 32 2 3 69.41%
JSC_M 64, 32, 32, 32 3 4 71.90%
JSC_L 32, 64, 192, 192, 16 3 4 73.01%
NID_S 593, 100 2 7 89.36%
NID_M 593, 256, 128, 128 2 7 92.62%
NID_L 593, 100, 100, 100 3 5 93.12%

MNIST_S 210, 210, 210, 210, 210, 128 1 8 95.83%
MNIST_M 210, 210, 210, 210, 210, 128 2 5 97.97%

TABLE II
PERFORMANCE COMPARISON (TIME IN SEC AND MEMORY IN MB)

CUDD Swap Table Swap Node
Time Mem Time Mem Time Mem

JSC_S 1.62 14.3 0.04 3.6 0.07 3.6
JSC_M 3.38 14.4 4.80 3.8 1.92 3.8
JSC_L 10.68 15.0 18.94 4.1 6.24 4.2
NID_S 8.36 14.6 4.35 3.8 1.94 3.8
NID_M 15.34 14.7 10.90 3.9 5.18 4.1
NID_L 17.54 15.2 40.32 4.2 9.78 4.2

B. Performance of truth-table-based algorithm

We first conducted a runtime comparison against an ex-
isting BDD package, CUDD [14]. We performed variable
reordering by sifting, starting with a random initial variable
order, 20 times for each neuron [15]. For all experiments,
we used an AMD EPYC 7313 processor.

The runtime and memory footprint are shown in Ta-
ble II. Our truth-table-based algorithm used less memory
than CUDD, and with the node-based variable swap, it
worked more than 1.5x faster than CUDD. CUDD takes a
large amount of memory to maintain data that are useful to
dynamically apply many operations, which is not the case
here. Our truth table algorithm uses memory just to store
the truth table and the unique indices if variable swap is
performed by sorting the truth table. With node-based swap,
it also needs a storage for cofactors, which explains the
observed overhead. JSC_S is a special case where each truth
table fits in one word (64 bits) and the table-based swap
worked faster than the node-based swap.

C. LUT mapping comparison

We performed synthesis and mapping for 6-LUT networks.
For each neuron, we construct and reorder BDDs and map
them into 6-LUTs. We did not use don’t cares in this
experiment. Since each BDD node is a multiplexer, we
constructed a LUT network by grouping the multiplexers in
a depth-first order to have nodes with at most six inputs.
Typically, two cascaded multiplexers are grouped into a
node with five inputs. Then, as an inter-neuron optimization,
we apply ABC’s optimization [16] (“mfs2” and “&if -K
6 -a”) iteratively as long as the area keeps on reducing.
The command “mfs2” optimizes a given network without
converting it into AIG, and “&if” reperforms mapping to
restructure the network and create more optimization oppor-
tunities for “mfs2”. Other AIG optimization commands in
ABC did not work well to reduce the LUT count for these



benchmarks, sometimes resulting in a larger network than
without optimization.

We compared our method with Xilinx Vivado 2021.2 with
default synthesis settings, but with “resource sharing” set to
“on”. Additionally, we tried FBDD [17], which implements
one of the state-of-the-art BDD-based synthesis algorithms.
We applied FBDD to each neuron with a 1 minute time
limit, and mapped the synthesized circuit using ABC. Note
that FBDD was not stable in our environment and sometimes
crashed. In case of timeout or crash, we passed the original
truth table of the neuron to ABC. We also checked the results
when only ABC’s optimization was applied.

The results are shown in Table III. Besides Logic-
Nets benchmark, we synthesized 12-input 32-output discrete
cosign transform (DCT) taken from [18], as an example of
mathematical function. In general, Vivado took the longest
time, 10x slower than the proposed method on average, while
ABC and FBDD did not work well, ending up with much
larger overall area. Our method achieved about 1.5x area
reduction compared to Vivado except JSC_S and MNIST_S,
where the number of inputs per neuron is too small (6 and
8) for our method to work.

D. Optimization using don’t cares

Next, we performed don’t-care-based optimization when
some input patterns are treated as don’t cares. To begin with,
we assigned don’t care for the patterns that do not appear
at the inputs of a neuron on any examples from the training
set. Furthermore, we used a threshold, called rarity, where
the patterns that occur at least rarity times in the training set
are cares, while the other patterns are don’t cares. The same
pattern can appear multiple times in the training set because
different examples may result in the same quantized values
at the inputs on a neuron. We considered values of rarity
equal to powers of two.

We optimized the largest model for each benchmark,
JSC_L, NID_L, and MNIST_M. The results are shown in
Fig. 2. The LUT count decreased as the rarity increased,
while the accuracy decreased quite slowly compared to the
LUT count until a certain rarity. The curve for training
accuracy was omitted because it mostly overlaps with that for
test accuracy. Table IV shows the values for the first three
points as well as the values from the previous experiment
without don’t cares as a reference. With rarity 1, where all
patterns appeared in the training set were preserved, we got
about 20% area reduction for JSC_L and MNIST_M with
less than 0.01% test accuracy drop, and 75% reduction for
NID_L with 0.02% drop. By increasing the rarity, where
some patterns in the training set were also assigned to don’t
care, we observed a little drop in both training and test
accuracy, while we got about 10% more reduction at rarity
4. The runtime was at most three minutes.

V. CONCLUSION

The paper motivates the development of specialized logic
synthesis methods for well-defined classes of Boolean func-
tions. To this end, we isolate a practical class of Boolean

(a) JSC_L

(b) NID_L

(c) MNIST_M

Fig. 2. Effect of don’t-care-based optimization when changing rarity



TABLE III
SYNTHESIS AND LUT MAPPING (TIME IN SEC)

Vivado ABC only FBDD Proposed method
LUTs Time LUTs Time LUTs Time LUTs Time

JSC_S 227 32 242 0.5 242 7 233 1
JSC_M 14865 683 31647 13 26422 73 9665 28
JSC_L 35419 1207 87065 37 69547 263 22997 89
NID_S 85 1563 30 7 31 84 29 24
NID_M 2690 6783 4080 31 3756 183 1969 52
NID_L 6672 14242 13888 125 14662 1278 4057 173

MNIST_S 13509 496 16941 6 15729 229 15078 19
MNIST_M 73991 1344 121894 76 157377 341 57781 95

DCT 808 75 6627 7 6597 268 507 2

TABLE IV
RESULTS OF DON’T-CARE-BASED OPTIMIZATION (∗RARITY 0 SHOWS

THE RESULTS WITHOUT DON’T CARES AS A REFERENCE)

Rarity LUTs Train Accuracy Test Accuracy

JSC_L

∗0 22997 73.17% 73.01%
1 17687 73.17% 73.01%
2 16849 73.17% 73.00%
4 15815 73.15% 72.99%

NID_L

∗0 4057 93.35% 93.12%
1 1025 93.35% 93.10%
2 847 93.35% 93.11%
4 741 93.34% 93.08%

MNIST_M

∗0 57781 97.85% 97.97%
1 44045 97.85% 97.97%
2 42763 97.83% 97.93%
4 40959 97.67% 97.75%

functions characterized as random-looking dense functions.
We observe that these functions appear in quantized neural
networks, datapath applications, cryptographic applications,
and possibly other areas.

For the selected class of functions, a novel synthesis
method is proposed. The method iteratively reorders the truth
table representation of the function while trying to minimize
the number of nodes which would be present in the BDDs of
the function. Our truth-table-based implementation worked
about 1.5x faster than an implementation using a state-of-
the-art BDD package.

The experimental results show that the area improvements
produced by the proposed methods are substantial, leading
to 1.5x reduction, compared to the results produced on
these benchmarks by the available tools, both academic and
commercial. The proposed method is also often at least 10x
faster than those tools.

Moreover, our method can exploit don’t cares if they
are present in the specification of the function. For the
LogicNets benchmarks, by treating the patterns not present
in the training set as don’t care, we achieved 20% more area
reduction with almost no accuracy drop. By increasing the
number of don’t cares, our method was able to efficiently
trade accuracy for area furthermore until a certain threshold
where the accuracy starts to degrade rapidly.

Regarding the scalability, the runtime of our algorithm
increases exponentially over the number of inputs, as the
size of truth table grows exponentially. We internally tested
our method on truly-random completely-specified functions

of 16 to 24 inputs, and the runtime increased exponentially
by a factor of 3 (20 seconds for 20 inputs). The runtime
of CUDD-based implementation gradually caught up as the
number of inputs increased, but it suddenly blew up after
22 inputs, taking more than 30 minutes for 23 inputs,
probably because of complicated memory management such
as garbage collection.

ACKNOWLEDGEMENT

This research was supported in part by the SRC Contract
3173.001 “Standardizing Boolean transforms to improve
quality and runtime of CAD tools” and the NSA grant “Novel
methods for synthesis and verification in cryptanalytic appli-
cations”.

REFERENCES

[1] R. Brayton et al., “The decomposition and factorization of
Boolean expressions,” in Proc. ISCAS, 1982, pp. 29–54.

[2] R. Rudell et al., “Multiple-valued minimization for PLA
optimization,” IEEE TCAD, vol. 6, no. 5, pp. 727–750, 1987.

[3] T. Sasao et al., “LUTMIN: FPGA logic synthesis with
MUX-based and cascade realizations,” in Proc. IWLS, 2009,
pp. 310–316.

[4] Y. Umuroglu et al., “LogicNets: Co-designed neural net-
works and circuits for extreme-throughput applications,” in
Proc. FPL, 2020, pp. 291–297.

[5] Y. Qian et al., “Approximate logic synthesis in the loop for
designing low-power neural network accelerator,” in Proc.
ISCAS, 2021, pp. 1–5.

[6] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation,” IEEE TC, vol. C-35, no. 8, pp. 677–691,
1986.

[7] T. R. Shiple et al., “Heuristic minimization of BDDs using
don’t cares,” in Proc. DAC, 1994, pp. 225–231.

[8] K. Brace et al., “Efficient implementation of a BDD pack-
age,” in Proc. DAC, 1990, pp. 40–45.

[9] R. Rudell, “Dynamic variable ordering for ordered binary
decision diagrams,” in Proc. ICCAD, 1993, pp. 42–47.

[10] M. Fujita et al., “On variable ordering of binary decision
diagrams for the application of multi-level logic synthesis,”
in Proc. DATE, 1991, pp. 50–54.

[11] J. Duarte et al., “Fast inference of deep neural networks in
FPGAs for particle physics,” JINST, vol. 13, no. 07, P07027,
2018.

[12] N. Moustafa et al., “UNSW-NB15: A comprehensive data
set for network intrusion detection systems (UNSW-NB15
network data set),” in Proc. MilCIS, 2015, pp. 1–6.

[13] Y. LeCun et al., “Gradient-based learning applied to docu-
ment recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998.



[14] F. Somenzi, “Efficient manipulation of decision diagrams,”
Int. J. on STTT, vol. 3, no. 2, pp. 171–181, 2001.

[15] P. Fiser et al., “How much randomness makes a tool
randomized?” In Proc. IWLS, 2011.

[16] Berkeley Logic Synthesis and Verification Group, ABC:
A system for sequential synthesis and verification, release
20306. http : / / www . eecs . berkeley . edu /
~alanmi/abc/.

[17] D. Wu et al., “FBDD: A folded logic synthesis system,” in
Proc. Int. Conf. ASIC, vol. 2, 2005, pp. 746–751.

[18] OpenCores: Video compression systems, https : / /
opencores.org/projects/video_systems.


