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Abstract 
This paper proposes a method for minimizing the number of 
two-input nodes in the circuit representation of a completely 
specified Boolean function. To find the smallest circuit, the 
method uses truth tables to enumerate variable orders and, 
for each variable order, attempts to use three canonical 
expansions while merging shared cofactors. Conceptually, it 
is similar to using decision diagrams without constructing 
them. Experimental results confirm that the method works 
well for a number of benchmarks. 

1. Introduction 
Area minimization is a central topic in logic synthesis, 

which, in turn, is one of the most challenging and research-
worthy aspects of the electronic design automation (EDA) 
tools used in hardware design flows. 

With the decrease in the feature size, the cost of silicon 
wafers continues to grow [10], which makes high-effort 
circuit minimization increasingly more important. 

Other methods for area optimization use circuit transforms, 
such as rewriting [4], divisor extraction from the sum-of-
product (SOP) representation [7], and various types of 
Boolean decomposition, for example, disjoint-support 
decomposition [3]. 

Some optimization methods are based on decision 
diagrams, such as binary decision diagrams (BDDs) [9],  
Kronecker Functional Decision Diagrams (KFDDs) [19], 
etc. In particular, [11] uses KFDDs to minimize the number 
of product terms in the exclusive SOP (ESOP) expressions.  

The contribution of this paper is a novel KFDD-based 
method for area minimization, which extends [11] to 
minimize the number of two-input nodes rather than the 
number of ESOP product terms. 

The proposed method is efficiently implemented using 
truth tables, without the need to construct and manipulate 
KFDDs in a dedicated software package. 

Experimental results on the benchmarks from the IWLS 
2022 Programming Contest [12] show that the results 
compare favorably with other methods. 
 

The rest of this paper is organized as follows. Section 2 
describes the background. Section 3 shows a motivating 
example. Section 4 describes the algorithm. Section 5 reports 
experimental results. Section 6 concludes the paper and 
outlines future work. 

2. Background 
2.1 Boolean network 
A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and edges corresponding 
to wires connecting the gates. The terms Boolean network, 
netlist, and circuit are used interchangeably in this paper. In 
this paper, we consider only combinational Boolean 
networks. 

A node n has zero or more fanins, i.e., nodes that are 
driving n, and zero or more fanouts, i.e., nodes driven by n. 
The primary inputs (PIs) are nodes without fanins in the 
current network. The primary outputs (POs) are a subset of 
network nodes, which deliver the functionality of the 
network to its environment. 

The size (area) of a network is the number of its nodes; the 
depth (delay) is the number of nodes on the longest path from 
the PIs to the POs. The goal of optimization by local 
transformations is to reduce area and delay of the network. 

A local function of a network node n, denoted fn(x), is a 
Boolean function of the logic cone rooted in n and expressed 
in terms of the leaves, x, of a cut of n. The global function of 
a node is its function expressed in terms of the PIs of the 
network. 

2.2 And-inverter graph 
A combinational and-inverter graph (AIG) is a Boolean 

network composed of two-input and-gates and inverters. To 
derive an AIG, the SOPs of the nodes in a logic network are 
factored, the and- and or-gates of the factored forms are 
converted into two-input and-gates and inverters using 
DeMorgan’s rule, and these two-input and-gates are added 
to the AIG manager in a topological order. 

AIGs can represent both local and global functions. 
Because of low memory usage, speed of manipulation, and 
scalability, AIGs have recently emerged as a widely used 
data-structure in logic synthesis and formal verification. 

The following publications on AIGs [14] and AIG-based 
synthesis [15][16] contain additional information. 

2.3 Structural and functional hashing 
Structural hashing of AIGs ensures that all constants are 

propagated, and, for each pair of nodes, there is at most one 
two-input and-node with them as fanins (up to a 
permutation). Structural hashing is performed by hash-table 



lookups when and-nodes are created and added to an AIG 
manager. Structural hashing can be applied on-the-fly during 
AIG construction, which reduces the AIG size. 

Functional hashing of the AIGs ensures that each internal 
node has a unique Boolean function up to the complement.  
Functional hashing leads to a “semi-canonical” AIG 
representation (also known as FRAIGs [17]) because no two 
nodes in the AIG have the same global functions, but the 
same global function in different AIGs can be expressed 
using different circuit structures. 

2.4 Xor-and-inverter graph 
The notion of an and-inverter graph can be extended to 

include two-input xor-gates along with two-input and-gates, 
resulting in an xor-and-inverter graph (XAIG). An XAIG is 
constructed in a similar way to an AIG. In the software 
implementation, an xor-gate and an and-gate are represented 
by a pair of integers. Since both operations are commutative, 
the node fanins can be swapped without changing the node 
function. Thus, the ordering of the fanins can be used to 
distinguish and-gates and xor-gates: when the first fanin is 
smaller than the second, this is an and-gate; otherwise, it is 
an xor-gate. 

In the future, we will use AIGs, but all the definitions and 
computations are naturally extended to work with XAIGs. 

2.5 Canonical expansions 
The proposed algorithm is based on three canonical 

expansions of Boolean functions. 
Shannon 𝑓 = �̅�!𝑓!" ∨ 𝑥!𝑓!# (1) 

Positive Davio 𝑓 = 𝑓!"	⨁	𝑥!𝑓!$ (2) 
Negative Daio 𝑓 = 𝑓!#	⨁	�̅�!𝑓!$ (3) 

Here 𝑓!" (𝑓!#) denote the cofactor of 𝑓 with respect to 
𝑥! = 0 (𝑥! = 1) and 𝑓!$ is defined as 𝑓!$ = 𝑓!"	⨁	𝑓!#, where ⨁ 

denotes the XOR operation. 
The canonical expansions have multiple applications, in 

particular, they are the basis for creating various families of 
decision diagrams, such as BDDs, KFDDs, etc. 

3. Motivation 
This section shows a motivating example, followed by the 

outline of the proposed algorithm in the next section. 

3.1 Illustrative example 
Integer multiplication plays the central place in many 

computations, including machine learning. Hardware 
implementation of multipliers is the key element of many 
designs, including those used to accelerate computations in 
machine learning. A frequently used multiplier design is 
based on the Booth algorithm [6]. 

This is why, as an illustrative example in this section, we 
consider the partial product in a radix-4 Booth multiplier. 

The partial product is a 5-input Boolean function whose 
truth table in the hexadecimal notation is 0xF335ACC0. 

Figure 1 shows the circuit we get by applying only the 
Shannon expansion. Essentially, this is a circuit with 16 
nodes derived from a BDD [9] with a fixed variable order. 

Using positive and negative Davio expansions results in a 
circuit with 9 two-input nodes (Figure 2). In this case, the 
circuit is a KFDD [19] with the same fixed variable order. 

Our algorithm that uses truth tables to efficiently 
enumerate all variable orders leads to a circuit with 8 two-
input nodes (Figure 3). The smallest circuit for this function 
is composed of 7 nodes (Figure 4) and was computed using 
SAT-based exact synthesis [13], as implemented in 
command twoexact in ABC [1]. (Figures 1-4 were generated 
using command show.)  

One line in the functional representation of a node defines 
AND node, two lines – EXOR node. 

 
Figure 1: An AIG derived using the Shannon expansion 

with a fixed variable order. 

 
Figure 2: A minimized XAIG derived using three 
canonical expansions with a fixed variable order. 



 

 
Figure 3: A minimized XAIG derived using three 
canonical expansions and different variable orders. 

 
Figure 4: A provably minimum-node XAIG derived using 

SAT-based exact synthesis. 
 

Although in this case our algorithm did not find the 
smallest possible implementation, it came close enough, 
missing the minimum circuit by only one node. Also, our 
algorithm was much faster, taking less than 0.01 sec vs about 
1 sec for exact synthesis. It is likely that, by relaxing the 
variable order in the cofactors and adding heuristics for 
targeted search, a modified version of our algorithm could 
find a minimum-node implementation. 

4. Algorithm 
This section represents the main contribution of paper, an 

algorithm to build XAIG based on three canonical 
expansions. Algorithm is implemented using truth tables for 
functional representation. 

4.1 Recursive procedure 
The pseudo-code of the recursive traversal procedure is 

displayed in Figure 5. Instead of building a decision diagram 
and then traversing it, our algorithm builds xor-and-inverter 
graph (XAIG) on-the-fly. This is accomplished by first 
computing the subgraph size for each successor 𝑓!", 𝑓!#and 
𝑓!$, and then determining the area of XAIG for each 
canonical expansion. The algorithm decides what canonical 
expansion leads to the minimal area and constructs the two-
input nodes accordingly. 

 
int Synthesis_XAIG_Rec(gg *gateGraph, int truthTableId, int varId) { 
 int res0, res1, res2, res, n01, n02, n12; 
 /* a hash table lookup to avoid synthesizing the same function twice */ 
       /* this step also handles the trivial cases of the constant functions */ 
 int iLit; 
 if ((iLit = hash_function(gateGraph, truthTableId)) >= 0) 
  return iLit; 
 int f0 = cofactor0(gateGraph.funcs, truthTableId, varId); 
 int f1 = cofactor1(gateGraph.funcs, truthTableId, varId); 
 int f2 = xor(gateGraph.funcs, f0, f1); 
 /* simplification for equal cofactors */ 
 if (f0 == f1) 
  return Synthesis_XAIG_Rec(gateGraph, truthTableId, varId - 1); 
 
 /* recursive traversal */ 
     int lit0 = Synthesis_XAIG_Rec(gateGraph, f0, varId - 1); 
     int lit1 = Synthesis_XAIG_Rec(gateGraph, f1, varId - 1); 
     int lit2 = Synthesis_XAIG_Rec(gateGraph, f2, varId - 1); 
     kc_vt_shrink(gateGraph.funcs, 3); 
 
 /* compute subgraph size */ 
 /* Shannon */ 
 n01 = nodeCount(lit0, lit1) + shannonNodeCount(lit0, lit1); 
 /* positive Davio */ 
 n02 = nodeCount(lit0, lit2) + davioNodeCount(lit0, lit2); 
 /* negative Davio */ 
 n12 = nodeCount(lit1, lit2) + davioNodeCount(lit1, lit2); 
 
 /* construct nodes for minimal expansion */ 
 int minVal = min(n01, n02, n12); 
 if (minVal == n01) { 
  return mux(gateGraph, litPos(varId + 1), lit0, lit1); 
 } else if (minVal == n02) { 
  return and_xor(gateGraph, litPos(varId + 1), lit2, lit0); 
 } else { 
  return and_xor(gateGraph, litNeg(varId + 1), lit2, lit1); 
 } 
 return -1; 
} 

Figure 5. Recursive procedure for minimizing XAIG. 

4.2 Generating permutations 
To minimize the resulting XAIG, a recursive algorithm is 

used to enumerate all possible variable orders. The algorithm 
for generating variable permutations [5] gets the next 
permutation based on the current one, as shown in the 
pseudo-code in Figure 6. 

 



void get_Next_Permutation(int *currentPerm, int nVars) { 
 int i = nVars – 1; 
 while (i ≥ 0 && currentPerm[i – 1] ≥ currentPerm[i]) 
  i = i – 1;  
 if (i ≥ 0) { 
  int j = nVars; 
  while (j > 0 && currentPerm[j – 1] ≤ currentPerm[i – 1]) 
   j = j – 1; 
  swapElements(j – 1, i – 1); 
  i = i + 1; 
  j = nVars; 
  while (i < j) { 
   swapElements(i – 1, j – 1); 
   i = i + 1; 
   j = j – 1; 
  } 
 } 
} 

Figure 6. The algorithm for generating permutations. 

4.3 Improvements and simplifications 
A simplification has been made in the recursive traversal 

procedure for the case of equal cofactors. Another  
improvement is to construct the truth table for verification 
during the XAIG building. This helps maintain uniqueness 
of the functions and enables efficient verification. 

5. Experiments 
The proposed algorithm is implemented in C/C++ and 

tested on the 33 testcases with 9 or less variables from IWLS 
2022 Programming Contest [12]. The results are verified by 
constructing the truth table of the circuit and comparing it 
against the specification. 

Table 1 lists the results of the synthesis algorithms. 
Column “Function” lists names of files containing truth 
tables. Column “Ins” (“Outs”) shows the number of PIs 
(POs). Columns “Shannon”, “Three expansions”, “Three 
expansions and all variable orders” shows the areas of the 
circuits synthesized by the three algorithms: the one based 
on Shannon expansion, the one based on three canonical 
expansions, and the proposed algorithm, respectively. The 
runtime varied between 0.01 seconds and 80 hours, 
depending on the benchmark. The high runtime is explained 
by the need to enumerate all variable orders. 

Although our algorithm typically produces better results 
than the other two algorithms, experiments with ex16 – ex20 
have shown that circuit based on the Shannon expansion can 
be smaller. This is because our algorithm selects expansions 
based on the sizes of the subgraphs for the current node, 
rather than the total size of the graph. In these testcases, it 
appears that the Shannon expansion results in a smaller 
circuit size. Nonetheless, our algorithm remains a strong 
performer overall. 

Unfortunately, the synthesized circuits cannot be directly 
compared against those produced by the participants of the 
IWLS 2022 Programming Contest, because the contest 
circuits use only and-nodes, while our circuits use both and- 
and xor-nodes.  One way to compare the results, is to convert 
our results into and-nodes and post-process them using 
command &deepsyn –I 10 –J 1000 in ABC. 

The last two columns in Table 1 show the result of this 
comparison. The conclusion is that, after post-processing, 
the synthesized circuits for 14 out of 33 testcases have the 
same sizes as the best one produced at the competition, and 
in four cases (ex20, ex29, ex51, ex55) the circuit is smaller. 

6. Conclusions 
This paper introduces a new algorithm for minimizing the 

number of two-input nodes in the circuit implementations of 
multi-output completely specified Boolean functions. 

Future work may include exploring heuristic tradeoffs 
between quality and runtime. For example, it may be 
possible to limit the exhaustive enumeration of variable 
orders while preserving the minimality of the resulting 
circuits or allow for cofactoring paths to have different 
variables orders, as in free BDDs [2]. 
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Table 1. The number of two-input nodes in the minimized circuits produced by different algorithms. 

Function Ins Outs Shannon 
(AIG) 

Three 
expansions 

(XAIG) 

Three expansions 
and variable 

orders (XAIG) 

Our result after 
post-processing 

(AIG) 

The best result from 
IWLS’22 contest 

(AIG) 
ex00 6 1 41 29 23 25 23 
ex01 6 1 42 28 24 31 27 
ex02 8 1 136 96 83 99 88 
ex03 8 1 41 21 19 27 24 
ex08 8 8 787 588 554 676 544 
ex09 8 8 795 579 552 662 555 
ex10 5 1 18 14 14 10 10 
ex11 7 1 36 24 24 20 20 
ex12 9 1 60 45 45 30 30 
ex16 5 5 30 33 33 18 18 
ex17 6 6 45 53 53 24 24 
ex18 7 7 63 76 76 34 32 
ex19 8 8 84 108 108 44 38 
ex20 9 9 108 140 140 55 56 
ex28 7 10 134 65 50 39 39 
ex29 9 1 61 51 51 37 39 
ex31 9 18 2188 1751 1571 1671 1351 
ex33 5 28 178 154 131 84 77 
ex34 9 5 432 187 107 46 46 
ex35 7 2 34 22 19 17 15 
ex37 8 63 618 533 336 147 147 
ex38 8 7 98 51 47 31 28 
ex41 5 3 37 17 17 17 17 
ex42 7 3 75 31 31 28 28 
ex43 8 4 100 42 42 37 37 
ex46 5 8 74 39 34 34 32 
ex49 7 10 189 106 52 39 39 
ex50 8 2 62 22 12 18 18 
ex51 8 2 91 21 19 28 29 
ex52 8 2 36 27 22 19 19 
ex53 8 2 117 71 51 42 40 
ex54 8 2 25 13 13 13 12 
ex55 8 7 292 189 157 148 156 
Total   7127 5226 4510 4250 3658 

 


