
Area Minimization Using Decision Diagrams
Without Constructing Them

Kristina Cherevko
National University of Kyiv-Mohyla Academy, Ukraine

christina.cherevko@gmail.com

Alan Mishchenko
University of California, Berkeley

alanmi@berkeley.edu

Abstract
This paper proposes a method for minimizing the number of
two-input nodes in the circuit representation of a completely
specified Boolean function. To find the smallest circuit, the
method uses truth tables to enumerate variable orders and,
for each variable order, attempts to use three canonical
expansions while merging shared cofactors. Conceptually, it
is similar to using decision diagrams without constructing
them. Experimental results confirm that the method works
well for a number of benchmarks.

1. Introduction
Area minimization is a central topic in logic synthesis,

which, in turn, is one of the most challenging and research-
worthy aspects of the electronic design automation (EDA)
tools used in hardware design flows.

With the decrease in the feature size, the cost of silicon
wafers continues to grow [10], which makes high-effort
circuit minimization increasingly more important.

Other methods for area optimization use circuit transforms,
such as rewriting [4], divisor extraction from the sum-of-
product (SOP) representation [7], and various types of
Boolean decomposition, for example, disjoint-support
decomposition [3].

Some optimization methods are based on decision
diagrams, such as binary decision diagrams (BDDs) [9],
Kronecker Functional Decision Diagrams (KFDDs) [19],
etc. In particular, [11] uses KFDDs to minimize the number
of product terms in the exclusive SOP (ESOP) expressions.

The contribution of this paper is a novel KFDD-based
method for area minimization, which extends [11] to
minimize the number of two-input nodes rather than the
number of ESOP product terms.

The proposed method is efficiently implemented using
truth tables, without the need to construct and manipulate
KFDDs in a dedicated software package.

Experimental results on the benchmarks from the IWLS
2022 Programming Contest [12] show that the results
compare favorably with other methods.

The rest of this paper is organized as follows. Section 2
describes the background. Section 3 shows a motivating
example. Section 4 describes the algorithm. Section 5 reports
experimental results. Section 6 concludes the paper and
outlines future work.

2. Background
2.1 Boolean network
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and edges corresponding
to wires connecting the gates. The terms Boolean network,
netlist, and circuit are used interchangeably in this paper. In
this paper, we consider only combinational Boolean
networks.

A node n has zero or more fanins, i.e., nodes that are
driving n, and zero or more fanouts, i.e., nodes driven by n.
The primary inputs (PIs) are nodes without fanins in the
current network. The primary outputs (POs) are a subset of
network nodes, which deliver the functionality of the
network to its environment.

The size (area) of a network is the number of its nodes; the
depth (delay) is the number of nodes on the longest path from
the PIs to the POs. The goal of optimization by local
transformations is to reduce area and delay of the network.

A local function of a network node n, denoted fn(x), is a
Boolean function of the logic cone rooted in n and expressed
in terms of the leaves, x, of a cut of n. The global function of
a node is its function expressed in terms of the PIs of the
network.

2.2 And-inverter graph
A combinational and-inverter graph (AIG) is a Boolean

network composed of two-input and-gates and inverters. To
derive an AIG, the SOPs of the nodes in a logic network are
factored, the and- and or-gates of the factored forms are
converted into two-input and-gates and inverters using
DeMorgan’s rule, and these two-input and-gates are added
to the AIG manager in a topological order.

AIGs can represent both local and global functions.
Because of low memory usage, speed of manipulation, and
scalability, AIGs have recently emerged as a widely used
data-structure in logic synthesis and formal verification.

The following publications on AIGs [14] and AIG-based
synthesis [15][16] contain additional information.

2.3 Structural and functional hashing
Structural hashing of AIGs ensures that all constants are

propagated, and, for each pair of nodes, there is at most one
two-input and-node with them as fanins (up to a
permutation). Structural hashing is performed by hash-table

lookups when and-nodes are created and added to an AIG
manager. Structural hashing can be applied on-the-fly during
AIG construction, which reduces the AIG size.

Functional hashing of the AIGs ensures that each internal
node has a unique Boolean function up to the complement.
Functional hashing leads to a “semi-canonical” AIG
representation (also known as FRAIGs [17]) because no two
nodes in the AIG have the same global functions, but the
same global function in different AIGs can be expressed
using different circuit structures.

2.4 Xor-and-inverter graph
The notion of an and-inverter graph can be extended to

include two-input xor-gates along with two-input and-gates,
resulting in an xor-and-inverter graph (XAIG). An XAIG is
constructed in a similar way to an AIG. In the software
implementation, an xor-gate and an and-gate are represented
by a pair of integers. Since both operations are commutative,
the node fanins can be swapped without changing the node
function. Thus, the ordering of the fanins can be used to
distinguish and-gates and xor-gates: when the first fanin is
smaller than the second, this is an and-gate; otherwise, it is
an xor-gate.

In the future, we will use AIGs, but all the definitions and
computations are naturally extended to work with XAIGs.

2.5 Canonical expansions
The proposed algorithm is based on three canonical

expansions of Boolean functions.
Shannon 𝑓 = �̅�!𝑓!" ∨ 𝑥!𝑓!# (1)

Positive Davio 𝑓 = 𝑓!"	⨁	𝑥!𝑓!$ (2)
Negative Daio 𝑓 = 𝑓!#	⨁	�̅�!𝑓!$ (3)

Here 𝑓!" (𝑓!#) denote the cofactor of 𝑓 with respect to
𝑥! = 0 (𝑥! = 1) and 𝑓!$ is defined as 𝑓!$ = 𝑓!"	⨁	𝑓!#, where ⨁

denotes the XOR operation.
The canonical expansions have multiple applications, in

particular, they are the basis for creating various families of
decision diagrams, such as BDDs, KFDDs, etc.

3. Motivation
This section shows a motivating example, followed by the

outline of the proposed algorithm in the next section.

3.1 Illustrative example
Integer multiplication plays the central place in many

computations, including machine learning. Hardware
implementation of multipliers is the key element of many
designs, including those used to accelerate computations in
machine learning. A frequently used multiplier design is
based on the Booth algorithm [6].

This is why, as an illustrative example in this section, we
consider the partial product in a radix-4 Booth multiplier.

The partial product is a 5-input Boolean function whose
truth table in the hexadecimal notation is 0xF335ACC0.

Figure 1 shows the circuit we get by applying only the
Shannon expansion. Essentially, this is a circuit with 16
nodes derived from a BDD [9] with a fixed variable order.

Using positive and negative Davio expansions results in a
circuit with 9 two-input nodes (Figure 2). In this case, the
circuit is a KFDD [19] with the same fixed variable order.

Our algorithm that uses truth tables to efficiently
enumerate all variable orders leads to a circuit with 8 two-
input nodes (Figure 3). The smallest circuit for this function
is composed of 7 nodes (Figure 4) and was computed using
SAT-based exact synthesis [13], as implemented in
command twoexact in ABC [1]. (Figures 1-4 were generated
using command show.)

One line in the functional representation of a node defines
AND node, two lines – EXOR node.

Figure 1: An AIG derived using the Shannon expansion

with a fixed variable order.

Figure 2: A minimized XAIG derived using three
canonical expansions with a fixed variable order.

Figure 3: A minimized XAIG derived using three
canonical expansions and different variable orders.

Figure 4: A provably minimum-node XAIG derived using

SAT-based exact synthesis.

Although in this case our algorithm did not find the
smallest possible implementation, it came close enough,
missing the minimum circuit by only one node. Also, our
algorithm was much faster, taking less than 0.01 sec vs about
1 sec for exact synthesis. It is likely that, by relaxing the
variable order in the cofactors and adding heuristics for
targeted search, a modified version of our algorithm could
find a minimum-node implementation.

4. Algorithm
This section represents the main contribution of paper, an

algorithm to build XAIG based on three canonical
expansions. Algorithm is implemented using truth tables for
functional representation.

4.1 Recursive procedure
The pseudo-code of the recursive traversal procedure is

displayed in Figure 5. Instead of building a decision diagram
and then traversing it, our algorithm builds xor-and-inverter
graph (XAIG) on-the-fly. This is accomplished by first
computing the subgraph size for each successor 𝑓!", 𝑓!#and
𝑓!$, and then determining the area of XAIG for each
canonical expansion. The algorithm decides what canonical
expansion leads to the minimal area and constructs the two-
input nodes accordingly.

int Synthesis_XAIG_Rec(gg *gateGraph, int truthTableId, int varId) {
 int res0, res1, res2, res, n01, n02, n12;
 /* a hash table lookup to avoid synthesizing the same function twice */
 /* this step also handles the trivial cases of the constant functions */
 int iLit;
 if ((iLit = hash_function(gateGraph, truthTableId)) >= 0)
 return iLit;
 int f0 = cofactor0(gateGraph.funcs, truthTableId, varId);
 int f1 = cofactor1(gateGraph.funcs, truthTableId, varId);
 int f2 = xor(gateGraph.funcs, f0, f1);
 /* simplification for equal cofactors */
 if (f0 == f1)
 return Synthesis_XAIG_Rec(gateGraph, truthTableId, varId - 1);

 /* recursive traversal */
 int lit0 = Synthesis_XAIG_Rec(gateGraph, f0, varId - 1);
 int lit1 = Synthesis_XAIG_Rec(gateGraph, f1, varId - 1);
 int lit2 = Synthesis_XAIG_Rec(gateGraph, f2, varId - 1);
 kc_vt_shrink(gateGraph.funcs, 3);

 /* compute subgraph size */
 /* Shannon */
 n01 = nodeCount(lit0, lit1) + shannonNodeCount(lit0, lit1);
 /* positive Davio */
 n02 = nodeCount(lit0, lit2) + davioNodeCount(lit0, lit2);
 /* negative Davio */
 n12 = nodeCount(lit1, lit2) + davioNodeCount(lit1, lit2);

 /* construct nodes for minimal expansion */
 int minVal = min(n01, n02, n12);
 if (minVal == n01) {
 return mux(gateGraph, litPos(varId + 1), lit0, lit1);
 } else if (minVal == n02) {
 return and_xor(gateGraph, litPos(varId + 1), lit2, lit0);
 } else {
 return and_xor(gateGraph, litNeg(varId + 1), lit2, lit1);
 }
 return -1;
}

Figure 5. Recursive procedure for minimizing XAIG.

4.2 Generating permutations
To minimize the resulting XAIG, a recursive algorithm is

used to enumerate all possible variable orders. The algorithm
for generating variable permutations [5] gets the next
permutation based on the current one, as shown in the
pseudo-code in Figure 6.

void get_Next_Permutation(int *currentPerm, int nVars) {
 int i = nVars – 1;
 while (i ≥ 0 && currentPerm[i – 1] ≥ currentPerm[i])
 i = i – 1;
 if (i ≥ 0) {
 int j = nVars;
 while (j > 0 && currentPerm[j – 1] ≤ currentPerm[i – 1])
 j = j – 1;
 swapElements(j – 1, i – 1);
 i = i + 1;
 j = nVars;
 while (i < j) {
 swapElements(i – 1, j – 1);
 i = i + 1;
 j = j – 1;
 }
 }
}

Figure 6. The algorithm for generating permutations.

4.3 Improvements and simplifications
A simplification has been made in the recursive traversal

procedure for the case of equal cofactors. Another
improvement is to construct the truth table for verification
during the XAIG building. This helps maintain uniqueness
of the functions and enables efficient verification.

5. Experiments
The proposed algorithm is implemented in C/C++ and

tested on the 33 testcases with 9 or less variables from IWLS
2022 Programming Contest [12]. The results are verified by
constructing the truth table of the circuit and comparing it
against the specification.

Table 1 lists the results of the synthesis algorithms.
Column “Function” lists names of files containing truth
tables. Column “Ins” (“Outs”) shows the number of PIs
(POs). Columns “Shannon”, “Three expansions”, “Three
expansions and all variable orders” shows the areas of the
circuits synthesized by the three algorithms: the one based
on Shannon expansion, the one based on three canonical
expansions, and the proposed algorithm, respectively. The
runtime varied between 0.01 seconds and 80 hours,
depending on the benchmark. The high runtime is explained
by the need to enumerate all variable orders.

Although our algorithm typically produces better results
than the other two algorithms, experiments with ex16 – ex20
have shown that circuit based on the Shannon expansion can
be smaller. This is because our algorithm selects expansions
based on the sizes of the subgraphs for the current node,
rather than the total size of the graph. In these testcases, it
appears that the Shannon expansion results in a smaller
circuit size. Nonetheless, our algorithm remains a strong
performer overall.

Unfortunately, the synthesized circuits cannot be directly
compared against those produced by the participants of the
IWLS 2022 Programming Contest, because the contest
circuits use only and-nodes, while our circuits use both and-
and xor-nodes. One way to compare the results, is to convert
our results into and-nodes and post-process them using
command &deepsyn –I 10 –J 1000 in ABC.

The last two columns in Table 1 show the result of this
comparison. The conclusion is that, after post-processing,
the synthesized circuits for 14 out of 33 testcases have the
same sizes as the best one produced at the competition, and
in four cases (ex20, ex29, ex51, ex55) the circuit is smaller.

6. Conclusions
This paper introduces a new algorithm for minimizing the

number of two-input nodes in the circuit implementations of
multi-output completely specified Boolean functions.

Future work may include exploring heuristic tradeoffs
between quality and runtime. For example, it may be
possible to limit the exhaustive enumeration of variable
orders while preserving the minimality of the resulting
circuits or allow for cofactoring paths to have different
variables orders, as in free BDDs [2].

REFERENCES
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System

for Sequential Synthesis and Verification. http://www-
cad.eecs.berkeley.edu/~alanmi/abc

[2] J. Bern, J. Gergov, C. Meinel and A. Slobodova´, "Boolean
manipulation with free BDDs. First experimental results", Proc.
DATE’94, pp. 200-207.

[3] V. Bertacco and M. Damiani, "Disjunctive decomposition of logic
functions," Proc. ICCAD ‘97, pp. 78-82.

[4] P. Bjesse and A. Boralv, "DAG-aware circuit compression for
formal verification", Proc. ICCAD ’04, pp. 42-49.

[5] E. Blurock, Generate all Permutations of an Array,
[6] A. D. Booth. "A signed binary multiplication technique". Quarterly

Journal of Mechanics and Applied Mathematics. 1951, IV (2), pp.
236–240.

[7] R. Brayton and C. McMullen, “The decomposition and factorization
of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[8] R. Brayton and A. Mishchenko, "ABC: An academic industrial-
strength verification tool", Proc. CAV'10, LNCS 6174, pp. 24-40.

[9] R. E. Bryant, “Graph-based algorithms for Boolean function
manipulation” IEEE Tr. Comp., vol. C-35, pp. 677–691, Aug. 1986.

[10] I. Cutress, More than Moore, https://morethanmoore.substack.com/
p/tsmc-financial-year-2022

[11] R. Drechsler, “Pseudo-Kronecker expressions for symmetric
functions”. IEEE Trans. Comp. Vol. 48(8), Sept. 1999, pp. 987-990.

[12] IWLS 2022 Programming Contest, https://github.com/alanminko/
iwls2022-ls-contest

[13] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, "SAT-
based exact synthesis: Encodings, topology families, and parallelism",
IEEE Trans. CAD, 2020, Vol. 39(4), pp. 871-884.

[14] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
boolean reasoning for equivalence checking and functional property
verification”, IEEE TCAD, Vol. 21(12), Dec. 2002, pp. 1377-1394

[15] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis", Proc. DAC
'06, pp. 532-536.

[16] A. Mishchenko and R. K. Brayton, "Scalable logic synthesis using a
simple circuit structure", Proc. IWLS '06, pp. 15-22.

[17] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, "FRAIGs:
A unifying representation for logic synthesis and verification". ERL
Technical Report, EECS Dept., UC Berkeley, March 2005.

[18] Y. Miyasaka, A. Mishchenko, J. Wawrzynek, and N. J. Fraser,
"Synthesizing practical Boolean functions using truth tables", Proc.
IWLS'22.

[19] M. A. Perkowski, M. Chrzanowska-Jeske, A. Sarabi, and I. Schafer,
“Multi-level logic synthesis based on Kronecker Decision Diagrams
and Boolean Ternary Decision Diagrams for incompletely specified
functions”, VLSI Design, 1995, Vol. 3, Nos. 3-4, pp. 301-313.

Table 1. The number of two-input nodes in the minimized circuits produced by different algorithms.

Function Ins Outs Shannon
(AIG)

Three
expansions

(XAIG)

Three expansions
and variable

orders (XAIG)

Our result after
post-processing

(AIG)

The best result from
IWLS’22 contest

(AIG)
ex00 6 1 41 29 23 25 23
ex01 6 1 42 28 24 31 27
ex02 8 1 136 96 83 99 88
ex03 8 1 41 21 19 27 24
ex08 8 8 787 588 554 676 544
ex09 8 8 795 579 552 662 555
ex10 5 1 18 14 14 10 10
ex11 7 1 36 24 24 20 20
ex12 9 1 60 45 45 30 30
ex16 5 5 30 33 33 18 18
ex17 6 6 45 53 53 24 24
ex18 7 7 63 76 76 34 32
ex19 8 8 84 108 108 44 38
ex20 9 9 108 140 140 55 56
ex28 7 10 134 65 50 39 39
ex29 9 1 61 51 51 37 39
ex31 9 18 2188 1751 1571 1671 1351
ex33 5 28 178 154 131 84 77
ex34 9 5 432 187 107 46 46
ex35 7 2 34 22 19 17 15
ex37 8 63 618 533 336 147 147
ex38 8 7 98 51 47 31 28
ex41 5 3 37 17 17 17 17
ex42 7 3 75 31 31 28 28
ex43 8 4 100 42 42 37 37
ex46 5 8 74 39 34 34 32
ex49 7 10 189 106 52 39 39
ex50 8 2 62 22 12 18 18
ex51 8 2 91 21 19 28 29
ex52 8 2 36 27 22 19 19
ex53 8 2 117 71 51 42 40
ex54 8 2 25 13 13 13 12
ex55 8 7 292 189 157 148 156
Total 7127 5226 4510 4250 3658

