
The Combinational-Complexity Game
For Symmetric Functions

Andrea Costamagna
EPFL

Lausanne, Switzerland

Alan Mishchenko
UCBerkley

Berkley, California

Giovanni De Micheli
EPFL

Lausanne, Switzerland

Abstract—The combinational complexity of a Boolean function
is the minimum number of binary logic operators needed to
represent it. Finding such representations is crucial to achieving
faster and less resource-intensive computing. Since this problem
is intractable, state-of-the-art techniques rely on solving it us-
ing Boolean satisfiability (SAT). However, finding the optimum
solution for functions with combinational complexity higher
than 15 is usually not feasible. We treat synthesis as a time
series of steps, each adding a few Boolean operators to the
representation. From interpreting this procedure as a game, we
devise a solver acting as a player that chooses the next move
based on estimating the expected reward. A greedy version of the
method yields close-to-optimum results for symmetric functions.
For instance, the solver finds an And-Inverter Graph (AIG) of
72 gates for the majority-of-15 in less than 10 seconds. After
thorough hyperparameter tuning, state-of-the-art synthesis and
optimization require minutes to obtain a 71-gate AIG.

Index Terms—Combinational complexity, symmetric functions,
set covering

I. INTRODUCTION

THE increasing cost of silicon and the need for faster
computation call for systems with higher performance.

Boolean functions are the cornerstone of digital computation.
Hence compactly representing them is crucial for reducing re-
source usage and computation time. However, despite decades
of extensive research, we still do not know the optimal
representations for many 6-input Boolean functions.

The problem of interest is to find a Boolean function
representation in terms of the minimum number of binary logic
operators. This number is called the combinational complexity
of the function, and the problem of finding it is called exact
synthesis. State-of-the-art techniques rely on encoding exact
synthesis as an instance of the satisfiability problem (SAT) [1],
[2], for which efficient solvers are available [3]. However,
when the combinational complexity is higher than 15, SAT-
based approaches become infeasible and finding close-to-
optimum representations remains an open problem.

Inspired by the advances in computer programs capable of
beating humans in complex games [4], we investigate ways of
representing the problem as a game played by the solver, the
combinational complexity game (CCG). Rather than using a
monolithic problem encoding and a SAT solver, this approach
treats synthesis as a time series of steps. The goal of the solver
is to transform a truth-table into a structural representation.
At any step of CCG, the solver analyses the partial solution
and decides what action to take. We target synthesis of single
output Boolean functions that can be manipulated using truth

tables, and for which SAT-based methods do not work, i.e.,
single output functions with more than 6 inputs.

Motivated by recent research efforts aiming to reduce the
resource usage of machine learning [5], we focus on threshold
functions. Indeed, Binarized Neural Networks (BNNs) are
hardware-efficient machine learning models in which a neuron
is a Boolean threshold function. [6]. BNNs have hundreds of
thousands of neurons. Hence, efficient and compact represen-
tations for the individual nodes determine the system’s per-
formance. Since threshold functions are symmetric in all their
variables, this first motivation leads to a more general question:
Is it possible to define a solver capable of obtaining close-to-
optimum results in CCG when functions present symmetries?

Our work takes inspiration from a classical synthesis tech-
nique based on detecting symmetries through spectral meth-
ods. In the seminal work, Edwards et al. proposed to combine
symmetry detection and operator insertion in a Boolean repre-
sentation through a synthesis procedure called remapping [7].
They implemented the method as an interactive program and
mentioned the need to develop automatic criteria to identify the
most suitable synthesis option at each stage. To the best of the
authors’ knowledge, formulating symmetry-based synthesis
for practical automation remains an open problem.

Our formulation of the problem relies entirely on truth-table
manipulation. This results in a more lightweight symmetry-
detection strategy compared to spectral methods [8]. We
analytically derive remapping equations induced by a synthesis
step. These equations allow us to estimate the advantage of a
synthesis step before performing it. In line with the idea in
the seminal paper and follow-up work [7], [9], we propose a
greedy selection strategy based on maximizing don’t-cares.

Symmetry-based synthesis fails when the function to syn-
thesize does not have two-variable symmetries. Furthermore,
the set of actions identified by symmetry analysis is not
necessarily exhaustive, resulting in sub-optimal results. To
extend the applicability of the method to generic functions and
improve the quality of results, we devise a novel technique re-
lying on set covering [10]. Since the proposed solvers consider
a set of Boolean variables named cut, we call them CUSCO,
which stays for cut-by-cut set covering-based synthesis. We
formalize both strategies as instances of the CCG paradigm,
whose generality goes beyond the details of this paper.

The rest of this paper is organized as follows. Section II
covers the background. Section III formulates CCG and de-
scribes the devised solvers. Section IV shows experimental
results. Section V concludes the paper.

II. BACKGROUND

A. Boolean Basics
Let f : Bn 7→ B be a single-output Boolean function. We

describe the function in terms of the partition that its value
induces on the Boolean cube Bn [11]. Its support S = (xi)

n
i=1

is the ordered set of variables on which f depends.
A literal is a Boolean variable or its negation, so its positive

value identifies a subset of Bn. A cube is a literal or an inter-
section of literals. We represent the operations {∩,∪,⊂,⊆,△}
between cubes in logic notation {·,+, <,≤,⊕}. Also, we
indicate cube complementation as C ′.

We equivalently refer to a cube as intersections of literals,
as the binary labelling of their negation, or as the decimal
value of the binary labelling. For example, the two-literal
cubes in terms of variables (xi, xj) are equivalently B2,
{xjxi, xjx

′
i, xjx

′
i, x

′
jx

′
i}, {11, 10, 01, 00}, or {3, 2, 1, 0}.

Two cubes C and D are independent if they have an empty
intersection (C · D = 0). A cube C is contained in a cube
D if C ≤ D. For instance, xix

′
j is contained in xi because

xix
′
j ≤ xi is satisfied ∀(xi, xj) ∈ B2.

The minterms are the 2n n-literal cubes contained in Bn.
The cofactor of f with respect to a cube C is the function
fC of the variables not appearing in C and whose minterms
are the subsets of minterms of f contained in C. When C is
a minterm, fC is the value of the function. The minterms can
be partitioned based on the value of fC . If fC = 0, C is in
the offset of f , otherwise C is in the onset of f .

An incompletely specified function f is a function whose
output is not defined (or is a don’t-care) for some input
minterms. This condition can happen when f is a sub-function
of an environment, e.g., a larger block of logic. Controllability
don’t-cares (CDCs) are patterns never appearing at the function
inputs. We represent the CDCs with a function named CDC-
mask µ : Bn → B. Given a minterm M , µM ∈ B indicates
if M can appear at the input. There are 2|CDC| pairs (τ, µ)
representing f . Indeed τM is not important if µM = 0 .

A Boolean chain for n variables (x1, ..., xn) is a sequence
(xn+1, ..., xn+r) where each step combines two previous steps
xi = xj(i) ◦i xk(i) n + 1 ≤ i ≤ n + r where 1 ≤ j(i) < i
and ◦i is a binary Boolean operator [12]. The cut at position
k in the Boolean chain is the set of variables C = {xi}i≤k,
named divisors, such that there is a variable xj>k having xi

in its support.

B. Boolean Function Representations and Optimization
The structure of the Boolean chain allows us to represent

it as a directed acyclic graph (DAG). We consider two types
of graph, differing in the set of Boolean operators that can
be represented by a node and its edges. In an and-inverter
graph (AIG), ◦i is either in {·,+, <,≤} or in the set of the
complements of these operations. An xor-and-inverter graph
(XAIG) extends the node functionalities of an AIG with the
exclusive-or ⊕ and its complement. A Boolean chain of length
r synthesizes f : Bn → B if xn+r = f(x1, . . . , xn).

A functionally reduced AIG (FRAIG) is an AIG in which
every node has a unique functionality. We rely on efficient
implementations of FRAIGs, leveraging functional simulation
and SAT-solving [13]. When the number of inputs is smaller

than 17, the FRAIG implementation in ABC [14] synthesizes
a FRAIG from a truth table within a few milliseconds.

Unless optimal, the size of a FRAIG is further optimiz-
able. We use an efficient combination of traditional logic
synthesis optimization strategies named deepsyn (command
&deepsyn in ABC). Deepsyn is the most aggressive op-
timization strategy available in open-source EDA. Hence,
deepsyn can yield the most compact AIG representation
achievable with state-of-the-art synthesis and optimization.

C. Constrained Optimization of Boolean Representations
Finding the minimum length chain synthesizing f is a

fundamental problem [11]. We name optimum representation
the Boolean chain of shortest length, and the problem of
finding it is exact synthesis. The length of the optimum chain
is the combinational complexity of the function it synthesizes
C(f). When finding the optimum is not possible, we target
close-to-optimum solutions.

Theoretical results show that the combinational complexity
of an n-input function generally exceeds 2n/n [12]. Since the
number of chains we can define with n◦ binary operations is
of the order of [n◦ · (n + C(f))2]C(f), the dimensionality of
the search space makes the optimization problem intractable.

Since an exhaustive search for a solution is impossible, any
solver must contain efficient mechanisms for ruling out sub-
optimal solutions. In practice, this corresponds to a dynamic
reduction of the explored portion of the search space. Exact
synthesis solvers are engines that guarantee the optimality
of the chain in case of success. State-of-the-art approaches
rely on encoding the problem as an instance of Boolean
satisfiability (SAT). However, despite the efficiency of modern
SAT solvers, the resulting problems are too hard even for the
general case of 6-input functions.

D. Two-Variable Symmetries
Classical symmetries correspond to functional equivalences

in subspaces defined by two-literal cubes. Cofactor compar-
isons give information on these functional properties.

The fundamental two-variables symmetries are non-
equivalence symmetry (NES), equivalence symmetry (ES), and
multiform symmetry (MS). Fig. 1(a-c), show these symmetries
illustrated on the Karnough map (KM). Instead, the explicit
functional form is:

1) NES{xi, xj}: f01 = f10.
2) ES{xi, xj} : f00 = f11 .
3) MS{xi, xj} : f01 = f10 ∧ f00 = f11.
The red numbers offer an example in which f is a two-input

function. In the general case, the equivalence identified by the
lines is among cofactors. For instance, Fig. 1(b) means that
f00 = f11, where f00, f11 : Bn−2 → B. In the presence of
don’t-cares, they can be allocated to complete a cofactor and
satisfy a symmetry. Fig. 1(b) offers an example: assigning the
don’t-care ∗ to 0 results in ES.

Single-variable symmetries (SVS) correspond to cofactor
equalities in the space identified by a single variable:

1) {SVSxi}xj : f10 = f11.
2) {SVSxi}x′

j : f00 = f01.
3) {SVSxj}xi : f11 = f01.

4) {SVSxj}x′
i : f10 = f00.

Fig. 1 (d-e) demonstrates two of these symmetries.
Fig. 1 (f) shows that more SVSs can be present at the same

time. They are called compatible single-variable symmetries
(CSVS). The compatibility check in the presence of don’t-
cares can result in an incorrect result, induced by conflicting
assignments of don’t-cares. To avoid this, it is sufficient to
combine the SVS-check with an ES-check. The compatible
symmetries and their equivalence checks are:

1) CSVS{x′
j , x

′
i} :f00 = f01 = f10.

2) CSVS{x′
j , xi} :f00 = f01 = f11.

3) CSVS{xj , x
′
i} :f00 = f10 = f11.

4) CSVS{xj , xi} :f01 = f10 = f11.

Fig. 1. Schematic representations of the symmetry classes.

E. Synthesis Method Using Symmetries

Edwards et al. [7] devised a synthesis strategy based on
remapping, i.e., the exploitation of two-variable symmetries to
progressively map the problem to a simpler one. The simplicity
of the problem corresponds to the fact that each synthesis
stage increases the number of CDCs. Hence, at each synthesis
stage, the number of exploitable symmetries is either the
same or higher. Sec. II-D shows that two-variable symmetries
correspond to the equivalence of a function in the subspace
identified by two two-literal cubes. Given two variables xi and
xj , let Π = (Ck)

3
k=0 be any permutation of the two-literal

cubes in B2. If we define the simple symmetries (SS) as the
group of symmetries including NES, ES, and SVS, we observe

1) SS ⇔ ∃ p ̸= q : fCp
= fCq

.
2) CSVS ⇔ ∃ p ̸= q ̸= r : fCp

= fCq
= fCr

.
3) MS ⇔ ∃ p ̸= q ̸= r ̸= s : fCp

= fCq
and fCr

= fCs
.

All the subscripts in the previous equalities are distinct.
Without loss of generality, we group the cubes into subsets

1) SS : S = (Cp) D = (Cq) N = (Cr, Cs).
2) CSVS : S = (Cp, Cq) D = (Cr, Cr) N = (Cs).
3) MS : S = (Cp, Cq) D = (Cr, Cs) N = ∅.

Remapping is based on the definition of the following map

φ : B2 → B2

{
φ(Ck) = Dk Ck ∈ S, Dk ∈ D
φ(Ck) = Ck Ck ∈ D ∪N

(1)

The map identifies the truth tables of two Boolean operators.
Explicitly, given two symmetric variables xi, xj , the map reads

(xj , xi)→ (φj(xj , xi), φi(xj , xi))

00→ φ(00)

01→ φ(01)

10→ φ(10)

11→ φ(11)

(2)

Substituting xj and xi with the newly defined variables,
results in an equivalent synthesis problem named remapped
problem. The remapped problem is simpler in the sense that
the minterms contained in the cubes in S will not appear in the
remapped problem, enlarging the CDC set at the next synthesis
stage. As soon as a one-literal cube C is not observable, it
can be removed from the inputs list, so that the progressive
increase of the CDC set eventually results in obtaining a unique
intermediate variable, representing the function. Fig. 2 shows
the detail of a remapping step in presence of NES. More details
for the other symmetries can be found in the seminal paper [7].

Fig. 2. Remapping induced by NES{xi, xj}.

III. THE COMBINATIONAL COMPLEXITY GAME

In this section, we formulate synthesis as the combinational
complexity game (CCG). CCG is a synthesis paradigm in which
the solver chooses among a set of moves based on the expected
reward. We propose ad-hoc definitions of the reward function,
modeling the intuition that adding a correct operation in the
Boolean chain should map the problem to a simpler one.

A. Synthesis Based on Controlability Don’t-Cares
We now formulate symmetry-based synthesis in terms

of truth-table manipulations. This formulation allows us to
efficiently automatize the synthesis procedure using CDC-
maximization as the synthesis guiding principle.

1) Symmetry Detection: Differently from the seminal paper,
we check the presence of symmetries directly using truth
tables. Sec. II presented the two-variables symmetries in terms
of the cofactors of the function. Let f be an incompletely
specified function with CDC-mask µ and synthesized as τ . If
A and B are two-literal cubes defining a symmetry via the
equivalence fA = fB , then

fA = fB ⇔ µAµBτA = µAµBτB (3)

Hence checking the presence of a symmetry for truth tables
corresponds to the bitwise verification of its definition.

2) Remapping Equations: For the sake of readability, we
rename the cubes of the partition of B2 introduced in Sec. II-E:
Π = {A,B,C,D}. We consider the general remappings:

1) SS : A 7→ C.
2) CSVS : A 7→ C and B 7→ C.
3) MS : A 7→ C and B 7→ D.

The remapping equations are the transformations of f from
step t to step t+ 1, i.e., the assignment τ t+1, µt+1 ← τ t, µt.

The remapping equations for the mask are:

µ
SS←− A′µ+ CµA

µ
CSVS←−−− A′B′µ+ C(µA + µB)

µ
MS←− A′B′µ+ (CµA +DµB)

The first term in the disjunctions removes the minterms
contained in the source cubes from the care set. The second
term removes a minterm from the CDC set when a minterm
in the care set is mapped to it. Indeed, cofactoring the mask
to a source cube A identifies all cubes K in the remaining
variables that, when put in conjunction with A are in the care
set (KA ∈ CDC′

f). Hence, after the conjunction with the target
cube C, the new minterms generated by the remapping process
are in the care set (KC ∈ CDC′

f).
The remapping equations for τ are

τ
SS←− B′τ +B(µBτ + µAτA)

τ
CSVS←−−− (C ′ + µC)τ + C · (µAτA + µBτB)

τ
MS←− (C ′D′ + CµC +DµD)τ + (Cµ′

CµAτA +Dµ′
DµBτB)

Also in this case the truth table computation has two terms.
The first contribution preserves the value of the function for
all the minterms that were observable at time t. Meanwhile,
the second contribution reallocates the value of τ when there
is a CDC in the source cubes of the remapping. Indeed, CDCs
can become visible at later stages, and ignoring the second
contribution would break the equivalence of the remapped
problem with the original one.

3) CDC-Based Automation: Edwards et al. [7] provide two
guiding principles for using their interactive tool:

1) Do not perform remapping if the destination set D
contains only don’t-cares.

2) Do not remap care minterms into the don’t-care area.
Avoid reallocating definite values to present don’t-cares.

The remapping equations allow us to include the first principle
in an automatic method. Indeed, if {at,i}mi=1 is the set of
available synthesis actions at time t, we compute the remapped
mask µ[at,i]

at,i←−− µ. Next, by defining the reward function as
the number of CDCs, we can select the action as

a∗ = argmax
a
|CDC[a]| = argmax

a
|µ[a]|0 (4)

The move maximizing the number of CDCs maps the problem
to a simpler one, either reducing the number of variables or
increasing the number of exploitable symmetries.

when it comes to the second principle, the remapping
equations for τ perform reallocation when it is advantageous.
In the experimental section we show that CDC-maximization
is a powerful guiding principle for symmetric functions.

B. Cut-by-cut Synthesis Using Set Covering
Symmetry-based synthesis fails for functions without sym-

metries. Furthermore, the symmetry-based remappings are a
subset of the legal actions. Hence, the portion of the search
space containing the optimum might be unreachable. We pro-
pose a new approach generalizing symmetry-based synthesis
to arbitrary functions and increasing its exploratory potential.

1) Set Covering-Based Verification of the Validity of a Cut:
We introduce a graph representation for Boolean functions.
The information graph (IG) of the function f : Bn → B is the
undirected bipartite graph Gf = (V, E), whose parts are the
onset and the offset of f . The edges identify minterms with
different function value, i.e., the adjacency matrix is

Af
MK = fM ⊕ fK ∀M,K ∈ V (5)

Existing works use similar functional representations [15].
Fig. 3 shows the node functions in a Boolean chain for the
majority-of-3, together with the IG representation of the target
function Gf and of the node functionalities at two cuts. Every
IG explicitly stores the information on the separation induced
by its defining function on Bn. The existence of a function f of
x2, x1 and x0 implies that the combination of these variables
contains enough information to describe f . In terms of the
IGs, the subsets of the Boolean space identified by Gx2

, Gx1

and Gx0
cover Gf . This must be true at every cut of the circuit.

Fig. 3. Example to discuss the set covering formulation.

Proposition III.1 (Covering). Let f : Bn → B and h : Bn →
Bm. Let E be the edges of Gf , and Eh =

⋃m
i=1 Ei be the edges

in the information graphs of the components of h (Ghi
). Then,

if Eh covers E there is a function g : Bm → B such that

f(x) = g(h(x))

Proof. We define gM
.
= g(hM) = g(h1M , h2M , . . . , hmM).

Then, for every minterm pairs M,K ∈ (CDCf)
c we require

fM ̸= fK ⇒ gM ̸= gK (6)
fM = fK ⇒ gM = gK (7)

The equality is possible for any map h, as g can be arbitrarily
complex. Instead, the inequality is possible only if hM ̸=hK ,

i.e., ∃i ∈ {1, . . . ,m} s.t. hiK ̸= hiM . At the level of the
adjacency matrices, these statements read

∀M,K ∈ Bn Af
MK ≤

m∑
i=1

Ahi

MK ⇒ Af ≤
m∑
i=1

Ahi (8)

If for every edge {K,M} ∈ E , {K,M} is covered by a set in
Eh, the functions in h contain enough information to perform
the partition of Bn identified by the target function.

2) Cut-By-Cut Set Covering-Based Synthesis: The observa-
tion that the variables in a cut contain enough information to
solve the synthesis problem allows us to generalize symmetry-
based synthesis. The idea is to address the covering problem
instead of performing the symmetry analysis. Given a cut C,
we define the candidate divisors by combining the variables
in C using the Boolean operators {·,+, <,≤,⊕} [16] and the
divisors in C. This set of operators is exhaustive since we can
introduce complementations at the next synthesis stage. If the
cut has n variables, this results in n+5

(
n
2

)
candidate divisors.

Next, we define the IG for each candidate divisor and the target
function, and we find several solutions to the covering problem
for Gf using the sets defined by the IGs of the divisors. Given
a set of solutions to the covering problem, we randomly select
a solution that was not previously considered.

Symmetry-based synthesis also synthesizes Boolean chains
one cut at a time. For instance, the synthesis process in
Fig. 3 can be equivalently obtained with symmetry-based
synthesis, where the first cut corresponds to a NES remapping
(see Fig. 2). However, the cuts allowed by the symmetry-
based remappings is a subset of the ones obtainable with set
covering. The enlarged set of actions allows the solver to
explore regions of the search space that are unreachable by
symmetry-based analysis, enabling the synthesis of generic
functions as well as better results for symmetric functions.
Furthermore, the set covering solutions target the minimization
of the cut size. This criteria acts as a proxy for the don’t care
maximization principle in symmetry-based synthesis.

We name our solver CUSCO, which stays for cut-by-
cut set covering-based synthesis. In the next section, we
characterise the features of our approach for the symmetric
case SYM-CUSCO and the general case COV-CUSCO. The
two methods differ in the data structures they manipulate.
SYM-CUSCO leverages the remapping techniques to work
uniquely with truth tables having the same dimensionality
as the original function, i.e., 2n for an n-inputs Boolean
function. Instead, the dimensionality of the IGs is O(22n), so
it comes at the cost of runtime and memory. The experimental
section shows that COV-CUSCO obtains the optimum XAIGs
for almost all the symmetric functions of 4 and 5 inputs.

C. CUSCO-solvers for CCG

Algorithm 1 describes the structure of a generic CUSCO-
solver. The method takes a function f : Bn → B as the input
and returns a network representation of type NTK. In this work
we consider and-inverter graphs (AIGs) [13], [17] and xor-
and-inverter graph (XAIGs) [18]. CUSCO is also specified by
a method-type (TYPE). We give two examples of TYPE to
showcase the synthesis paradigm:

1) SYM-CUSCO uses as the core synthesis engine our
automation of symmetry-based synthesis (Sec. III-A).

2) COV-CUSCO extends SYM-CUSCO using set covering.
Algorithm 1 is an iterative procedure, in which we store the

best result after applying synthesis a number of times. First, we
initialize the state statet, which corresponds to an encoding
of the partial solution. Next, we synthesize the network a few-
gates at a time. At each step, the analyzer<TYPE>(·) func-
tion identifies a set of candidate moves from the current state
of the solution. After selecting an action using an iteration-
dependent policy<TYPE>(·,it), move<TYPE>(·) updates
the partial solution. When statet corresponds to a circuit
satisfying the specifications defined by f , we synthesize the
desired network representation. The method returns the small-
est size representation identified in the synthesis process.

Algorithm 1 NTK ntk ← CUSCO<TYPE,NTK>(f)
1: |ntkbest| ← ∞
2: while (it<number of iterations) do
3: t← 0
4: statet ← initialize<TYPE>(f)
5: while (f not satisfied) do
6: actions← analyzer<TYPE>(statet)
7: actiont ← policy<TYPE>(actions,it)
8: statet+1 ← move<TYPE>(statet,actiont)
9: ++t

10: ntk← synthesize<NTK>(statet)
11: if |ntk| < |ntkbest| then
12: ntkbest ← ntk
13: ++it;
14: return ntkbest

D. Characterization of the Solvers
This section characterizes Algorithm 1 for SYM-CUSCO and

COV-CUSCO using concepts from Sec. III-A and III-B.
The Boolean chain for the CUSCO solvers is a collection

of cuts defined at each synthesis stage. The statet object
in Algorithm 1 is a representation related to the partial
Boolean chain, not yet synthesizing the function. In light of the
discussion on the set covering generalization, we characterize
the state statet with the following attributes:

1) The cut of the last synthesis stage.
2) The target function f .
3) The functions of the cut variables.
4) The CDCs of the cut (only for SYM-CUSCO).

We win the game when a node functionality is equal to f .
The analyzer<TYPE> function for SYM-CUSCO follows

directly from the truth table-based formulation of symmetry-
based synthesis. For COV-CUSCO, the analyzer returns the n
cut functionalities and the 5

(
n
2

)
functionalities obtainable by

combining them with the Boolean operators {·,+, <,≤,⊕}.
The policy<TYPE>(·) is the core of the synthesis proce-

dure. In SYM-CUSCO, the remapping equations for the mask
allow us to choose the action maximizing the number of CDCs
at the next cut. In COV-CUSCO, a solution to the set covering
problem targeting low sets count acts as a proxy for don’t
cares maximization. The policies are:

1) SYM-CUSCO Randomly selects among the actions max-
imizing don’t-cares after remapping

2) COV-CUSCO Randomly selects among the actions cov-
ering the information graph.

In SYM-CUSCO, we further characterize the heuristic criterion.
First, when multiple logic blocks yield the same don’t care
gain, we prioritize lower numbers of Boolean operators. The
difference arises when synthesizing AIGs over XAIGs since
the number of Boolean operators needed to represent an
XOR in an AIG is 3. Furthermore, when running a single-
shot version of SYM-CUSCO (SYM-CUSCO×1), we prioritize
symmetries acting on the same groups of variables. Intuitively,
we do so to eliminate variables from the representation as
soon as possible. When considering multiple iterations, say
N , we relax this filter to explore more synthesis solutions
(SYM-CUSCO×N). Similarly, COV-CUSCO×N returns the best
result found in N random games.

IV. EXPERIMENTS

This section investigates the performances of the CUSCO
solvers on symmetric functions. Section IV-A compares
SYM-CUSCO×1 with a state-of-the-art technique. Section IV-C
analyses the validity of the assumptions defining SYM-CUSCO.
Section IV-D compares SYM-CUSCO and COV-CUSCO on
functions with known combinational complexity.

A. Comparison of Single-Shot Synthesis With State-of-the-Art
This experiment has two goals:
1) Verify if extreme optimization can improve the result of

single-shot symmetry-based synthesis.
2) Compare the result against the ones achievable with

state-of-the-art synthesis and optimization.
Due to space limitations, in this experiment we focus on
the majority functions, evaluating to 1 when the majority
of the inputs is 1. Following experiments will discuss other
symmetric functions. Table I shows the experimental results.
We vary the input size from 3 to 20. Column |AIG| shows the
results of running SYM-CUSCO×1, i.e., the version introducing
most a-priori information in the reward function.

As a first test of the quality of results, we perform aggressive
optimization on top of the result obtained with our solver.
We use the ABC command deepsyn. Deepsyn contains
a random initialization procedure on which the quality of
results depends. We consider 20 random initializations and halt
the optimization after 500 iterations without any improvement
(&deepsyn -I 20 -J 500). The entries of type X 7→ Y
show that an AIG with X gates can be optimized to an AIG of
size Y . Column T[s] reports the synthesis time. With up to
17 inputs, we can synthesize functions in less than a minute.
Overall, high-effort optimization fails in finding optimizations
in most of the representations obtained by SYM-CUSCO×1,
showing the stability of the minimum found by our solver.

The absence of optimization does not guarantee the global
minimum. To obtain a strong baseline, we perform aggressive
optimization after FRAIG synthesis. Column |FRAIG| reports
the number of AND gates in the FRAIG generated from
the truth table. Next, we repeat deepsyn-based optimization
with high-effort hyperparameter tuning to obtain the most

TABLE I
COMPARISON OF SYM-CUSCO×1 AND FRAIG-BASED SYNTHESIS.

HYPERPARAMETER TUNING SYM-CUSCO×1

n |FRAIG| |FRAIG∗| T∞[s] |AIG| T[s]
3 6 4 0.02 4 0.00
4 13 7 0.02 7 0.00
5 23 10 0.02 10 0.01
6 36 15 0.05 15 0.01
7 68 20 1.94 20 0.02
8 99 25 2.59 25 0.04
9 142 30 14.52 30 0.07
10 207 40 23.61 37 0.11
11 301 49 13.47 44 0.27
12 452 49 29.18 49 0.51
13 637 64 33.09 58 1.39
14 985 62 31.54 67 7→ 66 3.24
15 1357 71 86.46 72 7.71
16 2155 105 120.76 79 21.24
17 − − − 92 57.78
18 − − − 101 118.0
19 − − − 116 295.09
20 − − − 121 600.00

compact representation possible. The real-world time to obtain
most of the results in Table I is of the order of minutes.
However, we report an underestimation of the time invested by
removing the time needed for the hyperparameter optimization
and the time invested by deepsyn in performing unsuccessful
optimizations. Despite the aggressive optimization and the un-
derestimation of the time, our method finds the same solution
or a better one in most cases. Furthermore, SYM-CUSCO can
find the result within seconds for all the majority functions
that we can represent as truth tables in ABC (n = 3 to 16).

B. Other Symmetric Functions
We use the notation Sk1,k2,...,km

to indicate the symmetric
function which is satisfied when the number of ones at the
input is k1∨k2∨ . . . , km. Threshold functions are perhaps the
most practically interesting symmetric functions. However, we
also investigates the synthesis of other symmetric functions.
Symmetric functions with known optimum are:

1) Gamble functions S0,n : C(S0,n) = 2n− 1.
2) Parity functions S2k k = 0 . . . ⌊n2 ⌋: C(S2k) = n− 1.
3) 2-threshold functions S≥2=S2,...,n: C(S2k) = 3n− 5.
4) 1-hot functions S1: C(S1) = 2n− 3.

SYM-CUSCO×1 finds these exact results.
These experiments show that the a-priori assumptions used

in SYM-CUSCO allow us to obtain compact representations of
symmetric functions from a truth table representation.

C. Evaluating the A-Priori Reward Function
SYM-CUSCO×1 relies on many assumptions:
1) It only considers the actions maximizing the number of

remapped don’t cares.
2) It prioritizes those actions introducing the lowest num-

bers of Boolean operators in the representation.
3) It prioritizes exploiting symmetries on the same sub-

group of variables at different iterations.
The last requirement comes from the fact that actions with the
same reward are equally likely to map the problem to a simpler
one. Then, selecting actions involving variables manipulated

in previous synthesis steps is likely to induce the removal of
variables from the netlist, simplifying the problem.

Table II considers two classes of functions:
• The threshold functions S≥k evaluate to 1 when there are

at least k ones at the input.
• The k-hot-encoding functions Sk evaluate to 1 when there

are k ones at the input.
The functions not represented in the table relate to one entry
by duality. The vertical line identifies the majority function.

TABLE II
XAIGS FOR THRESHOLD FUNCTIONS AND k-HOT ENCODING FUNCTIONS.

THRESHOLD FUNCTIONS
2 01

0
01

0

3 02
0

04
0

4 03
0

07
0

07
0

5 04
0

010
0

010
0

6 05
0

013
0

015
0

015
0

7 06
0

016
0

018
0

020
0

8 07
0

019
0

021
0

025
0

025
0

9 08
0

022
0

024
0

030
0

030
2

10 09
0

025
0

029
0

035
0

037
2

037
2

11 010
0

028
0

032
0

040
0

042
4

044
4

12 011
0

031
0

035
0

045
0

249
4

049
6

049
6

13 012
0

034
0

038
0

050
0

252
6

056
6

258
4

14 013
0

037
0

041
0

055
0

261
4

063
6

263
8

265
8

15 014
0

040
0

044
2

060
0 664 070

6
072

6
072

10

n S≥1 S≥2 S≥3 S≥4 S≥5 S≥6 S≥7 S≥8

k-HOT ENCODING FUNCTIONS
2 01

0
01

0

3 04
0

04
0

4 07
0

07
0

07
0

5 010
0

012
0

012
0

6 013
0

015
0

017
0

015
0

7 216
2

218
2

022
0

022
0

8 019
0

021
0

027
0

027
4

027
0

9 022
0

026
0

032
0

032
4

032
4

10 025
0

029
0

037
0

239
4

039
6

239
4

11 028
0

032
0

042
0

044
4

246
6

046
6

12 031
0

035
0

047
0

251
6

253
6

053
8

053
6

13 034
0

238
2

052
0

056
6

260
8

062
8

062
8

14 037
0

041
0

057
0

065
4

067
8

069
8

071
8

467
10

15 040
0

244
2

062
0

068
8

472
8

278
8

476
10

078
10

n S1 S2 S3 S4 S5 S6 S7 S8

We consider 33 iterations of the solver (SYM-CUSCO×33)
and indicate the quality of the results as δ0X

δM , where:
1) X is the minimum number of Boolean operators ob-

served during synthesis.
2) δ0 is the difference between the number of Boolean

operators obtained by the SYM-CUSCO×1 and X .
3) δM is the difference between the maximum number of

Boolean operators observed during synthesis and X .
We highlight in red (δ0X

δM) the cases in which
SYM-CUSCO×1 yields an empirically provable sub-optimal re-
sults. This experiment shows that, in general, SYM-CUSCO×1

yields the best observed result in most cases, empirically
validating the a-priori assumptions. Nevertheless, in some
cases, breaking ties at random can identify more compact
representations. Multiple runs of fast CUSCO-synthesis with
stochastic selections of moves with high expected rewards

result in a random process between high-quality solutions in
the design space. This remark is interesting in light of the
analysis done in Sec. IV-A because each one of these solutions
is hardly reachable with traditional optimization strategies.

D. Comparison With Exact Synthesis
In this experiment, we investigate the quality of results for

four- and five-input symmetric functions with known combi-
national complexity [12]. Table III compares SYM-CUSCO×1

and COV-CUSCO×100 (Sec. III-D). We consider a solution
”close-to-optimum” if it is within 2 gates from the exact result,
highlighting the results with the following colour code:

• |XAIG|: if |XAIG| − C(f) = 0.
• |XAIG|: if |XAIG| − C(f) = 1.
• |XAIG|: if |XAIG| − C(f) = 2.
• |XAIG|: if |XAIG| − C(f) ≥ 3.
The notation X 7→ Y indicates that an XAIG optimiza-

tion [19] reduces the gates count X of our synthesis strategy
to Y . We also run the experiment with SYM-CUSCO×100 but

TABLE III
COMPARISON OF EXACT XAIGS SYNTHESIS WITH THE CUSCO SOLVERS.

function SYM-CUSCO×1 CUSCO×100

f C(f) [12] |XAIG| T [s] |XAIG| T [s]
n
=

4

S4 3 3 0.00 3 0.17
S3 7 7 0.00 7 1.28
S3,4 7 7 0.00 7 0.77
S2 6 7 0.00 6 0.33
S2,4 6 7 0.00 6 0.32
S2,3 6 9 7→ 8 0.00 7 0.83
S2,3,4 7 7 0.00 7 0.81
S1 7 7 0.00 7 1.54
S1,4 7 9 7→ 8 0.00 7 0.95
S1,3 3 3 0.00 3 0.24
S1,3,4 6 7 0.00 6 0.35
S1,2 6 9 7→ 8 0.00 7 0.92
S1,2,4 7 9 7→ 8 0.00 7 0.90
S1,2,3 5 7 0.00 5 0.48
S1,2,3,4 3 3 0.00 3 0.21

n
=

5

S4 10 10 0.00 10 6.47
S4,5 10 10 0.00 10 6.43
S3 9 12 0.01 9 20.14
S3,5 10 10 0.00 10 16.77
S3,4 10 13 0.01 14 7→ 13 8.17
S3,4,5 9 10 0.00 11 101.67
S2,5 10 14 0.01 11 18.71
S2,4 8 10 0.00 8 3.33
S2,4,5 9 12 0.00 11 7→ 10 47.33
S2,3,5 10 15 0.01 11 26.08
S2,3 8 15 0.01 9 4.76
S2,3,4 10 13 7→ 12 0.01 12 3.45
S1,5 9 13 7→ 12 0.01 10 7.77
S1,4 9 15 0.01 9 2.70
S1,3,4 11 13 0.01 11 11.18
S1,2,5 9 16 0.01 9 157.11

there was no major variation in the results, confirming the
effectiveness of SYM-CUSCO×1.
SYM-CUSCO×1 finds compact XAIGs in a few millisec-

onds. However, the results are not optimal for most 5-input
functions. On the other hand, COV-CUSCO×100 finds close-
to-optimum representations in most cases. However, the better
results come at the cost of runtime and memory. Indeed, IGs
require manipulating 22n-dimensional bit-strings, preventing
the direct application of the method for more than 8 variables.

E. The Importance of Compact Representations

This experiment discusses the importance of close-to-
optimum representations of Boolean functions. We consider

Fig. 4. Word-level simulation of a threshold function.

the majority-of-9 and N input simulation patterns {pi}Ni=1,
with pi ∈ B9. We vary N with logarithmic increments
in the range N = 2k ∈ [210, 217]. Fig. 4 shows two
ways of performing the input-output simulation. The bit-
level simulation considers one pattern at a time. The word-
level simulation considers multiple patterns at a time. We use
words of length 2l = 64 bits, so we need 2k−l words to
store 2k simulation patterns. Word-level simulation leverages
the structural representation by word-wise application of the
Boolean operators. The computational cost of a bit-level sim-
ulation is O(2k). Instead, word-level simulation for an XAIG
representation has a cost O(|XAIG|2k−l) because we need to
perform a binary operation for each node in the XAIG. Fig. 4
shows the runtime of the simulation as a function of N . As
expected, both graphs present an exponential dependence on
n. The word-level simulation presents a shift of approximately
∆ = log |XAIG|−6 ≃ 4.9−6 = −1.1, where the size of the
representation reduces the speed-up induced by parallelism.
Hence, minimum-size representations have runtime advantages
on top of resource advantages. A BNN simulator repeats
this computation thousands of times. Hence, compact repre-
sentations result in higher simulation performance, possibly
enabling training and inference of BNNs without GPUs.

V. CONCLUSIONS

We propose a new EDA paradigm treating logic synthesis
as a game (CCG). CUSCO is a class of synthesis heuristics
acting as players in CCG. CUSCO solvers perform design space
exploration guided by don’t care-maximization:

1) SYM-CUSCO is our implementation of a classical
symmetry-based synthesis technique.

2) COV-CUSCO is our generalization of SYM-CUSCO.

Experiments with SYM-CUSCO show that the exploration
of the subspace identified by the topological constraints of
the method yields close-to-optimum AIG sizes for symmetric
functions. Experiments show that our generic solver performs
better than the symmetry-based one on problems with known
combinational complexity. Furthermore, COV-CUSCO allows
extending don’t care-maximization heuristics to functions

without symmetries. Future works will investigate more ad-
vanced policies and reward functions, and ways of overcoming
the runtime and memory limitations of COV-CUSCO.

ACKNOWLEDGMENT

This research was supported in part by Synopsys inc., in part
by SRC Contract 3173.001 ”Standardizing Boolean transforms
to improve quality and runtime of CAD tools”. The authors
thank Satrajit Chatterjee and Alessandro Tempia Calvino for
the inspiring discussions.

REFERENCES

[1] M. Soeken, W. Haaswijk, E. Testa, A. Mishchenko, L. G. Amarù, R. K.
Brayton, and G. De Micheli, “Practical exact synthesis,” in 2018 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2018, pp. 309–314.

[2] W. Haaswijk, M. Soeken, A. Mishchenko, and G. De Micheli, “Sat-
based exact synthesis: Encodings, topology families, and parallelism,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 4, pp. 871–884, 2019.

[3] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools
and Algorithms for the Construction and Analysis of Systems: 14th
International Conference, TACAS 2008, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS
2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14.
Springer, 2008, pp. 337–340.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general
reinforcement learning algorithm that masters chess, shogi, and go
through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[5] T. Simons and D.-J. Lee, “A review of binarized neural networks,”
Electronics, vol. 8, no. 6, p. 661, 2019.

[6] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” Advances in neural information processing
systems, vol. 29, 2016.

[7] C. R. Edwards and S. L. Hurst, “A digital synthesis procedure under
function symmetries and mapping methods,” IEEE Transactions on
Computers, vol. 27, no. 11, pp. 985–997, 1978.

[8] S. Hurst, “Detection of symmetries in combinatorial functions by
spectral means,” IEE Journal on Electronic Circuits and Systems, vol. 1,
no. 5, pp. 173–180, 1977.

[9] C. Scholl, “Multi-output functional decomposition with exploitation of
don’t cares,” in Proceedings Design, Automation and Test in Europe.
IEEE, 1998, pp. 743–748.

[10] R. M. Karp, “Reducibility among combinatorial problems, complexity
of computer computations (re miller and jw thatcher, editors),” 1972.

[11] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-
Hill Higher Education, 1994.

[12] D. E. Knuth, The art of computer programming, volume 4A: combina-
torial algorithms, part 1. Pearson Education India, 2011.

[13] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “Fraigs:
A unifying representation for logic synthesis and verification,” ERL
Technical Report, Tech. Rep., 2005.

[14] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Computer Aided Verification: 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings
22. Springer, 2010, pp. 24–40.

[15] S. Yamashita, H. Sawada, and A. Nagoya, “A new method to express
functional permissibilities for lut based fpgas and its applications,” in
Proceedings of International Conference on Computer Aided Design.
IEEE, 1996, pp. 254–261.

[16] N. Modi and J. Cortadella, “Boolean decomposition using two-literal di-
visors,” in 17th International Conference on VLSI Design. Proceedings.
IEEE, 2004, pp. 765–768.

[17] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts and
heaps,” in Proceedings of the 34th annual Design Automation Confer-
ence, 1997, pp. 263–268.

[18] G. Meuli, M. Soeken, and G. De Micheli, “Xor-and-inverter graphs for
quantum compilation,” npj Quantum Information, vol. 8, no. 1, p. 7,
2022.

[19] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De Micheli,
“A simulation-guided paradigm for logic synthesis and verification,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 41, no. 8, pp. 2573–2586, 2021.

