
Mapping and Retiming Revisited
Alan Mishchenko Robert Brayton Masahiro Fujita

Department of EECS, UC Berkeley University of Tokyo
{alanmi, brayton}@berkeley.edu fujita@ee.t.u-tokyo.ac.jp

Abstract
Twenty five years ago, combinational mapping was extended to
sequential circuits by proposing a new way to compute the
arrival time at a node in cyclic networks containing registers.
Despite offering significant (up to 25%) delay improvements,
this method did not gain wide-spread use because of the
implementation complexity and an expectation of slow runtime.
This paper offers a fresh look at the method and introduces
simplifying assumptions to decouple the mapping phase and the
retiming phase of the computation while still providing a
substantially reduced delay. Moreover, it is shown that the
delay optimization can be done with a negligible runtime
overhead, compared to state-of-the-art combinational mapping.

1 Introduction
In 1996, Peichen Pan and Chung-Laung Liu introduced a new

way of reasoning about timing in sequential circuits [26].
Instead of cutting the circuit at the register boundary and doing
timing analysis and logic optimization on the combinational
circuit, they extended the notion of combinational delay to
sequential circuits. The novel idea was, when the arrival time
computation passes over an edge between two nodes containing
a register, to subtract the target clock period given by the user.

This seemingly minor variation has profound implications on
the analysis and optimization of sequential circuits. It allows for
computing sequential arrival times at a node by iterating the
delay computation over the circuit until a fixed point is reached.
In a way, this delay computation is similar to inductive
computation of sequentially equivalent nodes, which extends
combinational proof methods to work for sequential circuits by
iterating the proof attempts until a fixed point is reached [21].

One method that emerged from the new way to compute the
sequential arrival times, is the possibility of integrating
mapping, which finds a structural cover of the circuit, and
retiming, which moves registers over the circuit nodes.

Retiming is traditionally performed before and/or after
mapping. However, in this case, the cover derived by mapping
may prevent finding an efficient retiming. A similar structural
bias [4] exists when a circuit is optimized for a given LUT size
but mapped into a different LUT size. For example, optimizing
for 4-input LUTs requires that multi-input gates are broken
down into smaller gates favoring 4-input grouping. Thus, a 32-
input and-gate given as a well-balanced tree of two-input gates
fits 4-input LUTs well but does not fit 6-input LUTs well.

When mapping and retiming are integrated, the sequential
arrival times are exploited by the mapper to adjust the cuts used
to build the cover of the subject graph in such a way that a
delay-efficient retiming is possible. Thus, combining the two

transforms helps overcome structural bias that is present when
mapping is performed independently from retiming.

The proposed integration is in line with the recent trend to
integrate different aspects of the synthesis process, motivated by
the shrinking of DSM technologies. As a result, more synthesis
aspects are seen as interrelated and computed simultaneously.
Examples of this kind of integration are as follows:

1. Tech-independent synthesis and mapping [18][4][17]
2. Mapping and retiming [20][27][8][9]
3. Retiming and placement [2][6]
4. Re-synthesis and retiming [2][28]
5. Tech-independent synthesis and placement [3][16][13]
6. Re-wiring and placement [5]
7. Clock skewing and placement [14]
Integrated methods have greater potential because they

explore several solution spaces simultaneously, rather than
sequentially when a solution found in one space is fixed before
running optimization in the next space, and so on.

The contributions of this paper are:
(1) Reviewing the methodology of the original integration of

mapping and retiming [26][27][28].
(2) Introducing a number of simplifying assumptions, which

make it easier to implement the integrated flow.
(3) Showing how the mapping phase and the retiming phase

can be cleanly separated without compromising the delay gains.
(4) Demonstrating experimentally that the integrated flow has

a negligible runtime overhead, compared to the runtime of the
combinational mapper used in the mapping phase.

The presentation in this paper, and our current implementation
of the integrated flow is limited to designs with a single clock
domain and edge-triggered D-flip-flops with given initial states.
However, the framework can be extended to handle designs
with multiple clock domains and explicit set/reset logic.

The paper is organized as follows. Section 2 describes the
background. Section 3 presents the integration procedures.
Section 4 shows simplifications of these procedures that make
implementation easier. Section 5 shows experimental results.
Section 6 concludes the paper and outlines future work.

2 Background
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges
corresponding to the wires. AIG is a Boolean network
composed of two-input ANDs and inverters. The terms Boolean
network, design, and circuit are used interchangeably.

Each node has a unique integer number called the node ID. A
node has zero or more fanins, i.e. nodes that are driving this
node, and zero or more fanouts, i.e. nodes driven by this node.
The primary inputs (PIs) of the network are nodes without

fanihs in the current network. The primary outputs (POs) are a
subset of nodes of the network. If the network is sequential, the
memory elements are assumed to be D-flip-flops with initial
states. Terms memory elements, flop-flops, and registers are
used interchangeably in this paper.

A transitive fanin (fanout) cone of node n is a subset of all
nodes of the network reachable through the fanin (fanout) edges
from the given node. The level of a node is the length of the
longest path from any PI to the node. The node itself is counted
towards the path length but the PIs are not.

The area and delay of an FPGA mapping is measured by the
number of LUTs and the number of LUT levels respectively.
The delay of a standard cell mapping is computed using pin-to-
pin delays of gates assigned to implement a cut. The load-
independent timing model is assumed throughout the paper.

An And-Inverter Graph (AIG) is a Boolean network whose
nodes are two-input ANDs. Inverters are marked by a special
attribute on the edges of the network.

A cut С of node n is a set of nodes, called leaves, such that
1. Each path from any PI to n passes through a leaf.
2. For each leaf, there is a path from a PI to n passing

through the leaf and not through any other leaf.
Node n is called the root of C. A trivial cut of node n is the

cut {n} composed of the node itself. A non-trivial cut is said to
cover all the nodes found on the paths from the leaves to the
root, including the root but excluding the leaves. A trivial cut
does not cover any nodes. A cut is K-feasible if the number of
its leaves does not exceed K. A cut C1 is said to be dominated
by C2 if there is another cut C2  C1.

A cover of an AIG is a subset R of its nodes such that for
every n R , there exists exactly one non-trivial cut ()C n
associated with it such that:

1. If n is a PO, then n R .
2. If n R , then for all ()p C n either p R or p is a PI.
3. If n is not a PO, then n R implies there exists p R such

that ()n C p .
The last requirement ensures that all nodes in R are “used”.

We use an AIG accompanied with a cover to represent a logic
network. This is motivated by the previous work on AIG-based
technology mapping [24]. The advantage is that different covers
of the AIG (and thus different network structures) can be easily
explored using fast cut enumeration. The logic function of each
node n R of a cover is simply the Boolean function of n
computed in terms of the cut leaves, ()C n . During the cut
computation, this function can be derived as a truth table using
the underlying AIG between the root AIG node and its cut.

3 Integrating mapping with retiming
This section summarizes the previous work [26][27][28] on

the integration of mapping and retiming.
The key insight here is that delay-aware mapping for standard

cells [18] and FPGAs [24] can be extended to sequential
circuits by considering registers as labels on the edges
connecting logic nodes; the DAG becomes a cyclic circuit with
labels. The overall mapping procedure for cyclic circuits is
similar to the traditional combinational mapping with a few
modifications: (1) the concept of arrival times is extended to
account for register labels on the edges; (2) computation of the

arrival times is done by iterating over the circuit, and; (3) the
resulting mapping has a retiming associated with it, which when
performed on the mapped circuit, leads to the minimum clock
period over all possible mappings and retimings. Below, we
describe these modifications in detail.

Computing all K-cuts and their matches is done for each test-
case once as a preprocessing step. However, the computation
of sequential arrival times may be repeated for different clock
periods, , as well as during area recovery.

3.1 Sequential arrival times
Sequential arrival times are computed assuming a fixed clock

period, . The delay of a (possibly cyclic) path p is defined as:
() () ()

n p e p
l p d n t e

 
   ,

where d(n) is the delay of node n and t(e) is the number of
registers on edge e. Thus, the sequential delay is the difference
between the sum of delays of nodes on the path and  multiplied
by the total number of registers on the path. The rational is that
each register delays the signal at the end of the path by one
clock cycle. The sequential arrival time [27] at node n is the
maximum of the arrival times of all (possibly cyclic) paths
originating at a PI and ending at n:

()
() ()max

p PATH PI n
l n l p

 
 . As in

the combinational case, the clock period  is feasible if and only
if the arrival time at a PO does not exceed  at any time during
the iterative computation. Since cycles are included, the
computation involves iteration.

3.2 Iterative computation of the arrival times
The computation is shown in Figure 1 [27]. The arrival times

of the PI nodes are initialized to 0 and those of internal nodes
and the POs to -. In each iteration, nodes are visited in a
topological order and new arrival times are computed as:

lnew(n) = min max {l(u) - tc
u + dc

u}

where minimum is over all cuts c of node n, maximum is over
all leaves u of cut c, l(u) is the arrival time of leaf u, tc

u is the
number of registers along the path from u to n, and dc

u is the
pin-to-pin delay of cut c. The delay is one in the case of unit-
delay model. Thus, for each node, n, we consider all possible
cuts and record the one that yields the smallest new arrival time.
Since the sequential cuts have already been pre-computed and
stored, this computation is fast.

SequentialArrivalTimes (network G, clock period ) {
 for each node n in G do
 if n is a PI then l(n) = 0 else l(n) = -
 do {
 for each non-PI node n in G do

matches() fanin()

() min max { () }new u n u n
M n u M

l n l u t d  
  

 () max{ (), ()}newl n l n l n

 if n is a PO and ()l n 
 return INFEASIBLE
 } while (the arrival times of some nodes have changed)
 return FEASIBLE
}

Figure 1. Iterative computation of sequential arrival times.

The arrival time of the node is updated if the new value is
larger than the old value. Thus the arrival time at a node
increases monotonically during the computation. If the arrival
time at any PO exceeds , the iteration is stopped and the clock
period is declared infeasible. Otherwise, the arrival times are
guaranteed to converge and the clock period is feasible in the
sense that there exists a retiming of the circuit to achieve this
(modulo the maximum delay of any gate in the library).

To find an optimum clock period, a binary search is
performed. In each step of the binary search, the iterative
procedure in Figure 1 is repeated with a new clock period. The
computation is fast since all cuts and all matches for all choices
have been pre-computed. Thus the best match is found which
minimizes the clock period. Note that the best match at a node
changes dynamically as the sequential arrival times continue to
increase before converging.

3.3 Retiming associated with the final mapping
When the optimum clock period, opt, is known, the mapping

(standard cell or FPGA) for the circuit is selected, as described
in Section 3.1. For each node n, which is the output of a gate of
the mapping, its retiming lag is computed as follows [27]:

0, if is a PI or PO

() ()
1, otherwise

opt

opt

n

r n l n




    
 

If the mapped circuit is retimed using this formula, the resulting
clock period can be slower than the optimum one, opt, by at
most the delay of a gate [29]. When the unit delay model is used
in the fixed-LUT-size FPGA mapping, this retiming gives the
optimum clock period.

 = 1  = 2
Iter a b c Iter a b c

0 - - - 0 - - -
1 1 1 2 1 1 1 2
2 - - - 2 1 3 2
3 - - - 3 1 3 2

Figure 2. Example of sequential arrival time computation.

Example. The network in Figure 2 illustrates the computation
of the sequential arrival times for the clock periods of 1 and 2
shown in the tables. The combinational delay of an internal
node is 1. The longest combinational path (a, c, b) has delay 3.
Initially, the arrival times of the PIs, i and j, are set to 0, and
arrival times of the internal nodes, a, b, and c, are set to -. The
clock period of 1 is infeasible because the arrival times of PO
node c exceeds the clock period after the first iteration. The
clock period of 2 is feasible because the arrival times converge
after two iterations. The final retiming is r(a) = r(c) = 0, r(b) =
1. Indeed, if the register on the edge (b, c) is retimed backward
over node b, the longest combinational path has delay 2.

3.4 Overview of the integration
Figure 5 outlines the overall flow, emphasizing where the

various computations enter the picture. Computation begins by
performing logic synthesis and accumulating functionally

equivalent networks, which are processed by the FRAIG
manager, resulting in the choice AIG. Next, the cuts are
computed for each node, and matches are found for each cut.
All such cuts and matches are stored for use in the sequential
arrival time computations. A binary search is performed to find
the best achievable clock period. If the result is not okay in the
sense that the optimum clock period is not acceptable,
additional synthesis can be applied, resulting in more choices,
which may improve the achievable clock period.

Once the target clock period is found, the associated retiming
is performed, and the final network, after area recovery, is
produced. Note that steps denoted cuts and matches and seq
arrival times (in double boxes in Figure 3) involve iteration
over the sequential (cyclic) AIG until convergence, as discussed
in the previous sections. Thus, computing cuts and matches is
done once, while computing sequential arrival times is repeated
several times during the binary search.

Figure 3. High-level view of the integration flow.

Besides the final retiming, Figure 3 shows two post-
processing steps, area recovery, and initial state computation.
Area recovery involves two aspects, remapping the off-critical
paths in order to save area, and moving the registers to
minimize their number. The first can be done using the area
recovery methods for combinational mapping [4][24] provided
the registers are fixed. However, we will want to move the
registers to decrease their number, especially for standard cell
designs. Also, the retiming lags computed as described in
Section 3.3 are generally bad for area, since they move the
registers to their most forward position. One idea for area
recovery is to use the incremental methods [30][31].

The computation of the initial states for the new register
positions is based on breaking down retiming into a sequence of
forward and backward retimings. Computation of the initial
state for forward retiming is easy. Computation of the initial
state for backward retiming is reduced to a SAT problem, which
“records” the sequence of backward register movements during
retiming. Although this is not always satisfiable, our experience
with the benchmarks so far is that such non-satisfiability rarely
happens. Retiming operations of networks with arbitrary gates
or logic nodes can be reduced to retiming of a sequential AIG
that reflects the structure of the network.

Initial
network

Synthesis
script

FRAIG
manager

Choice
network

Cuts and
matches

Seq. arrival
times

Reduce


Increase


POs seq.
arrival < 

Final
network

Area
recovery

Final
retiming

Mapping and retiming Initial
 Yes

No
Not okay

Okay
Initial
state

Synthesis

a b

c

i j



4 Proposed simplifications
In this section, we describe one of the contributions of the

paper: several ways to simplify the above original computation
without compromising the quality of results reported in [23].

The proposed simplifications make the integrated mapping
and retiming easier to understand and implement.

4.1 Using one combinational cut per node
It has been shown [20] that only one cut per node, computed

by a dedicated procedure, is sufficient for finding a delay-
optimal combinational mapping for 95% of benchmarks. For
the remaining 5%, the resulting delay is typically one level
worse than the delay computed using a typical number of cuts,
which in most technology mappers ranges from 8 to 16.

The fact that only one cut needs to be computed and updated
allows for efficient memory allocation (when cuts for all nodes
are stored in one pre-allocated array) and fast computation
(when one pass over the subject graph runs 10x faster than a
delay-oriented pass in a combinational mapper). This explains
why the proposed integrated approach, which finds the optimal
retiming, takes only about 10% of the runtime of state-of-the-art
combinational mappers, which can be used to perform the final
mapping, as discussed in Section 4.3 below.

Moreover, the cuts used to evaluate the sequential arrival
times do not have to be sequential, as in the original formulation
[26][27][28]. It is ok to limit the computation to only
combinational cuts (that is, the cuts that do not cross the register
boundary). This leads to a 3% degradation in the delay, which is
small, compared to the overall 25% gain in delay achieved by
the proposed method. However, the complexity of the
implementation is greatly reduced because using sequential cuts
makes both mapping and retiming more tedious to implement.

4.2 Limiting retiming to one timeframe
One downside of the retiming computed using the sequential

arrival times, as shown in Section 3.3, is that it does not attempt
to minimize the number of register moves, nor does it impose a
limit on how far forward or backward the registers can move.

It was found experimentally that, for most of the circuits
considered, the flop moves can be limited to only one
timeframe, without losing much of the expected delay gains.

The restriction of the retiming to be only within one
timeframe means that the retiming lags of the nodes belong to
the set {-1, 0, 1}. This implies that the nodes are divided into
three disjoint classes: those retimed forward once (-1), those not
retimed (0), and those retimed backward once (1).

This observation allows for a number of desirable short-cuts
in the implementation of the procedure that derives the final
circuit after retiming and the new equivalent initial state after
retiming. The latter is needed for proving sequential
equivalence after applying integrated mapping and retiming
using a sequential equivalence checker, such as [21].

4.3 Using any mapper to derive the final mapping
The original formulation of the integrated mapping and

retiming [26][27][28] implies that the same sequential cuts that
are used to evaluate sequential arrival times, are later re-used
during mapping. The same assumption was used in the early

implementation [23] that independently validated the original
formulation. However, in the follow-up work on technology
mapping, it was found [24] the cuts used to evaluate sequential
arrival times do not have to be re-used by the mapper.

The present work is based on a similar approach. We first
compute sequential arrival times using one combinational cut
per node. Then, we find the retiming, which guarantees that the
reduced clock period can be achieved, and move the flops to the
new positions indicated by this retiming. Finally, we perform
combinational mapping with the same cut size to drive the
resulting mapping. In our experiments, this mapping, as
expected, results in the same minimized clock period that is
predicted by the integration of mapping and retiming.

5 Experimental results
The integrated flow is implemented in ABC 0 as command

&sif. The resulting circuits are checked for sequential
equivalence using equivalence checker dsec [21].

The benchmarks used are sequential AIGs derived from 10
designs included in the IWLS `05 benchmark set [15].

The total runtime of command &sif –K 6 for the designs in
Table 1, was close to 3 seconds on a mainstream CPU running a
single thread. Combinational mapping using command &if –K 6
took about 1 minute on the same computer.

The results of mapping into 6-input LUTs are presented in
Table 1. The experiment shows that the logic level is reduced,
on average, by 18.3%, which is in agreement with the previous
evaluations of the integration [23]. However, the LUT count
and the flop count have increased substantially.

These results are preliminary in that the expected delay
optimization is performed and the resulting circuits having the
expected delay were derived and verified, but reducing register
count after retiming is not yet implemented. (The register count
minimization is expected in the final version of the paper.)

Here is a summary of other experiments with integrated
mapping and retiming reported in the previous work [23] for the
same set of benchmarks:

1. The whole is more than the sum of its parts; the
effectiveness of both mapping and retiming is enhanced by
integration beyond what it can do alone.

2. Thus, retiming by itself was relatively ineffective (~3%)
but when integrated with mapping it leads to substantial
gains (18% without choices and 26% with choices).

3. The use of the integrated flow is equally effective for both
FPGAs and SCs.

4. The runtimes confirm the scalability of the proposed
integrated flow.

6 Conclusion and future work
This paper focuses on a synergistic integration of technology

mapping and retiming. The resulting delay is provably the
smallest one that exists in the combined solution space of all
possible structural mappings and retimings of the given subject
graph. The implementation scales well and results in a delay
reduction of up to 25% for both standard cells and FPGAs,
while the delay reduction achieved by retiming before and after
mapping does not exceed 10%, as shown in [23].

The general conclusion is that separating retiming prevents
substantial delay gains, which can only be obtained when
retiming is integrated with other steps in the synthesis flow.

This paper proposes several simplifications that allow for the
expected delay gains due to the integration to be achieved while
(a) computing only one combinational cut per node, (b) limiting
retiming to move the registers within one timeframe, and
(c) using any combinational mapper to derive the final mapping.

Future work will focus on the following improvements:
 Register minimization during retiming. Our current proof-

of-concept implementation does not produce the final
retiming with the minimum number of registers. One way
to minimize the number of registers is to perform
minimum-perturbation retiming, as described in [30][31].

 Sequential critical path detection and restructuring. It can
be observed that the proposed computation of sequential
arrival times allows for the notion of the combinational
critical path to be extended to the sequential domain. Based
on this, logic restructuring methods (for example, [25]) can
be applied, resulting in additional delay reductions.

 Leveraging recent progress in technology mapping.
Several new ideas have been recently proposed to improve
state-of-the-art in combinational mapping [11]. These can
be applied to sequential mapping described in this work,
resulting in additional area reductions.

Acknowledgements
This research was supported in part by SRC Contract

3173.001 "Standardizing Boolean transforms to improve quality
and runtime of CAD tools", the NSA grant “Novel methods for
synthesis and verification in cryptanalytic applications” and
donations from AMD, Siemens, and Synopsys.

References
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System for

Sequential Synthesis and Verification. December 2005 Release.
http://www-cad.eecs.berkeley.edu/~alanmi/abc

[2] S. Bommu, N. O’Neill, and M. Ciesielski. “Retiming-based factorization
for sequential logic optimization”, ACM TODAES, Vol. 5(3), July 2000,
pp. 373-398.

[3] S. Chatterjee and R. Brayton, “A new incremental placement algorithm
and its application to congestion-aware divisor extraction”, Proc. ICCAD
’04, pp. 541-548.

[4] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping”, Proc. ICCAD '05.

[5] P. Chong, Y. Jiang, S. Khatri, F. Mo, S. Sinha, and R. Brayton, “Don't
care wires in logical/physical design”, Proc.IWLS’00, pp.1-9.

[6] P. Chong and R. Brayton, “Characterization of feasible retimings”, Proc.
IWLS ‘01, pp. 1-6.

[7] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs”,
IEEE Trans. CAD, vol. 13(1), January 1994, pp. 1-12.

[8] J. Cong and C. Wu, “An efficient algorithm for performance-optimal
FPGA technology mapping with retiming”, IEEE Trans. CAD, vol. 17(9),
Sep. 1998, pp. 738-748.

[9] J. Cong and C. Wu, “Optimal FPGA mapping and retiming with efficient
initial state computation”, IEEE Trans. CAD, vol. 18(11), Nov. 1999, pp.
1595-1607.

[10] J. Cong, C. Wu and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” Proc. FPGA `99, 29-35.

[11] L. Fan and C. Wu, “FPGA technology mapping with adaptive gate
decomposition”, Proc. FPGA’23, pp. 135-140.

[12] M. K. Ganai, A. Kuehlmann, “On-the-fly compression of logical
circuits”, Proc. IWLS ’00.

[13] W. Gosti, S. Khatri and A. Sangiovanni-Vincentelli. “Addressing the
timing closure problem by integrating logic optimization and placement”,
Proc. ICCAD‘01, pp. 224-231.

[14] A. P. Hurst, P. Chong, A. Kuehlmann, “Physical placement driven by
sequential timing analysis”. Proc. ICCAD '04, pp. 379-386.

[15] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html
[16] Y. Jiang and S. Sapatnekar. “An integrated algorithm for combined

placement and libraryless technology mapping,” Proc. ICCAD ’99.
[17] V. N. Kravets. Constructive multi-level synthesis by way of functional

properties. Ph.D. Thesis, University of Michigan, 2001.
[18] Y. Kukimoto, R. Brayton, P. Sawkar, “Delay-optimal technology

mapping by DAG covering”, Proc. DAC ’98, pp. 348-351.
[19] S. Malik, K.J. Singh, R. K. Brayton, and A. Sangiovanni-Vincentelli,

"Performance optimization of pipelined logic circuits using peripheral
retiming and resynthesis", IEEE YCAD, Vol. 12(5), 1993, pp. 568-578.

[20] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, "Cutless FPGA
mapping", ERL Technical Report, EECS Dept., UC Berkeley, 2007.

[21] A. Mishchenko, M. L. Case, R. K. Brayton, and S. Jang, "Scalable and
scalably-verifiable sequential synthesis", Proc. ICCAD '08, pp. 234-241.

[22] A. Mishchenko, S. Chatterjee, and R. Brayton, “Improvements to
technology mapping for LUT-based FPGAs”, Proc. FPGA ’06.

[23] A. Mishchenko, S. Chatterjee, R. Brayton, and P. Pan, "Integrating logic
synthesis, technology mapping, and retiming", ERL Technical Report,
EECS Dept., UC Berkeley, April 2006.

[24] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, "Combinational
and sequential mapping with priority cuts", Proc. ICCAD '07, 354-361.

[25] A. Mishchenko, R. Brayton, A. T. Calvino, and G. De Micheli, "Boolean
decomposition revisited", Submitted to IWLS'23.

[26] P. Pan and C. L. Liu, “Optimum clock period FPGA technology mapping
for sequential circuits”, Proc. DAC ‘96, pp. 720-725.

[27] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs”, Proc. FPGA ’98, pp. 35-42.

[28] P. Pan, “Performance-driven integration of retiming and resynthesis”,
Proc. DAC ’99, pp. 243-246.

[29] M. Papaefthymiou, “Understanding retiming through maximum average-
delay cycles”, Math. Syst. Theory, No. 27, 1994, pp. 65-84.

[30] S. Ray, A. Mishchenko, R. K. Brayton, S. Jang, and T. Daniel,
"Minimum-perturbation retiming for delay optimization". Proc. IWLS'10.

[31] D. P. Singh, V. Manohararajah, and S. D. Brown, “Incremental retiming
for FPGA physical synthesis”. Proc. DAC ’05, pp. 433-438.

Table 1. Preliminary results of the integration of mapping and retiming for 6-input LUTs.

Design FF LUT Level FF LUT Level
des_perf 8808 7570 4 8808 7570 4
ethernet 10544 17591 9 11729 19319 6
mem_ctrl 1083 4191 9 2084 5008 8
pci_bridge32 3359 5378 7 5672 6496 6
systemcaes 670 2408 9 2090 3942 7
tv80 359 2429 12 1389 3417 9
usb_funct 1746 3693 6 2486 4441 5
vga_lcd 17079 28917 7 19499 35039 5
wb_conmax 770 13771 7 5816 17382 6
wb_dma 563 1105 8 747 1193 7
Geomean 1.000 1.000 1.000 1.928 1.219 0.817

