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Abstract 
Twenty five years ago, combinational mapping was extended to 
sequential circuits by proposing a new way to compute the 
arrival time at a node in cyclic networks containing registers.  
Despite offering significant (up to 25%) delay improvements, 
this method did not gain wide-spread use because of the 
implementation complexity and an expectation of slow runtime.  
This paper offers a fresh look at the method and introduces 
simplifying assumptions to decouple the mapping phase and the 
retiming phase of the computation while still providing a 
substantially reduced delay. Moreover, it is shown that the 
delay optimization can be done with a negligible runtime 
overhead, compared to state-of-the-art combinational mapping. 

1 Introduction 
In 1996, Peichen Pan and Chung-Laung Liu introduced a new 

way of reasoning about timing in sequential circuits [26]. 
Instead of cutting the circuit at the register boundary and doing 
timing analysis and logic optimization on the combinational 
circuit, they extended the notion of combinational delay to 
sequential circuits. The novel idea was, when the arrival time 
computation passes over an edge between two nodes containing 
a register, to subtract the target clock period given by the user. 

This seemingly minor variation has profound implications on 
the analysis and optimization of sequential circuits. It allows for 
computing sequential arrival times at a node by iterating the 
delay computation over the circuit until a fixed point is reached. 
In a way, this delay computation is similar to inductive 
computation of sequentially equivalent nodes, which extends 
combinational proof methods to work for sequential circuits by 
iterating the proof attempts until a fixed point is reached [21]. 

One method that emerged from the new way to compute the 
sequential arrival times, is the possibility of integrating 
mapping, which finds a structural cover of the circuit, and 
retiming, which moves registers over the circuit nodes. 

Retiming is traditionally performed before and/or after 
mapping. However, in this case, the cover derived by mapping 
may prevent finding an efficient retiming.  A similar structural 
bias [4] exists when a circuit is optimized for a given LUT size 
but mapped into a different LUT size.  For example, optimizing 
for 4-input LUTs requires that multi-input gates are broken 
down into smaller gates favoring 4-input grouping. Thus, a 32-
input and-gate given as a well-balanced tree of two-input gates 
fits 4-input LUTs well but does not fit 6-input LUTs well. 

When mapping and retiming are integrated, the sequential 
arrival times are exploited by the mapper to adjust the cuts used 
to build the cover of the subject graph in such a way that a 
delay-efficient retiming is possible.  Thus, combining the two 

transforms helps overcome structural bias that is present when 
mapping is performed independently from retiming. 

The proposed integration is in line with the recent trend to 
integrate different aspects of the synthesis process, motivated by 
the shrinking of DSM technologies. As a result, more synthesis 
aspects are seen as interrelated and computed simultaneously. 
Examples of this kind of integration are as follows:  

1. Tech-independent synthesis and mapping [18][4][17] 
2. Mapping and retiming [20][27][8][9] 
3. Retiming and placement [2][6] 
4. Re-synthesis and retiming [2][28]  
5. Tech-independent synthesis and placement [3][16][13] 
6. Re-wiring and placement [5] 
7. Clock skewing and placement [14] 
Integrated methods have greater potential because they 

explore several solution spaces simultaneously, rather than 
sequentially when a solution found in one space is fixed before 
running optimization in the next space, and so on. 

The contributions of this paper are: 
(1) Reviewing the methodology of the original integration of 

mapping and retiming [26][27][28]. 
(2) Introducing a number of simplifying assumptions, which 

make it easier to implement the integrated flow. 
(3) Showing how the mapping phase and the retiming phase 

can be cleanly separated without compromising the delay gains. 
(4) Demonstrating experimentally that the integrated flow has 

a negligible runtime overhead, compared to the runtime of the 
combinational mapper used in the mapping phase. 

The presentation in this paper, and our current implementation 
of the integrated flow is limited to designs with a single clock 
domain and edge-triggered D-flip-flops with given initial states. 
However, the framework can be extended to handle designs 
with multiple clock domains and explicit set/reset logic.  

The paper is organized as follows. Section 2 describes the 
background. Section 3 presents the integration procedures. 
Section 4 shows simplifications of these procedures that make 
implementation easier. Section 5 shows experimental results. 
Section 6 concludes the paper and outlines future work. 

2 Background 
A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 
corresponding to the wires. AIG is a Boolean network 
composed of two-input ANDs and inverters. The terms Boolean 
network, design, and circuit are used interchangeably. 

Each node has a unique integer number called the node ID. A 
node has zero or more fanins, i.e. nodes that are driving this 
node, and zero or more fanouts, i.e. nodes driven by this node. 
The primary inputs (PIs) of the network are nodes without 



fanihs in the current network. The primary outputs (POs) are a 
subset of nodes of the network. If the network is sequential, the 
memory elements are assumed to be D-flip-flops with initial 
states. Terms memory elements, flop-flops, and registers are 
used interchangeably in this paper.  

A transitive fanin (fanout) cone of node n is a subset of all 
nodes of the network reachable through the fanin (fanout) edges 
from the given node. The level of a node is the length of the 
longest path from any PI to the node. The node itself is counted 
towards the path length but the PIs are not.  

The area and delay of an FPGA mapping is measured by the 
number of LUTs and the number of LUT levels respectively. 
The delay of a standard cell mapping is computed using pin-to-
pin delays of gates assigned to implement a cut. The load-
independent timing model is assumed throughout the paper.  

An And-Inverter Graph (AIG) is a Boolean network whose 
nodes are two-input ANDs. Inverters are marked by a special 
attribute on the edges of the network. 

A cut С of node n is a set of nodes, called leaves, such that 
1. Each path from any PI to n passes through a leaf. 
2. For each leaf, there is a path from a PI to n passing 

through the leaf and not through any other leaf. 
Node n is called the root of C. A trivial cut of node n is the 

cut {n} composed of the node itself. A non-trivial cut is said to 
cover all the nodes found on the paths from the leaves to the 
root, including the root but excluding the leaves. A trivial cut 
does not cover any nodes. A cut is K-feasible if the number of 
its leaves does not exceed K. A cut C1 is said to be dominated 
by C2 if there is another cut C2  C1.  

A cover of an AIG is a subset R of its nodes such that for 
every n R , there exists exactly one non-trivial cut ( )C n  
associated with it such that: 

1. If n is a PO, then n R . 
2. If n R , then for all ( )p C n either p R  or p is a PI. 
3. If n is not a PO, then n R  implies there exists p R  such 

that ( )n C p .  
The last requirement ensures that all nodes in R are “used”. 

We use an AIG accompanied with a cover to represent a logic 
network. This is motivated by the previous work on AIG-based 
technology mapping [24]. The advantage is that different covers 
of the AIG (and thus different network structures) can be easily 
explored using fast cut enumeration. The logic function of each 
node n R  of a cover is simply the Boolean function of n 
computed in terms of the cut leaves, ( )C n . During the cut 
computation, this function can be derived as a truth table using 
the underlying AIG between the root AIG node and its cut.  

3 Integrating mapping with retiming  
This section summarizes the previous work [26][27][28] on 

the integration of mapping and retiming. 
The key insight here is that delay-aware mapping for standard 

cells [18] and FPGAs [24] can be extended to sequential 
circuits by considering registers as labels on the edges 
connecting logic nodes; the DAG becomes a cyclic circuit with 
labels. The overall mapping procedure for cyclic circuits is 
similar to the traditional combinational mapping with a few 
modifications: (1) the concept of arrival times is extended to 
account for register labels on the edges; (2) computation of the 

arrival times is done by iterating over the circuit, and; (3) the 
resulting mapping has a retiming associated with it, which when 
performed on the mapped circuit, leads to the minimum clock 
period over all possible mappings and retimings. Below, we 
describe these modifications in detail. 

Computing all K-cuts and their matches is done for each test-
case once as a preprocessing step.  However, the computation 
of sequential arrival times may be repeated for different clock 
periods, ,  as well as during area recovery. 

3.1 Sequential arrival times                                               
Sequential arrival times are computed assuming a fixed clock 

period, . The delay of a (possibly cyclic) path p is defined as: 
( ) ( ) ( )

n p e p
l p d n t e

 
   , 

where d(n) is the delay of node n and t(e) is the number of 
registers on edge e. Thus, the sequential delay is the difference 
between the sum of delays of nodes on the path and  multiplied 
by the total number of registers on the path. The rational is that 
each register delays the signal at the end of the path by one 
clock cycle. The sequential arrival time [27] at node n is the 
maximum of the arrival times of all (possibly cyclic) paths 
originating at a PI and ending at n: 

( )
( ) ( )max

p PATH PI n
l n l p

 
 . As in 

the combinational case, the clock period  is feasible if and only 
if the arrival time at a PO does not exceed  at any time during 
the iterative computation. Since cycles are included, the 
computation involves iteration. 

3.2 Iterative computation of the arrival times 
The computation is shown in Figure 1 [27]. The arrival times 

of the PI nodes are initialized to 0 and those of internal nodes 
and the POs to -. In each iteration, nodes are visited in a 
topological order and new arrival times are computed as: 

lnew(n) = min max {l(u) - tc
u + dc

u} 

where minimum is over all cuts c of node n, maximum is over 
all leaves u of cut c, l(u) is the arrival time of leaf u, tc

u is the 
number of registers along the path from u to n, and dc

u  is the 
pin-to-pin delay of cut c. The delay is one in the case of unit-
delay model. Thus, for each node, n, we consider all possible 
cuts and record the one that yields the smallest new arrival time. 
Since the sequential cuts have already been pre-computed and 
stored, this computation is fast.  

SequentialArrivalTimes ( network G, clock period  )  { 
   for each node n in G do 
         if n is a PI then l(n) = 0 else l(n) = - 
   do { 
         for each non-PI node n in G do  

                
matches( ) fanin( )

( ) min max { ( ) }new u n u n
M n u M

l n l u t d  
    

                ( ) max{ ( ), ( )}newl n l n l n  

         if n is a PO and ( )l n   
               return INFEASIBLE 
   } while (the arrival times of some nodes have changed) 
   return FEASIBLE 
} 

Figure 1. Iterative computation of sequential arrival times. 



The arrival time of the node is updated if the new value is 
larger than the old value. Thus the arrival time at a node 
increases monotonically during the computation. If the arrival 
time at any PO exceeds , the iteration is stopped and the clock 
period is declared infeasible. Otherwise, the arrival times are 
guaranteed to converge and the clock period is feasible in the 
sense that there exists a retiming of the circuit to achieve this 
(modulo the maximum delay of any gate in the library). 

To find an optimum clock period, a binary search is 
performed. In each step of the binary search, the iterative 
procedure in Figure 1 is repeated with a new clock period. The 
computation is fast since all cuts and all matches for all choices 
have been pre-computed. Thus the best match is found which 
minimizes the clock period. Note that the best match at a node 
changes dynamically as the sequential arrival times continue to 
increase before converging.  

3.3 Retiming associated with the final mapping 
When the optimum clock period, opt, is known, the mapping 

(standard cell or FPGA) for the circuit is selected, as described 
in Section 3.1. For each node n, which is the output of a gate of 
the mapping, its retiming lag is computed as follows [27]: 

0, if  is a PI or PO

( ) ( )
1, otherwise    

opt

opt

n

r n l n




    
 

 

If the mapped circuit is retimed using this formula, the resulting 
clock period can be slower than the optimum one, opt, by at 
most the delay of a gate [29]. When the unit delay model is used 
in the fixed-LUT-size FPGA mapping, this retiming gives the 
optimum clock period.  
 

 = 1   = 2  
Iter a b c  Iter a b c  

0 - - -  0 - - -  
1 1 1 2  1 1 1 2  
2 - - -  2 1 3 2  
3 - - -  3 1 3 2  

Figure 2. Example of sequential arrival time computation. 

Example. The network in Figure 2 illustrates the computation 
of the sequential arrival times for the clock periods of 1 and 2 
shown in the tables. The combinational delay of an internal 
node is 1. The longest combinational path (a, c, b) has delay 3. 
Initially, the arrival times of the PIs, i and j, are set to 0, and 
arrival times of the internal nodes, a, b, and c, are set to -. The 
clock period of 1 is infeasible because the arrival times of PO 
node c exceeds the clock period after the first iteration. The 
clock period of 2 is feasible because the arrival times converge 
after two iterations. The final retiming is r(a) = r(c) = 0, r(b) = 
1. Indeed, if the register on the edge (b, c) is retimed backward 
over node b, the longest combinational path has delay 2. 

3.4 Overview of the integration 
Figure 5 outlines the overall flow, emphasizing where the 

various computations enter the picture. Computation begins by 
performing logic synthesis and accumulating functionally 

equivalent networks, which are processed by the FRAIG 
manager, resulting in the choice AIG. Next, the cuts are 
computed for each node, and matches are found for each cut. 
All such cuts and matches are stored for use in the sequential 
arrival time computations. A binary search is performed to find 
the best achievable clock period. If the result is not okay in the 
sense that the optimum clock period is not acceptable, 
additional synthesis can be applied, resulting in more choices, 
which may improve the achievable clock period.  

Once the target clock period is found, the associated retiming 
is performed, and the final network, after area recovery, is 
produced. Note that steps denoted cuts and matches and seq 
arrival times (in double boxes in Figure 3) involve iteration 
over the sequential (cyclic) AIG until convergence, as discussed 
in the previous sections. Thus, computing cuts and matches is 
done once, while computing sequential arrival times is repeated 
several times during the binary search. 

 

 
Figure 3. High-level view of the integration flow. 

Besides the final retiming, Figure 3 shows two post-
processing steps, area recovery, and initial state computation. 
Area recovery involves two aspects, remapping the off-critical 
paths in order to save area, and moving the registers to 
minimize their number. The first can be done using the area 
recovery methods for combinational mapping [4][24] provided 
the registers are fixed. However, we will want to move the 
registers to decrease their number, especially for standard cell 
designs. Also, the retiming lags computed as described in 
Section 3.3 are generally bad for area, since they move the 
registers to their most forward position. One idea for area 
recovery is to use the incremental methods [30][31].  

The computation of the initial states for the new register 
positions is based on breaking down retiming into a sequence of 
forward and backward retimings. Computation of the initial 
state for forward retiming is easy. Computation of the initial 
state for backward retiming is reduced to a SAT problem, which 
“records” the sequence of backward register movements during 
retiming. Although this is not always satisfiable, our experience 
with the benchmarks so far is that such non-satisfiability rarely 
happens. Retiming operations of networks with arbitrary gates 
or logic nodes can be reduced to retiming of a sequential AIG 
that reflects the structure of the network. 
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4 Proposed simplifications 
In this section, we describe one of the contributions of the 

paper: several ways to simplify the above original computation 
without compromising the quality of results reported in [23]. 

The proposed simplifications make the integrated mapping 
and retiming easier to understand and implement. 

4.1 Using one combinational cut per node 
It has been shown [20] that only one cut per node, computed 

by a dedicated procedure, is sufficient for finding a delay-
optimal combinational mapping for 95% of benchmarks. For 
the remaining 5%, the resulting delay is typically one level 
worse than the delay computed using a typical number of cuts, 
which in most technology mappers ranges from 8 to 16. 

The fact that only one cut needs to be computed and updated 
allows for efficient memory allocation (when cuts for all nodes 
are stored in one pre-allocated array) and fast computation 
(when one pass over the subject graph runs 10x faster than a 
delay-oriented pass in a combinational mapper). This explains 
why the proposed integrated approach, which finds the optimal 
retiming, takes only about 10% of the runtime of state-of-the-art 
combinational mappers, which can be used to perform the final 
mapping, as discussed in Section 4.3 below. 

Moreover, the cuts used to evaluate the sequential arrival 
times do not have to be sequential, as in the original formulation 
[26][27][28]. It is ok to limit the computation to only 
combinational cuts (that is, the cuts that do not cross the register 
boundary). This leads to a 3% degradation in the delay, which is 
small, compared to the overall 25% gain in delay achieved by 
the proposed method. However, the complexity of the 
implementation is greatly reduced because using sequential cuts 
makes both mapping and retiming more tedious to implement.  

4.2 Limiting retiming to one timeframe  
One downside of the retiming computed using the sequential 

arrival times, as shown in Section 3.3, is that it does not attempt 
to minimize the number of register moves, nor does it impose a 
limit on how far forward or backward the registers can move.  

It was found experimentally that, for most of the circuits 
considered, the flop moves can be limited to only one 
timeframe, without losing much of the expected delay gains.  

The restriction of the retiming to be only within one 
timeframe means that the retiming lags of the nodes belong to 
the set {-1, 0, 1}. This implies that the nodes are divided into 
three disjoint classes: those retimed forward once (-1), those not 
retimed (0), and those retimed backward once (1). 

This observation allows for a number of desirable short-cuts 
in the implementation of the procedure that derives the final 
circuit after retiming and the new equivalent initial state after 
retiming. The latter is needed for proving sequential 
equivalence after applying integrated mapping and retiming 
using a sequential equivalence checker, such as [21]. 

4.3 Using any mapper to derive the final mapping 
The original formulation of the integrated mapping and 

retiming [26][27][28] implies that the same sequential cuts that 
are used to evaluate sequential arrival times, are later re-used 
during mapping. The same assumption was used in the early 

implementation [23] that independently validated the original 
formulation. However, in the follow-up work on technology 
mapping, it was found [24] the cuts used to evaluate sequential 
arrival times do not have to be re-used by the mapper. 

The present work is based on a similar approach. We first 
compute sequential arrival times using one combinational cut 
per node. Then, we find the retiming, which guarantees that the 
reduced clock period can be achieved, and move the flops to the 
new positions indicated by this retiming. Finally, we perform 
combinational mapping with the same cut size to drive the 
resulting mapping. In our experiments, this mapping, as 
expected, results in the same minimized clock period that is 
predicted by the integration of mapping and retiming. 

5 Experimental results 
The integrated flow is implemented in ABC 0 as command 

&sif. The resulting circuits are checked for sequential 
equivalence using equivalence checker dsec [21]. 

The benchmarks used are sequential AIGs derived from 10 
designs included in the IWLS `05 benchmark set [15].  

The total runtime of command &sif –K 6 for the designs in 
Table 1, was close to 3 seconds on a mainstream CPU running a 
single thread. Combinational mapping using command &if –K 6 
took about 1 minute on the same computer. 

The results of mapping into 6-input LUTs are presented in 
Table 1. The experiment shows that the logic level is reduced, 
on average, by 18.3%, which is in agreement with the previous 
evaluations of the integration [23]. However, the LUT count 
and the flop count have increased substantially. 

These results are preliminary in that the expected delay 
optimization is performed and the resulting circuits having the 
expected delay were derived and verified, but reducing register 
count after retiming is not yet implemented. (The register count 
minimization is expected in the final version of the paper.) 

Here is a summary of other experiments with integrated 
mapping and retiming reported in the previous work [23] for the 
same set of benchmarks:  

1. The whole is more than the sum of its parts; the 
effectiveness of both mapping and retiming is enhanced by 
integration beyond what it can do alone. 

2. Thus, retiming by itself was relatively ineffective (~3%) 
but when integrated with mapping it leads to substantial 
gains (18% without choices and 26% with choices). 

3. The use of the integrated flow is equally effective for both 
FPGAs and SCs. 

4. The runtimes confirm the scalability of the proposed 
integrated flow. 

6 Conclusion and future work 
This paper focuses on a synergistic integration of technology 

mapping and retiming. The resulting delay is provably the 
smallest one that exists in the combined solution space of all 
possible structural mappings and retimings of the given subject 
graph. The implementation scales well and results in a delay 
reduction of up to 25% for both standard cells and FPGAs, 
while the delay reduction achieved by retiming before and after 
mapping does not exceed 10%, as shown in [23]. 



The general conclusion is that separating retiming prevents 
substantial delay gains, which can only be obtained when 
retiming is integrated with other steps in the synthesis flow. 

This paper proposes several simplifications that allow for the 
expected delay gains due to the integration to be achieved while 
(a) computing only one combinational cut per node, (b) limiting 
retiming to move the registers within one timeframe, and 
(c) using any combinational mapper to derive the final mapping. 

Future work will focus on the following improvements: 
 Register minimization during retiming. Our current proof-

of-concept implementation does not produce the final 
retiming with the minimum number of registers. One way 
to minimize the number of registers is to perform 
minimum-perturbation retiming, as described in [30][31].  

 Sequential critical path detection and restructuring. It can 
be observed that the proposed computation of sequential 
arrival times allows for the notion of the combinational 
critical path to be extended to the sequential domain. Based 
on this, logic restructuring methods (for example, [25]) can 
be applied, resulting in additional delay reductions.   

 Leveraging recent progress in technology mapping. 
Several new ideas have been recently proposed to improve 
state-of-the-art in combinational mapping [11]. These can 
be applied to sequential mapping described in this work, 
resulting in additional area reductions. 
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Table 1. Preliminary results of the integration of mapping and retiming for 6-input LUTs. 

Design FF LUT Level FF LUT Level 
des_perf 8808 7570 4 8808 7570 4 
ethernet 10544 17591 9 11729 19319 6 
mem_ctrl 1083 4191 9 2084 5008 8 
pci_bridge32 3359 5378 7 5672 6496 6 
systemcaes 670 2408 9 2090 3942 7 
tv80 359 2429 12 1389 3417 9 
usb_funct 1746 3693 6 2486 4441 5 
vga_lcd 17079 28917 7 19499 35039 5 
wb_conmax 770 13771 7 5816 17382 6 
wb_dma 563 1105 8 747 1193 7 
Geomean 1.000 1.000 1.000 1.928 1.219 0.817 

 


