
Narrowing the Synthesis Gap: Academic FPGA
Synthesis is Catching Up With the Industry

Benjamin L.C. Barzen∗, Arya Reais-Parsi∗, Eddie Hung†, Minwoo Kang∗,
Alan Mishchenko∗, Jonathan W. Greene∗ and John Wawrzynek∗

∗ Department of EECS, University of California; Berkeley, USA
{bbarzen,aryap,minwoo_kang,alanmi,johnw}@berkeley.edu, jgreene@cambioscomputing.com

† FPG-eh Research and University of British Columbia; Vancouver, Canada
eddie@fpgeh.com

Abstract—Historically, open-source FPGA synthesis and tech-
nology mapping tools have been considered far inferior to
industry-standard tools. We show that this is no longer true.
Improvements in recent years to Yosys (Verilog elaborator) and
ABC (technology mapper) have resulted in substantially better
performance, evident in both the reduction of area utilization and
the increase in the maximum achievable clock frequency. More
specifically, we describe how ABC9 — a set of feature additions to
ABC — was integrated into Yosys upstream and available in the
latest version. Technology mapping now has a complete view of
the circuit, including support for hard blocks (e.g., carry chains)
and multiple clock domains for timing-aware mapping. We
demonstrate how these improvements accumulate in dramatically
better synthesis results, with Yosys-ABC9 reducing the delay gap
from 30% to 0% on a commercial FPGA target for the commonly
used VTR benchmark, thus matching Vivado’s performance
in terms of maximum clock frequency. We also measured the
performance on a selection of circuits from OpenCores as well
as literature, comparing the results produced by Vivado, Yosys-
ABC1 (existing work), and the proposed Yosys-ABC9 integration.

Index Terms—Field programmable gate arrays, synthesis,
technology mapping, Hardware design languages, Table lookup

I. INTRODUCTION

In the FPGA developer community, open-source tools are
generally considered inferior to their closed-source counter-
parts. Most notably, the 2015 “Mind The Gap” [1] paper
showed that open-source/academic flows (Yosys [2], ABC [3],
Verilog-To-Routing/VPR [4]) performed consistently worse
than a closed-source industry-standard flow (then Xilinx ISE)
in terms of critical-path delay, area utilization and compilation
run-time. A key conclusion of that work was that the gap
in critical-path delay lies primarily in the front-end synthesis
and technology mapping stages (explained in Section II),
comprising 31 percentage points (pp) of the measured deficit.
The delay gap attributable to the back-end stage steps of
packing, placement and routing, meanwhile, contributed to
25 pp altogether. The work further noted that proprietary
flows spend more than three times as long as open-source
alternatives in the front-end stages (at 13% and 4% of their
overall run times, respectively), suggesting that academic flows
could afford to expend a lot more effort there.

In this paper, we revisit the comparison of open-source
and proprietary tools. Specifically, we note that considerable
work has been done by the open-source community since [1]

to address this so-called synthesis gap. An integral part of
this effort has been the development of “ABC9”, a set of
feature additions to ABC [3] to improve logic synthesis
and technology mapping. Xilinx’s ISE has now also been
superseded by Vivado, a modernized tool flow for Xilinx (now
part of AMD) devices. Hence motivated, we re-evaluate the
academic/proprietary divide to better inform the direction of
future work.

Vivado - Frontend Yosys - Frontend
ABC1 - T.map

synth_design

opt_design

read_xdc

Vivado - Backend

link_design

place_design

route_design

read_xdc

Target Device

report_*

.edif

Design Analysis

Yosys - Frontend

Delay TargetDesign

ABC9 - T.map

Fig. 1: Flows examined in this paper. Blue refers to Vivado, yellow to
Yosys-ABC1 (existing work), and red to Yosys-ABC9 (proposed).

In the following sections we discuss the salient features of
ABC9 by comparing it against the existing baseline ABC1, and
show how these features help to improve synthesis quality. We
conduct a series of experiments to showcase the improvements
of the proposed open-source synthesis flow, Yosys-ABC9,
against prior work, Yosys-ABC1. We compare both against the
industry standard baseline flow Vivado. (Figure 1 summarizes
these flows.) Finally, we enumerate promising next-steps for
furthering the academic state-of-the-art and conclude.

II. ABC1: CORNERSTONE OF EXISTING FLOWS

An FPGA compilation flow is typically divided into front-
end and back-end stages, as shown in Fig. 1. The front-
end, on which this work focuses, comprises two important

PI

PI
Comb.

hard block
(e.g. carry)

PO

(a) True path.

PI

PI

PO

PO

PI

(to
hard
block
input)

(from
hard
block
output)

(b) Truncated path as viewed by
ABC1.

Fig. 2: Treatment of a path through a simple circuit, starting at an I/O pad
(primary input), passing through an AND gate, then a hard-block, and then
into an OR gate before reaching another I/O pad (primary output).

steps: synthesis and technology mapping. Synthesis is the
process of transforming an RTL specification (e.g., in Verilog)
into a circuit netlist consisting of a) technology-independent
logic primitives (e.g., 2-input NAND gates); b) technology-
dependent state elements (e.g., flip-flops with clock-enable);
and, c) hardened IP blocks appropriate for a target device (e.g.,
the carry chains, DSPs and block RAMs in modern FPGAs.)
Within popular academic flows this step is performed by ABC
(in Yosys [2] by its abc pass) or ODIN-II (in Verilog-to-
Routing, VTR [4]).

Technology mapping describes the specialization of this
netlist into a fully technology-dependent circuit, replacing all
generic logic primitives with an implementation in FPGA
lookup tables (LUTs). Typically, the objective of a technology
mapper is to find a solution that minimizes critical-path delay
while using the smallest area possible. ABC is used for this
step in both Yosys- and VTR-based academic flows. (ABC has
also reportedly seen adoption by commercial FPGA vendors).

Lastly, the back-end stage steps of placement and routing
take this technology-dependent netlist and compute a non-
overlapping physical arrangement of all components, including
connecting wires, for realization on a target FPGA.

ABC provides a toolbox of technology-independent opti-
mization passes (including structural hashing, functional re-
duction, SAT sweeping [5], etc.) and technology-dependent
LUT-mapping techniques that can be variously assembled into
flows. Previously, one such flow could be found in both Yosys
and VTR; we refer to it as “ABC1”1.

Limitations of ABC1

The incumbent suffers two key limitations:
1) Hard Blocks: ABC1 does not support combinatorial

“hard blocks” (fixed-function, opaque circuit modules such as
adder-chains, multipliers, memories, etc.). Instead, it works
with a monolithic logic cone, eliding any hard-blocks and
replacing their connections with external (“primary”) inputs
and outputs. (This is just as it would be if they were driven
by an opaque, off-chip source, per Figure 2.) Subsequently,
ABC1’s optimization passes are unable to integrate analysis
of these blocks, such as to propagate constants and don’t-
cares through them. This might otherwise enable outputs to be
replaced by constants from the input or, in the case where all
block outputs can be replaced with constants from (or constant

1We write “ABC” to refer to the multi-purpose synthesis and mapping
toolbox, and “ABC9” to refer to the improved flow described in Section III.

D Q

^
CEen

clk1

D Q

^
clk1

(complex flop) (simple flop)

R

D Q

^
rst

clk2

D Q

^
Rrst

clk2

 Comb.
 Logic

(a) Full netlist.

 Comb.

PO

POPI

(clk1,
en)

POPI

PI
(clk1)

 Comb.’

POPI

(clk2,
rst)

(clk2,
rst)

 Comb.’’

Run 1

Run 2

Run 3

(b) Truncated netlist supplied to
ABC1 over multiple runs.

Fig. 3: Example netlist containing simple and complex flops.

functions of) the inputs, enable the entire hard-block to be
replaced with a simple equivalent circuit.

Moreover, delay propagation through hard blocks is not
taken into account. Consider for example the path from Fig. 2
as being the critical path of the circuit, and assume that the
delay of each primitive is 1 unit. In this case ABC1’s view of
the circuit would be composed of two truncated paths of 1 unit
delay each, instead of the true critical-path delay of 3 units;
accordingly it may over-optimize the design by expending
more area for no actual gain in delay.

Worse still, since functional information about the replace-
ment primary inputs is not known, logic synthesis cannot prove
any equivalences between the block’s corresponding outputs
and other nodes. At best, this process of equivalent node
detection and merging (known as SAT-sweeping [5]) would
otherwise be able to find and remove whole redundant blocks,
as it often does in some designs.

2) Complex Flops: A second limitation of the ABC1
flow is that it can support neither sequential synthesis on
designs with flip-flops from multiple clock domains, nor the
complex flip-flops present on modern devices with clock-
enable and synchronous/asynchronous set-reset capabilities.
Sequential synthesis describes a class of optimizations that
examine both the combinatorial and sequential behavior of a
circuit to further eliminate redundancy: for example, were the
mapper able to prove that two flip-flops are always inversions
of each other, one flop could be discarded and its output driven
from an inversion of the remaining flop.

Since ABC1 cannot understand flip-flops belonging to more
than a single clock domain (improbable for advanced designs),
this necessitates multiple ABC1 runs in sequence, each con-
taining the latest netlist (or the relevant subset thereof) with all
incompatible flops abstracted out of the circuit. Yosys-ABC1
takes this workaround a step further for complex flip-flops,
using a separate run for each “control set” (the tuple of clock
domain plus enable/set/reset input signals) as shown in Fig. 3.

III. ABC9: ADDRESSING ABC1’S SHORTCOMINGS

ABC9 builds on ABC1 by addressing the limitations de-
scribed above. It adds support for the combinatorial hard-
blocks (prevalent in modern FPGAs; this support makes a

range of other optimizations more effective, including retim-
ing.), complex flip-flops across multiple clock domains and
control signals, and full timing awareness. Additionally, a
number of runtime and memory improvements in ABC9 allow
larger circuits to be processed. In this section, we describe how
ABC9 was integrated into open-source Yosys as its abc9 pass
using a flexible data-driven approach to easily enable support
for current and future FPGA architectures.

A. White-Box Support for Hard Blocks

ABC9 allows the logical contents of a hard-block to be
communicated alongside the user netlist, transforming an
opaque black-box primitive into a transparent box through
which the missing optimizations (described in Section II-1)
can be applied. The complete logic description of the box
is available on-demand for simulation and computing local
don’t-cares during post-mapping re-synthesis. The resulting
boxes are called “white-boxes” since their functionality and
timing information are available. The majority of optimization
engines in ABC9 have access to this information.

Yosys supplies its own reference Verilog models for all
supported primitives, primarily for simulation and verifica-
tion purposes. During synthesis, typically only the primitive
interface (i.e., the set of input and output ports) is used to
ensure correct usage. Since the behavior of a hard-block cannot
be modified, and since Yosys cannot perform cross-module
optimizations without flattening the design (lest the logic be
realized in soft LUTs), such primitives can be treated as
black-boxes. In Yosys-ABC9, these same reference models are
leveraged to allow users to easily indicate which primitives
should be elaborated. They are then communicated as white-
boxes to ABC9 using Verilog attributes, as shown in Listing 1:
(* abc9_box, lib_whitebox *) // Instances of this module are

// to be an ABC9 white-box
module CARRY4(

(* abc9_carry *) output [3:0] CO,
// ˆ Attribute above marks a special carry-in or out port
// to ensure that a chain of carry blocks are not broken

output [3:0] O,
(* abc9_carry *) input CI,

input CYINIT,
input [3:0] DI, S

);
// Following behavior to be elaborated and provided to ABC9
assign O = S ˆ {CO[2:0], CI | CYINIT};
assign CO[0] = S[0] ? CI | CYINIT : DI[0];
assign CO[1] = S[1] ? CO[0] : DI[1];
assign CO[2] = S[2] ? CO[1] : DI[2];
assign CO[3] = S[3] ? CO[2] : DI[3];
...

endmodule

Listing 1: Example Yosys simulation model for carry hard-block, annotated
with Verilog attributes to indicate ABC9 white-box eligibility. Not shown:
modules with behavior dependent on Verilog parameters are also supported.

B. Complex Flop Support

ABC9 adds support for complex flops by allowing combi-
natorial white-boxes (the contents of which are also inferred
from a Verilog model) to be attached to the input of a simple
flop as shown in Figure 4. This allows any synchronous
functionality—including enables, sets and resets—to be de-
scribed. Additionally, the clock domain of each flop in the

D Q

^CE
en clk1

(simple flop)

R

D Q

^
rst clk2

d1
0
1

(white-box
for enable)

d2 0
1

(white-box
for reset) Comb.

Logic

Fig. 4: ABC9’s support for complex flops through extracting clock en-
able/set/reset functionality into white-boxes attached to inputs of simple flops.

netlist can also be provided to ABC9, allowing sequential
optimization passes to operate on the entire circuit (negating
the need for multiple redundant ABC1 invocations) as well as
to merge only flops sensitive to the same clock signal and edge.

C. Timing-Aware Mapping
With ABC9 now able to understand the entire design netlist,

without any truncation or partitioning, there exists the oppor-
tunity to perform timing-aware mapping effectively. Although
ABC1 does support the specification of real delay numbers
for LUT inputs and ABC1 will optimize for the minimum
path delay, its incomplete view of the design meant that this
process was of limited effectiveness over the simpler metric
of optimizing for minimum LUT depth.

ABC9 continues to support real delay numbers for LUT
inputs, and extends this to white-boxes. Similar to leveraging
the Verilog simulation model for describing the behavior of
hard-blocks, LUT and white-box delays now can be provided
to these same Verilog models as shown below:
(* abc9_box, lib_whitebox *)
module CARRY4(
(* ... *) output [3:0] CO, output [3:0] O,
(* ... *) input CI, input CYINIT,

input [3:0] DI, S
);
...
specify // Non-synthesizable Verilog-2001 construct

// typically used during simulation
(CYINIT => O[0]) = 111; // Simple path
(S[0] => O[0]) = 222;
(CI[0] => O[0]) = 333;
...

endspecify
endmodule

Listing 2: Example Yosys simulation model for carry hard-block, extended
with timing annotations. Units are implicit, Yosys’ models uses picoseconds.

Beyond support for combinatorial delays, ABC9 also sup-
ports the imposition of setup and clock-to-Q delays (re-
ferring to them respectively as required and arrival times),
which can be significant for larger hard-blocks such as block
RAMs. Similarly, such delays can also be provided within the
specify block using $setup() and edge-sensitive path
constructs. Yosys-ABC9 is able to interpret this information
and communicate it to ABC9 in the format it expects so that
it is able to minimize the true critical-path delay, rather than
optimizing for the minimum LUT depth of a possibly truncated
path as done previously.

D. Area Recovery
Since ABC9 has a full picture of the functional behavior

of all soft-logic and hard-blocks in the design along with an

ABC1
LUT2
(1ns)

Comb. hard block
(e.g. carry) -- (1ns)

P
I

P
I

P
O

LUT2
(1ns)

P
I

P
I

P
I

P
I

P
O

LUT2
(1ns)

ABC1
LUT2
(1ns)

ABC1
LUT2
(1ns)

ABC9:
T_crit
= 3ns (left)
Area
= 3 x LUTs

ABC1
(trunc. view)
Tcrit
= 2ns (right)
Area
= 5 x LUTs

ABC9
LUT4
(2.5ns)

Fig. 5: Illustration of ABC9’s area recovery effectiveness, since its non-
truncated view of the design netlist allows identification of the true critical-
path, thus choosing to use fewer (slower) LUTs to implement the design.

understanding of the timing characteristics of all internal paths,
mapping optimizations can now be applied more effectively.
One noteworthy optimization is area recovery, which is the
ability to use slower but more area-efficient resources on non
critical-paths. An example of this is shown in Figure 5 where
fewer, larger, and slower LUTs are used to implement paths
as long as they do not increase the critical-path delay.

E. Efficiency Improvements
A number of efficiency improvements have been made

to ABC9 to make it more scalable than ABC1, despite the
additional complexity of white-box and timing support. Yosys-
ABC9 is able to transform its internal representation (RTLIL)
of the design netlist and all white-boxes into And-Inverter
Graph (AIG) form, along with extensions describing other
complex-flop information, and pass that into ABC9 as well
as to parse and stitch its output back into Yosys’ RTLIL.

F. Structural Choices
The use of structural choices was introduced 25 years

ago [6]. Currently it is one of the main features accounting
for improved quality of results produced by ABC, compared
to other logic synthesis tools. Structural choices are derived
by considering several functionally equivalent but structurally
different versions of the logic cloud. Fast equivalence checking
based on SAT sweeping [5] can be used to detect equivalent
nodes. Rather than merging equivalences and keeping only one
circuit structure, the use of structural choices assumed that
all circuit structures are kept and passed to the technology
mapper [7].

The availability of structural choices allows the mapper to
use delay-optimized circuit structures along the critical path
and area-optimized structures elsewhere, improving both area
and delay. The runtime for computing structural choices and
using them in the mapper tends to be modest when resource
limits are enforced. Thus, the SAT solver times out on hard-to-
prove equivalences, which leads to fewer choices but results
in reasonable runtime.

IV. METHODOLOGY

Experiments were conducted using 3 different flows: Vi-
vado, Yosys-ABC1 and Yosys-ABC9, shown in Figure 1. The

Vivado flow consists of one program, Vivado v2022.1, which
performs synthesis, technology mapping as well as place and
route. For the Yosys(v0.17)-ABC1 and -ABC9 flows, synthesis
and technology mapping is performed by Yosys and ABC
respectively, while place and route is always performed by
Vivado. The Vivado and Yosys flows are used with default
settings, i.e., no parameter optimization is conducted. The
exact Vivado and Yosys commands can be obtained from our
GitHub repository [8]. Since Yosys and ABC can only opti-
mize for the best possible delay rather than a specific period
constraint (a topic for future work) frontend synthesis needs
only to be run once each for Yosys-ABC1 and -ABC9. For
the remaining part of the Yosys flows, our binary search script
invokes the Vivado backend iteratively and independently for
each device to determine the minimum clock period constraint
for which a legal solution can be found. For the Vivado flow
where both the front- and the back-end can accept a specific
period constraint, both stages are executed on each iteration by
the binary search script. Lastly, to obtain the maximum clock
frequency as well as the area utilization, a design analysis was
performed by Vivado.
To allow for a more general conclusion, we target devices
from two different FPGA generations: an Artix-7 (XC7A200)
belonging to the 28nm 7-Series family and an Virtex Ul-
traScale (XCVU440, 20nm) as our target devices. Note that
Yosys uses a generic synthesis recipe for all AMD/Xilinx
devices tuned primarily for (and in the case of Yosys-ABC9,
with realistic delays exclusively for) the 7-Series family of
devices [2] to which the Artix-7 device belongs. Given that
our UltraScale target belongs to a different device family on a
different technology node for which realistic primitive delays
are not available, some loss in performance can be expected.

The benchmark designs stem from Verilog-to-Routing
(VTR) [4], some of which overlap with those studied in [1].
We edited the designs to include previously omitted single and
dual port RAM modules, and made other minor modifications
to fix broken designs that could not be synthesized. The
final designs with our modifications can be found in our
Git repository. To improve comparability, we also tested the
performance on additional designs used in [1], namely des50
and AES x3. To cross-validate the performance against designs
from a more diverse set of sources, we measured performance
on designs from OpenCores [9].

Finally, to verify that Yosys-ABC9 indeed produces correct
mappings, we perform a functional simulation of Yosys-
ABC9 mappings for selected designs and check it against
the behavior of the original HDL design file. We compared
the output signals for and latch and stereovision2 for 100,000
randomly generated inputs. Stereovision2 was chosen because
of its outsized improvement under ABC9 compared to Vivado.

V. RESULTS AND DISCUSSION

We collected results for 3 sets of designs: the designs from
“Mind The Gap” [1], the de-facto VTR benchmarks [4], and
18 designs from OpenCores [9] used in prior ABC studies.

AES 3x bgm des50 LU32PE mcml ster2 Geomean
0

0.5

1

1.5

2

T
C

ri
t

(n
or

m
al

iz
ed

)

AES 3x bgm des50 LU32PE mcml ster2 Geomean
0

0.5

1

1.5

2

Sl
ic

e
L

U
T

s
(n

or
m

al
iz

ed
)

Vivado ABC1 ABC9

(a) Min Critical-Path Delay (b) Area Utilization in Slice LUTs

Fig. 6: Re-evaluation of the designs used in [1], which were the basis to demonstrate the 31% gap in 2015. As can be seen in (a), ABC9 has drastically
improved the achievable critical path delay, leading to a new synthesis gap of 10% for this particular selection of designs.

xc7a200 xcvu440 xc7a200 xcvu440
0

0.5

1

1.5

2

T
C

ri
t

(n
or

m
al

iz
ed

)

xc7a200 xcvu440 xc7a200 xcvu440
0

1

2
Sl

ic
e/

C
L

B
L

U
T

s
(n

or
m

.)

VTR OpenCores
0

0.5

1

R
un

tim
e

(n
or

m
al

iz
ed

)

Vivado ABC1 ABC9

OpenCores OpenCoresVTR VTR

(a) Min Critical-Path Delay (b) Area Utilization in Slice LUTs (c) Synthesis Runtime

Fig. 7: Results Overview: (a) shows the normalized geometric mean of the minimum critical-path delay. (b) shows the normalized number of LUTs used
corresponding to the mapping found in (a). (c) describes the runtime of the synthesis portion of each flow. (ABC1 and ABC9 do refer to Yosys-ABC1/9.)

Figure 6 shows minimum critical path delay and the cor-
responding area utilization in Slice LUTs for the designs
from [1], on the 7-Series target. We can clearly see that Yosys-
ABC9 is a substantial improvement over Yosys-ABC1 in both
metrics, reducing the average delay gap from 31% to 10%.
For area utilization, 2 out of 6 designs yield smaller mappings
with ABC9, resulting in 4% less area utilization than Vivado
on average.

Figure 7 summarizes the results of the VTR and OpenCores
designs for both target FPGAs, and includes runtime mea-
surements. Due to space constraints, we present the geometric
mean of all benchmarks in each set, normalized against the
Vivado baseline; exact values can be found on our GitHub
repository [8]. The VTR benchmark results continue the trend
we observed in Figure 6. For the 7-Series target, the Vivado-
Yosys delay gap disappears, dropping from 30% (ABC1) to
0%. The improvement in area utilization is equally drastic,
with the gap dropping from 81% to 4.4%. For the UltraScale
target, the delay and area gap drop to 5% and 9% respectively.
For the OpenCores designs the delay and area gap range
around 15–25%. In terms of runtime, Yosys-ABC9 only uses
a third of the runtime that Vivado spends on synthesis for both
set of designs.

Evidently, ABC9 does not perform as well on the UltraScale
target as it does on the 7-Series target. We believe the main
factor for this inefficiency that Yosys-ABC9 employs realistic
logic delays available only for the 28nm 7-Series family, and
which do not exist for the 20nm UltraScale family. Effectively,

our UltraScale experiment is asking Vivado to place-and-route
a circuit synthesized against 28nm delays onto a 20nm device,
on which both the absolute logic delay values, as well as the
relative logic and routing delay ratios, will be different leading
to a potential handicap.

Note that of the 26 VTR benchmarks, we chose to omit
designs and latch and multiclock separate and latch because
of their simplicity. (Both designs yielded the same results with
all 3 flows). The design boundtop has a multiple driver bug
and could not be synthesized. Design mkDelayWorker32B syn-
thesized with good results for Yosys-ABC9, but had too many
errors in the source RTL to be verified with the simulator,
and was subsequently omitted. We present results using the
remaining 22 benchmarks. For 3 of these designs (diffeq1,2
and mcml) a minor bug meant it was necessary to disable
aggressive DSP optimizations (i.e. register packing) for ABC9.

VI. SUGGESTED NEXT IMPLEMENTATION STEPS

The following implementation suggestions are in the ap-
proximate order of expected payoff.

A. Sequential Mapping

Traditionally, mapping and retiming are separate synthesis
steps performed sequentially. It may be possible to implement
a “sequentially transparent” mapping [10], which allows the
register boundary to be determined dynamically to reflect
the structure of the LUTs selected by the cut-based mapper
[11, Section 5]. This sequential mapping can decrease path

delay by 20%, compared to performing mapping and retiming
separately, while keeping the area penalty small (typically, less
than 3 percent).

Furthermore, various other tradeoffs can be explored, for
example, when the sequential mapping is only applied to
the “sequentially critical” path. It should be noted that the
current implementation of retiming in ABC1 and ABC9 is
very limited, increasing the expected payoff of the sequential
mapping.

B. Resubstitution Engine

More powerful resubstitution engines can be developed
and used during both technology-independent and technology-
dependent states of synthesis. The engine can support a wider
set of Boolean transforms, solved by a variety of versatile
transform solvers. This may translate into stronger engines for
AIG rewriting, don’t-care based optimization, and even equiv-
alence checking, further enhancing the open-source synthesis
flow.

C. Structural Choices with Boxes

Structural choices used in the current version of ABC9
are purely combinatorial in the sense that inputs to a choice
node are two different logic node structures. In the future, the
use of structural choices can be extended to work with box
implementations, in addition to the combinatorial logic. For
example, one may use a choice node to allow for implementing
an adder using random logic (LUTs) or a predefined carry-
chain (box), which is expected to further improve the quality
of results produced by the mapper.

D. Synthesis Recipes

The order of boolean optimization passes, often referred to
as synthesis recipes, can make a substantial difference to the
post-synthesis quality of results. As a result, several recent
works have explored black-box optimization [12], machine
learning (ML) [13], and reinforcement learning (RL) based ap-
proaches [14], [15] to tune these recipes. Note that research on
synthesis recipe tuning is only made possible by open-source
tools that offer direct control and visibility over optimizations
applied to the design. With improvements from ABC9, it is
further likely that future work on optimal recipe search based
on Yosys-ABC9 could produce synthesis results close to, if
not out-performing, fixed Boolean optimizations by industrial
tools.

E. Area-Delay Trade-off

By default, ABC1 and ABC9 are asked to find the
minimum-depth or -delay mapping solution, with the expec-
tation that doing so relieves timing-closure pressure on the
placement and routing stages that follow. In cases where this
pressure does not exist (for example, when not attempting to
find the minimum possible clock period) it would be desirable
to instead trade-off increased delay for decreased area. The
ability to do this exists in the timing-aware ABC9 flow with
support for an explicit delay target (as opposed to best-possible

delay target). However, the challenge here would be to predict
a realistic delay target that is neither too aggressive, leaving
too much to be done at the back-end, nor too conservative and
thus wasting area.

VII. CONCLUSION

With the improvements implemented in Yosys-ABC9, open-
source FPGA logic synthesis and technology mapping is now
competitive with state-of-the-art proprietary tools, reaching
similar performance for both clock frequency and area uti-
lization, while using a third of the runtime. Yosys-ABC9 has
been successfully integrated into the (latest) upstream version
of Yosys which is available under the open-source ISC license
(equivalent to the simplified BSD license in being permissive
thus allowing for commercial usage) and can be obtained from
https://github.com/YosysHQ/yosys

Furthermore, the exact scripts necessary to reproduce the
presented results are available at our GitHub repository [8]
for others to validate and build upon. We hope that this tool
can be the basis of further research into both FPGA and ASIC
synthesis.

REFERENCES

[1] E. Hung, “Mind The (Synthesis) Gap: Examining Where Academic
FPGA Tools Lag Behind Industry,” in 2015 25th Int. Conf. on Field
Programmable Logic and Appl. (FPL), pp. 1–4, 2015.

[2] C. Wolf, “Yosys manual.” http://yosyshq.net/yosys/documentation.html.
[3] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength

Verification Tool,” in Computer Aided Verification (T. Touili, B. Cook,
and P. Jackson, eds.), pp. 24–40, Springer, 2010.

[4] K. E. Murray, O. Petelin, S. Zhong, J. M. Wang, M. Eldafrawy, J.-
P. Legault, E. Sha, A. G. Graham, J. Wu, M. J. P. Walker, H. Zeng,
P. Patros, J. Luu, K. B. Kent, and V. Betz, “VTR 8: High-Performance
CAD and Customizable FPGA Architecture Modelling,” ACM Trans.
Reconfigurable Technol. Syst., vol. 13, may 2020.

[5] H.-T. Zhang, J.-H. R. Jiang, L. Amarú, A. Mishchenko, and R. Brayton,
“Deep Integration of Circuit Simulator and SAT Solver,” in 2021 58th
ACM/IEEE Design Automation Conf. (DAC), p. 877–882, IEEE Press.

[6] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic Decom-
position during Technology Mapping,” in 1995 IEEE/ACM Int. Conf. on
Computer-Aided Design, ICCAD ’95, p. 264–271, IEEE.

[7] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing Structural Bias in Technology Mapping,” in ICCAD-2005.
IEEE/ACM Int. Conf. on Computer-Aided Design, 2005., pp. 519–526.

[8] “Our Git Repository for This Paper.”
https://github.com/growly/date23 narrowing the gap.

[9] OpenCores:. OpenCores.org.
[10] P. Pan and C.-C. Lin, “A New Retiming-Based Technology Mapping

Algorithm for LUT-Based FPGAs,” in 1998 ACM/SIGDA Sixth Int.
Symposium on Field Programmable Gate Arrays, (New York, NY, USA),
p. 35–42, Association for Computing Machinery.

[11] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in 2007 IEEE/ACM Int. Conf.
on Computer-Aided Design, ICCAD ’07, p. 354–361, IEEE Press, 2007.

[12] A. Grosnit, C. Malherbe, R. Tutunov, X. Wan, J. Wang, and H. B.
Ammar, “BOiLS: Bayesian Optimisation for Logic Synthesis,” arXiv
preprint arXiv:2111.06178, 2021.

[13] C. Yu, H. Xiao, and G. De Micheli, “Developing Synthesis Flows
without Human Knowledge,” in 55th Annual Design Automation Conf.,
pp. 1–6, 2018.

[14] X. Timoneda and L. Cavigelli, “Late Breaking Results: Reinforcement
Learning for Scalable Logic Optimization with Graph Neural Networks,”
in 2021 58th ACM/IEEE Design Automation Conf. (DAC).

[15] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, “Drills: Deep Rein-
forcement Learning for Logic Synthesis,” in 2020 25th Asia and South
Pacific Design Automation Conf. (ASP-DAC), pp. 581–586, IEEE, 2020.

