
1

Quantized Neural Network Synthesis for
Direct Logic Circuit Implementation

Yu-Shan Huang, Student Member, IEEE, Jie-Hong R. Jiang, Member, IEEE,
and Alan Mishchenko, Senior Member, IEEE

Abstract—Hardware acceleration enables neural network (NN)
inferencing on edge devices and for high throughput applications.
Most approaches use neural processing elements for computation
while storing weights in memory blocks. To avoid costly memory
access, recent efforts seek direct logic implementation with
weights hardwired into the circuit. However, special training
strategies are often needed, and they could not maintain accuracy.
In contrast, we take a trained and quantized NN as input and
synthesize it by Booth encoding and logic sharing, resulting in a
hardware accelerator without degrading accuracy. Experiments
demonstrate that our method outperforms existing work in area
reduction and/or throughput and power efficiency.

Index Terms—AI accelerators, circuit synthesis, field pro-
grammable gate arrays, neural network hardware.

I. INTRODUCTION

RECENTLY, machine learning based on deep neural
networks (DNNs) demonstrated the ability to address a

variety of challenging tasks once believed to be too difficult
for computers to handle. The success of DNNs makes them
indispensable in many practical applications. As a result,
DNN-based models have been widely used in both cloud and
edge devices. Implementing DNNs using circuits with low
latency, small size, and low power becomes a crucial issue.

Quantization is frequently used to achieve these goals, re-
sulting in quantized neural networks (QNNs). An extreme case
of quantization leads to binarized neural networks (BNNs) [1],
where both weights and activations are binary. This reduces
integer computations to bit operations, leading to even smaller
and faster hardware. However, BNNs suffer from a substantial
accuracy degradation. In QNNs, floating-point operations can
be replaced by fixed-point ones, which tend to improve a
hardware implementation. Directly converting a high precision
model to a quantized one may degrade its accuracy. Among the
existing methods, there are two strategies to obtain quantized
models: One is training with special techniques and the other

Manuscript received 4 September 2021; revised 19 January 2022; accepted
26 May 2022. This work was supported in part by the Ministry of Science and
Technology of Taiwan under Grant 108-2221-E-002-144-MY3. This article
was recommended by Associate Editor J. Cortadella. (Corresponding author:
Jie-Hong R. Jiang.)

Yu-Shan Huang is with the Graduate Institute of Electronics En-
gineering, National Taiwan University, Taipei 10617, Taiwan (e-mail:
R09943100@ntu.edu.tw).

Jie-Hong R. Jiang is with the Department of Electrical Engineering and the
Graduate Institute of Electronics Engineering, National Taiwan University,
Taipei 10617, Taiwan (e-mail: jhjiang@ntu.edu.tw).

Alan Mishchenko is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Berkeley, CA 94720,
USA (e-mail: alanmi@berkeley.edu).

Digital Object Identifier 10.1109/TCAD.2022.3183547

is converting from floating-point DNNs. For those that focus
on training, the fake quantization proposed in [2] is useful to
reduce quantization errors. Other techniques, such as learnable
clipping range of activations [3], learnable scale of quantiza-
tion [4], and learnable regularization [5], are also available.
When the focus is on converting high precision models to
QNNs, weight equalization [6], [7] is proposed to improve
the accuracy. In this work, we assume QNNs are given, and
focus on synthesizing them for hardware acceleration.

There have been many efforts focusing on different aspects
of hardware implementations for QNNs and BNNs. Neural
processing elements (NPEs) are often used. Several frame-
works, e.g., [8], [9], are proposed to automatically convert a
QNN or BNN to a field programmable gate array (FPGA) for
hardware implementation. There are also efforts, e.g., [10],
targeting application specific integrated circuits (ASICs) for
hardware implementation. NPE-based implementations often
require frequent memory accesses and apply time multiplexing
for NPE reuse, resulting in high energy consumption, long
latency, and low throughput.

To tackle these issues, there are recent endeavors, e.g.,
[11]–[16], targeting direct logic implementation of NNs with
all weights hardwired into the circuit. In [11], [12], BNNs
are synthesized by sharing common bit-counting circuitry. In
[14], ternary-weight NNs are simplified using common sub-
expression elimination. In [13], activation-binarized NNs are
converted to Boolean circuits using don’t care optimization.
In [15], an effective mapping from the XNOR operations in
BNNs to look-up tables (LUTs) used in FPGAs is proposed. In
[16], the sparsity of QNNs is exploited to direct map neurons
into LUTs. The above methods require special model architec-
tures, such as BNNs, ternary weights, binarized activations, or
sparse networks. These special requirements could degrade the
attainable accuracy and result in excessive training workloads.
In this work, we intend to overcome these weaknesses by
taking a trained QNN as input and maintaining the accuracy
of the hardware implementation without restricting the QNN.

To achieve our goal, we propose a synthesis flow to convert
a QNN to an efficient hardware implementation. In particular,
we target edge applications, where latency, throughput and
power consumption are important and the deployed NN mod-
els are relatively simple. The enabling techniques employed in
the flow include Booth encoding and computation sharing for
interconnect cost reduction. The synthesis results for models
trained on MNIST and CIFAR10 show that the logic sharing
reduces the LUT count and the net count by up to 37% and
43%, respectively. Compared with recent efforts, our method is

2

Fig. 1. NN and its matrix representation: (a) neuron layer, (b) its weight tensor, (c) binary encoded matrix, and (d) Booth encoded matrix.

superior or competitive in meeting design constraints in terms
of circuit size, throughput, latency, and power efficiency. Our
synthesized circuits are suitable for being used in edge devices
and various applications.

The rest of this paper is organized as follows. After prelim-
inaries are given in Section II, the proposed logic implemen-
tation style and circuit synthesis algorithm are presented in
Sections III and IV, respectively. The experimental evaluation
is performed in Section V. Finally, conclusions and future
work are presented in Section VI.

II. PRELIMINARIES

A. Neural Network Implementation

Neural networks after training are often realized in hardware
for inferencing using a parameterized implementation, which
is different from a direct logic implementation used in this
work. The former stores parameters in memory and loads them
into the NPEs during inference. It achieves a small-area-cost
design by reusing NPEs repeatedly, but incurs long latency and
large power overhead due to memory access. In contrast, the
latter makes the weights hardwired into the circuit and elimi-
nates memory access. Apart from pipelining, it requires only
combinational logic to implement an NN. Consequently, it
can be time-efficient because all the computations of different
neurons are performed concurrently and the throughput is not
limited by memory access. Although it may incur large area
cost, the synthesis algorithm has potential to greatly reduce
the overhead.

B. Booth Encoding

In this work, we employ Booth encoding [17], which
comes from Booth’s multiplication algorithm, to optimize the
arithmetic operations of a neural network. The idea is to use
{−1, 0, 1} instead of {0, 1} for each bit of a binary encoded
number to reduce the number of nonzero bits when there are
consecutive 1’s. For example, the binary number 0111 can be
rewritten as 100(−1), meaning 1000−0001 effectively, so that
the number of nonzero bits is reduced by one. When doing
multiplication using the column method, the number of terms
we need to sum up equals the number of non-zero bits in the
multiplier. For example, 0110×0111 = 0110+01100+011000
needs to sum up three terms, since there are three non-zero
bits in 0111. If the multiplier is Booth-encoded, the number
of terms to be summed up is reduced, and so is the overall

amount of computation. For example, 0110 × 0111 becomes
0110× 100(−1) = 0110000− 0110, so we only have to sum
two terms since there are two nonzero bits in 100(−1). The
procedure of Booth encoding can be done in time linear in the
number of bits of the number [17].

Note that the number of add operations needed for constant
multiplication using Booth encoding can be further reduced at
the cost of increasing logic levels [18]. We observe that when
the number of bits of the multiplier is not large, the number of
add operations cannot be reduced much. In particular, when
the number of bits of the multiplier is less than 7, the number
of add operations cannot be reduced. Therefore, in this work
we simply apply Booth encoding without using the reduction
technique of [18].

III. CIRCUIT MODEL

The main computation of neural network inference is mul-
tiplication and accumulation. Given a neural network with
its weights and activations quantized to fixed-point values,
the multiplication can be realized using shift and addition
operations. Assuming a b-bit quantization, a weight w can be
represented as a 2’s complement number wb−1wb−2 . . . w0, for
wi ∈ {0, 1} and wb−1 being the most significant bit. Given a
neuron input I , its multiplication with a weight w is computed
by

Σb−1j=0wj · (I � j) (1)

where I � j is the bit string produced by left-shifting I by
j bits. This computation can be extended to the case when
weights are transformed by Booth encoding. In this case, wi ∈
{−1, 0, 1}.

For a layer of m neurons each with n inputs, its corre-
sponding weight tensor has size m × n.1 Given quantization
into b bits, a fixed-point valued weight tensor of size m × n
can be encoded as a binary valued matrix of size m×nb. The
matrix can be further transformed by Booth encoding into a
ternary valued matrix of the same size, referred to as the Booth
matrix, denoted WB . Fig. 1 shows an example of a 4×3 weight
tensor in Fig. 1(b) of a layer of 4 neurons, each with 3 inputs,
in Fig. 1(a). With 4-bit quantization, the weight tensor can be

1For a fully connected (FC) layer with n inputs and m neurons, the weight
tensor has size m×n. For a convolution layer with kernel size k×k, n input
channels, and m output channels, the weight tensor has size m×n×k×k. If
it is reshaped as m×nk2 and the inputs are properly chosen, the computation
of the convolution layer when the filter is at a certain position is the same as
that of a FC layer.

3

(a) (b)

Fig. 2. Circuit model for the Booth matrix in Fig. 1(d): (a) without and
(b) with sharing, where the wire counts exclude the adder module outputs
O1, . . . , O4.

converted to the binary valued matrix shown in Fig. 1(c). With
Booth encoding, the matrix can be further transformed into a
Booth matrix shown in Fig. 1(d).

The computation of Eq. (1) requires an adder module. Given
a Booth matrix, we need a connection between the input and
the adder module for each non-zero entry, while no connection
is needed for a zero entry. By Eq. (1), if an entry in the
Booth matrix is −1, we have to complement I to −I before
it enters the adder, and if a non-zero entry is the ith bit of a
weight, the input is left-shifted by i bits. Fig. 2(a) shows the
corresponding circuit for the Booth matrix in Fig. 1(d) with
shift and complement operations omitted.

Different neurons may have some identical additive terms.
In this case the summation of these terms can be shared among
the neurons. For example, if X = A + B + C + D and Y =
B + C + D + E, we can first compute S = B + C + D and
then X , Y can be computed with X = S+A and Y = S+E.
When shared terms are extracted, the circuit architecture is of
the structure shown in Fig. 2(b). The shared terms are first
summed up by sub-adders (the intermediate adders between
the inputs and final adders), and the results are then used by
the final adders to get the outputs. By sharing the common
computation, we can reduce the number of interconnects and
circuit area. Our synthesis algorithm to extract logic sharing
is detailed in Section IV.

We note that the inputs to an adder are products of two b-bit
numbers, i.e., a neuron input value times a weight. To avoid
overflow, the number of bits needed for the adder output is
2b+ dlog2 Ne, where N is the number of inputs of a neuron.
In practice, we may use training data to gather the statistics of
the neuron outputs of a layer and allocate enough bits capable
of representing the minimum and maximum values of the
outputs of all neurons within the layer. Empirical experience
suggests that the number of bits needed is close to 2b. After
an activation function, a weighted summation is clipped and
we allocate b bits for its representation. The number of bits for
the outputs of the sub-adders is set to that of the final adder.

IV. SYNTHESIS ALGORITHM

The synthesis flow of circuit implementation for a neural
network is sketched in Fig. 3. Given a quantized neural net-

Fig. 3. The synthesis flow.

work2, the procedure first checks whether the given quantized
neural network contains batch normalization (BN) layers. If
it does, the folding3 technique proposed in [2] is applied
to merge them into preceding fully connected (FC) or con-
volution layers. Then, the Booth matrices for all layers are
constructed as described in Section III. Next, the FindSharing
algorithm is applied to find computations that can be shared.
Accordingly, the corresponding circuit is then built. Finally,
the circuit can be further optimized by other logic synthesis
tools. In particular, for our target FPGA implementation, the
FPGA synthesis tool Vivado is applied. We detail the synthesis
algorithm FindSharing in the following.

The synthesis algorithm aims at reducing interconnect cost
of circuit implementation by sharing common computations.
The interconnect cost of a circuit without sharing is defined
as follows. For each input connected to the adder, we set the
interconnect cost to be 2b, where b is the number of quantiza-
tion bits, as discussed in Section III. Hence, the overall cost
of a Booth matrix WB is cost(WB) = sum(abs(WB))× 2b,
where abs takes absolute value of each entry and sum sums
all entries of the matrix.

For an m× nb Booth matrix M , let S1 ⊆ {1, . . . ,m} and
S2 ⊆ {1, . . . , nb} be sets of selected row indices and column
indices, respectively. Let M [S1][S2] denote the sub-matrix of
M consisting of rows with their indices in S1 and columns in
S2. Also, let M [i][S2], i ∈ {1, . . . ,m}, represent a sub-matrix
of M that selects the ith row and columns in S2. A sharing in
a Booth matrix WB is defined as a tuple S(R,C), where R is
a set of row indices and C column indices such that for each
ri ∈ R,WB [r1][C] = ±WB [r2][C] = . . . = ±WB [r|R|][C]
and all entries in WB [R][C] are non-zero. For a sharing
S(R,C), the interconnect cost before sharing is 2b|R||C|,
because each entry in WB [R][C] is non-zero and indicates
that a 2b-bit connection is needed; the cost after sharing (the
computation for the rows in R) is 2b|R| + 2b|C|, where the
terms 2b|R| and 2b|C| are for the output and input costs,
respectively, of the sub-adder. The gain of sharing S(R,C)
is defined as 2b|R||C|−2b(|R|+ |C|), which is the difference
between the costs before and after sharing.

2We assume an NN is symmetrically quantized. A general quantization
from x to q can be expressed by q = round(x

k
+ b), where k is a constant

scalar and b is a bias constant. A quantization is called symmetric if b = 0.
Although the symmetric quantization is not the most general quantization
scheme, it helps reduce tensor computation while yielding negligible accuracy
degradation in NN inference [19]. Therefore we adopt it in our synthesis flow
for edge applications.

3In [2], fake quantization is applied after folding floating-point weights
rather than quantizing the weights before folding. We assume the given NN
is trained in the same way, so we can safely fold and then quantize the folded
weights to the bit width used during training.

4

Algorithm 1 FindSharing
Input: An m× nb Booth matrix WB

Output: A list of shared terms
1: C := {0, . . . , nb− 1};
2: unSharedCols := an empty hash table;
3: for r = 0 to m− 1 do
4: unSharedCols[r] = C;
5: result := [];
6: sharings := FindMaxPairing(WB ,unSharedCols);
7: while size(sharings)> 0 do
8: append elements in sharings to result ;
9: unSharedCols := refine(unSharedCols ,sharings);

10: sharings := FindMaxPairing(WB ,unSharedCols);
11: return result ;

Algorithm 2 FindMaxPairing
Input: A Booth matrix WB , a hash table D that maps row

indices to a set consists of column indices
Output: A list of shared terms

1: G(V,E) := ConstructCompleteGraph(WB , D);
2: pairs := MaxWeightMatching(V ,E);
3: result := [];
4: foreach pair in pairs do
5: Ssame , Sdiff := PairRows(vertex 1 of pair , vertex 2

of pair);
6: if gain(Ssame) > 0 then
7: append Ssame to result ;
8: if gain(Sdiff) > 0 then
9: append Sdiff to result ;

10: return result ;

The algorithm FindSharing to find logic sharing in a Booth
matrix WB is sketched in Algorithm 1. The algorithm first ini-
tializes the search range to the whole Booth matrix in lines 1-
4. The search range is stored in a hash table, which maps a
row index to a set of column indices. Then, FindMaxPairing,
sketched in Algorithm 2, is called in line 6 to find shared
terms, which are then appended to the result. After some
shared terms have been found, FindMaxPairing should exclude
those columns that have been included in the resulting terms.
Therefore, we trim the search range in line 9 by removing
the indices of the used columns from unSharedCols . Finding
new shared terms and refining the search range are performed
repeatedly, as the while-loop in line 7 does, until no new
shared terms are found.

To find new shared terms, Algorithm FindMaxPairing first
builds a complete graph G(V,E) in line 1. The vertices V
correspond to the row indices of WB and the weight of each
edge in E is the sum of the gains of the sharings computed
by Algorithm PairRows, sketched in Algorithm 3, which pairs
the two rows connected by the edge. If the gain of a sharing
is smaller than 0, it will not be added into the weight of the
corresponding edge. We run the maximum weight matching
algorithm on the graph to find row pairs and convert them to
sharings. The sharings are added to result if the gain is grater
than 0.

Algorithm 3 PairRows
Input: Two rows, r1 and r2 , of a Booth matrix with the same

selected columns and their indices, r1Ind and r2Ind , in
the Booth matrix

Output: Two sharings Ssame and Sdiff

1: r1Pos := {i | r1 [i] = 1};
2: r1Neg := {i | r1 [i] = −1};
3: r2Pos := {i | r2 [i] = 1};
4: r2Neg := {i | r2 [i] = −1};
5: colsSame := (r1Pos ∩ r2Pos) ∪ (r1Neg ∩ r2Neg);
6: colsDiff := (r1Pos ∩ r2Neg) ∪ (r1Neg ∩ r2Pos);
7: Ssame := S({r1Ind , r2Ind}, colsSame);
8: Sdiff := S({r1Ind , r2Ind}, colsDiff);
9: return Ssame , Sdiff ;

PairRows converts a given row pair to two sharings, Ssame

and Sdiff . It first creates two index sets for each row in lines 1-
4. One set contains the column indices having corresponding
1-entries, and the other contains those having −1-entries.
There are two cases when the summation terms are shared.
One is when the entries are the same for the two rows, and
the other is when the entries of one row are the opposites
of the other. In the former case, we construct colsSame by
finding the columns that are both 1 or −1 for the two rows
in line 5. In the latter case, we construct colsDiff by finding
the columns that have opposite signs between the two rows
in line 6. Then, corresponding sharings, Ssame and Sdiff , are
constructed.

To analyze the time complexity of FindSharing, we first
consider how many times the while-loop in line 7 is executed.
Each time, two rows are paired and the refinement in line 9
excludes their common columns from searching. Once two
rows are paired, they cannot produce more shared terms after
that. Assuming that WB is of size m× nb, there are m(m−1)

2
different possible pairs and m

2 such pairs are considered
in each iteration, so we know that the while-loop runs for
O(m(m−1)

2 ÷ m
2) = O(m) times. In the while-loop, the main

operation is FindMaxPairing, which does MaxWeightMatching
and the for-loop in line 4 of FindMaxPairing. The MaxWeight-
Matching is done using the python package, networkx, running
an algorithm [20] with time complexity O(|V |3). Since the
vertices correspond to the row indices of WB , we have
|V | = m, and thus the time complexity of MaxWeightMatching
is O(m3). The for-loop in line 4 iterates over all pairs and calls
PairRows. It will run O(m2) times. PairRows basically does
set operations on rows, and the time complexity is O(nb).
As a result, the time complexity of the for-loop is O(mnb).
Assuming m and nb are in the same order, which is generally
true, we have O(mnb + m3) = O(m3). Finally, the overall
time complexity of FindSharing is O(m4). We note that the
complexity in practical can be much lower than the theoretical
upper bound as to be shown in Section V-B.

Consider the Booth matrix in Fig. 1(d) as an example.
FindSharing first initializes unSharedCols to r1:{1, 2, . . . ,
12}, r2:{1, 2, . . . , 12}, r3:{1, 2, . . . , 12}, r4:{1, 2, . . . , 12}.
The first call to MaxWeightMatching yields two pairs, (r1, r2)
and (r3, r4), which give us the green and orange sharings in
Fig. 1(d). Then, unSharedCols are refined to r1:{1, 2, 3, 6, 8,

5

9, 10, 11, 12}, r2:{1, 2, 3, 6, 8, 9, 10, 11, 12}, r3:{1, 2, 4, 5, 7,
9, 10, 11, 12}, r4:{1, 2, 4, 5, 7, 9, 10, 11, 12}. The second call
yields a pair, (r2, r4), corresponding to the yellow sharing in
Fig. 1(d). The unSharedCols are refined to r1:{1, 2, 3, 6, 8, 9,
10, 11, 12}, r2:{2, 3, 6, 8, 10, 12}, r3:{1, 2, 4, 5, 7, 9, 10, 11,
12}, r4:{2, 4, 5, 7, 10, 12}. Finally, no more sharing is found,
and the while-loop terminates, resulting in three shared terms.
The result of FindSharing is shown in Fig. 1(d). Accordingly,
the circuit of Fig. 2(a) with outputs

O1 = −I1 − (I2 � 3) + (I2 � 1) + (I3 � 2)− I3

O2 = (I1 � 3)− I1 − (I2 � 3) + (I2 � 1)− (I3 � 3) + (I3 � 1)

O3 = (I1 � 1) + (I2 � 2)− I2 + I3

O4 = (I1 � 3)− (I1 � 1)− (I2 � 2) + I2 − (I3 � 3) + (I3 � 1)

can be transformed into the one of Fig. 2(b) with O1 = S1 +
(I3 � 2)−I3, O2 = S1 +S3, O3 = S2 +I3, O4 = −S2 +S3,
where

S1 = −I1 − (I2 � 3) + (I2 � 1)

S2 = (I1 � 1) + (I2 � 2)− I2

S3 = (I1 � 3)− (I3 � 3) + (I3 � 1).

V. EXPERIMENTAL RESULTS

In our experiments, the neural networks were trained using
Python3 and PyTorch. To get the quantized models, we trained
them with the technique proposed in [2], but restricting the
scale to be power-of-two integers for a more efficient repre-
sentation of the quantization range. The quantized models were
then processed by our synthesis flow presented in Section IV
to generate Verilog circuits on a Windows 10 laptop with
Intel i7-1065G7 CPU and 16GB RAM. Finally the circuits
were synthesized with Vivado 2020.1 on a computer running
Ubuntu 18.04.4 with Intel i7-8700 CPU and 32GB RAM for
the intended FPGA implementation.

As an independent check of the accuracy of the quantized
models, we implemented inference in software using integer
computations and truncations that are identical to the hardware
implementations. The accuracy of the software-based infer-
ence is the same as that of the circuit-based inference as they
perform identical computations. The equivalence between the
software model and circuit implementation were checked by
simulation in our experiments.

The experiments were conducted to answer two questions:
1) How do Booth encoding and logic sharing improve the
FPGA synthesis quality in terms of LUT and net reductions?
2) How does our synthesis method perform compared to other
existing efforts targeting FPGA implementation of NNs?

A. Effect of Booth Encoding and Logic Sharing

The first experimental evaluation was performed on neural
networks for MNIST and CIFAR10 datasets. For the MNIST
dataset, we trained a model composed of three FC layers (with
48, 48, and 10 neurons in order). The activation function is
relu6, which is defined as f(x) = max(0,min(x, 6)). This
activation function is often used to prepare quantized models,
since it clips the weighted summation to the range [0,6],

TABLE I
SYNTHESIS RESULTS UNDER DIFFERENT OPTIMIZATION SETTINGS.

dataset setting cost (ratio) LUT (ratio) net (ratio)

MNIST

plain - 81.6k (1.00) 276.7k (1.00)
baseline 255.6k (1.00) 192.5k (2.36) 627.5k (2.27)

opt-l 148.9k (0.58) 121.0k (1.48) 360.2k (1.30)
opt-b 99.8k (0.39) 80.0k (0.98) 249.8k (0.90)

opt-b+l 67.6k (0.26) 63.0k (0.77) 176.9k (0.64)

CIFAR10

plain - 318.0k (1.00) 1047.3k (1.00)
baseline 1411.5k (1.00) 616.4k (1.93) 2129.4k (2.03)

opt-l 776.4k (0.55) 360.8k (1.13) 1174.4k (1.12)
opt-b 620.0k (0.44) 297.0k (0.93) 963.6k (0.92)

opt-b+l 387.8k (0.27) 200.9k (0.63) 593.1k (0.57)

which avoids high-magnitude activations, and reduces the
quantization error. We quantize both weights and activations
of the model to 4 bits. The testing accuracy of the quantized
model is about 97.3%. The testing accuracy for the floating-
point model with the same architecture is about 98.4%. For
the CIFAR10 dataset, we trained a model composed of five
convolution layers and three FC layers. Each layer is followed
by a BN layer, except for the output layer. Each BN layer was
folded into its previous layer after training. All the convolution
layers used kernels of size 3 × 3, and the padding and stride
were set to 1. The numbers of input and output channels for the
first convolution layer are 3 and 32, respectively. For all other
convolution layers, the numbers of input and output channels
are both 32. We used max-pooling with kernel size 2× 2 and
stride 2 after the 2nd, 4th, and 5th convolution layers. The 1st

and 2nd FC layers have 16 neurons each, and the output layer
has 10 neurons. The activation function is relu6. Both weights
and activations of the model were quantized to 6 bits. The
testing accuracy of the quantized model is 82.5%, whereas
that of the floating-point model with the same architecture is
about 83.1%.

The synthesis results under different optimization settings
are shown in Table I, where setting “plain” indicates the
synthesis flow using the default multiplication of Verilog code
and without applying Booth encoding and logic sharing, “base-
line” indicates multiplication using shift and addition without
applying Booth encoding and logic sharing, “opt-l” indicates
the application of logic sharing FindSharing (on the baseline
setting), “opt-b” indicates the application of Booth encoding,
and “opt-b+l” indicates the application of both Booth encoding
and logic sharing. Note that the above settings only differ
in how the Verilog circuits are generated. The circuits of
different settings will be synthesized by Vivado under the same
configuration. Note also that in this table the reported hardware
usages of the CIFAR10 model only count one implementation
copy for each filter in a convolution layer assuming that the
filter implementation is reused for processing different inputs
through time-multiplexing. The intermediate results can be
stored in registers to avoid expensive memory access. For the
CIFAR10 model reported in Table I, the registers needed for
the five convolution layers are 196608, 49152, 49152, 12288,
and 3072, respectively. Typical FPGAs have twice more flip-
flop resources than the LUT resources [21], [22], and this
model needs 310272 registers in total, which is about 1.54
times the LUT count. Therefore, this amount of registers is

6

TABLE II
RUNTIME OF DIFFERENT SYNTHESIS STEPS.

dataset layer WB gen (s) FindSharing (s) Vivado (s)

MNIST
fc1 5.33 0.01 142.0
fc2 0.42 0.51 60.0
fc3 0.11 0.03 35.0

CIFAR10

conv1 0.23 0.13 35.0
conv2∼5 2.12∼2.86 0.51∼0.88 102.0∼117.0

fc1 2.19 0.28 98.0
fc2 0.11 0.03 27.0
fc3 0.09 0.02 28.0

not a critical factor limiting the FPGA implementation.
From the table, we observed that the hardware cost of “base-

line” is higher than that of “plain.” Even if logic sharing is
further applied, the hardware cost can be reduced substantially,
but the cost of “opt-l” is still greater than that of “plain.” The
results suggest that Vivado can synthesize the multiplication
to LUTs more efficiently when the Verilog code uses the
native multiplication operator. It may be because the tool
recognizes multiplication and enables dedicated optimization,
which might not be performed when shift and addition circuits
are used for multiplication. When Booth encoding is applied
solely, the hardware usage of “opt-b” is slightly lower than to
that of “plain.” Ultimately, the “opt-b+l” setting by combining
both Booth encoding and logic sharing effectively reduces
LUT and net counts by 23% and 36%, respectively, for
the MNIST model, and 37% and 43%, respectively, for the
CIFAR10 model. We observed that the larger the size of a
Booth matrix is, the more the cost our algorithm can reduce.
We also note that the trend of net reduction is similar to
that of cost reduction, suggesting that our modeling of the
interconnect cost is reasonable.

The runtime information for different synthesis steps is
reported in Table II, where “WB gen” indicates runtime for
Booth matrix generation. Generating all the Verilog circuits
took about 0.42 seconds for the MNIST model and 1.83
seconds for the CIFAR10 model. From Table II, we note that
the time needed for our optimization is much less than that
for Vivado synthesis.

Our flow optimizes the NN circuits at the arithmetic op-
eration level, while existing logic optimization tools, such as
ABC, optimize circuits at the logic level. Our method tends
to be orthogonal and complementary to other logic synthesis
tools. To justify the claim, we compare the circuit sizes for
the following four settings: 1) neither our flow nor ABC
optimization is applied, 2) only our flow is applied, 3) only
ABC optimization is applied, 4) both our flow and ABC
optimization are applied, to see how each optimization tech-
nique affects the circuit size reduction. We use a CNN model
targeting the CIFAR10 dataset to perform the experiment. The
model consists of two convolution and two fully connected
layers. We constrain the weights of the two convolution layers
and the first FC layer to be power-of-two numbers and quantize
the weights of the second FC layer to 4 bits. Our flow can be
directly applied on models with power-of-two weights because
it is only a special case of quantization. We use the “baseline”
and “opt-b+l” settings to generate the Verilog circuits, which
are then synthesized to the aiger format by Yosys [23]. Note

TABLE III
AIG GATE COUNTS UNDER DIFFERENT SETTINGS.

setting without ABC optimization with ABC optimization
baseline 2080547 1448930
opt-b+l 1550164 983548

that we use the “baseline” rather than the “plain” setting since
most of the weights in the model are power-of-two numbers
and thus multiplications become shift operations. The aiger
circuits are fed into ABC to get the AIG gate counts. For
the settings with ABC optimization, we perform iterations
of resyn, resyn2, resyn2a, resyn3, resyn2rs, dc2,
ifraig to optimize the circuit. The experimental results
are shown in Table III. We can observe that our flow alone
can reduce the gate count by about 25.5% and the ABC
optimization alone can reduce the gate count by about 30.4%.
Combining the two optimization methods can reduce the gate
count by about 52.7%. The results suggest that our method and
ABC optimizations can take effect independently regardless of
whether or not the other is applied.

B. Scalability Study

We emphasize that our synthesis flow targets direct logic
circuit implementation of quantized neural network for edge
applications. Due to the limited hardware resources in edge
devices, we do not expect large models for synthesis. Never-
theless, we investigate how the FindSharing algorithm scales
for large models in the following experiments. To study it, we
run FindSharing on two PyTorch pretrained models, ResNet18
and ResNet101 [24], for the ImageNet dataset. We directly
convert them to QNNs with 8-bit symmetric quantization.

The results are shown in Table IV, where Columns 4
and 5 list the runtime of Booth matrix generation and the
FindSharing algorithm, respectively, Columns 6 and 7 list
the interconnect cost before and after applying FindSharing,
respectively, and Column 8 shows the percentage of cost
reduction. In the table, the results for the layers with the
same size are averaged and shown once. In Column 2, we
follow the naming of PyTorch to denote the layers; prefix “li”
stands for layer i and suffix “ds” stands for “downsample.”
For ResNet18, “l1convs” stands for all convolution layers
in layer 1, and “liconvs,” for i = 2, 3, 4, stands for all
convolution layers except the first convolution layer in layer
i. For ResNet101, “lib0conv1” stands for the first convolution
layer in block 0 and “liconv1s” stands for the first convolution
layers in the blocks other than block 0 of layer i. On the other
hand, “liconvjs” for j = 2, 3, stands for all the jth convolution
layers for all blocks including block 0 of layer i.

The results show that FindSharing spends reasonable time
for most layers and can effectively reduce the interconnect
cost. The empirical results suggest that time complexity is
smaller than that derived in Section IV. For an m×n matrix,
we observed that the number of iterations of the while-loop in
lines 7-10 of Algorithm 1 is only sub-linear in m. Generally
speaking, it depends on the matrix content but not sensitive to
different matrix sizes; also, the greater the number of columns

7

TABLE IV
RUNTIME AND COST STATISTICS FOR RESNET18 AND RESNET101.

model layer size WB gen (s) FindSharing (s) ori cost new cost saving

ResNet18

conv1 64× 147 1.02 1.20 174k 113k 35.3%
l1convs 64× 576 4.14 2.99 870k 506k 41.8%
l2conv1 128× 576 8.45 16.00 1930k 1109k 42.5%
l2convs 128× 1152 16.57 26.76 3382k 1893k 44.0%

l2ds 128× 64 0.92 5.29 180k 124k 31.1%
l3conv1 256× 1152 34.45 165.92 8137k 4488k 44.8%
l3convs 256× 2304 67.70 268.75 14335k 7754k 45.9%

l3ds 256× 128 3.72 44.17 747k 476k 36.2%
l4conv1 512× 2304 138.28 1596.42 314329k 16880k 46.3%
l4convs 512× 4608 275.35 2427.70 61126k 32227k 47.3%

l4ds 512× 256 15.24 548.52 3347k 1991k 40.5%
fc 1000× 512 62.64 6033.03 17387k 9720k 44.1%

ResNet101

conv1 64× 147 0.95 1.54 396k 218k 44.9%
l1b0conv1 64× 64 0.41 0.87 144k 82k 42.3%
l1conv1s 64× 256 1.74 1.85 680k 368k 45.9%
l1conv2s 64× 576 3.71 2.80 1516k 804k 47.0%
l1conv3s 256× 64 1.48 27.50 431k 243k 43.7%

l1ds 256× 64 1.51 28.78 463k 260k 43.8%
l2b0conv1 128× 256 3.80 12.39 1938k 10323k 46.7%
l2conv1s 128× 512 7.53 18.81 3649k 1915k 47.5%
l2conv2s 128× 1152 16.60 30.96 8552k 4432k 48.2%
l2conv3s 512× 128 6.20 332.22 2188k 1188k 45.7%

l2ds 512× 256 13.36 536.25 5565k 2958k 46.8%
l3b0conv1 256× 512 15.54 98.61 7135k 3750k 47.4%
l3conv1s 256× 1024 31.36 155.33 15690k 8116k 48.3%
l3conv2s 256× 2304 71.67 266.03 36942k 18906k 48.8%
l3conv3s 1024× 256 28.89 3615.58 12936k 6830k 47.2%

l3ds 1024× 512 55.15 5085.04 24232k 12637k 47.8%
l4b0conv1 512× 1024 65.57 975.88 34298k 17697k 48.4%
l4conv1s 512× 2048 127.57 1502.65 68165k 34883k 48.8%
l4conv2s 512× 4608 290.34 2623.38 153082k 77805k 49.2%
l4conv3s 2048× 512 127.18 37096.37 67276k 34871k 48.2%

l4ds 2048× 1024 235.57 51968.59 117806k 60491k 48.6%
fc 1000× 2048 250.60 9433.69 144232k 73624k 48.9%

of the matrix, the more iterations the while-loop would take.
By applying the curve_fit function in the SciPy package
to fit the data points of the experimental results, we found that
the time complexity is about O(m2.8n0.49).

We synthesized some layers of ResNet18 to see whether the
hardware costs reduce accordingly. The results are shown in
Table V, where other larger layers are excluded due to their
sizes too large to be synthesized successfully. The reported
runtime is the Vivado synthesis time. As shown, the hardware
cost can be effectively reduced by the proposed method.
Note that for “opt-b”, the hardware cost may be lower or
higher than that for “plain”. Basically, the hardware cost for
“plain” and “opt-b” are close. However, the amount of non-
zero bits reduced by Booth encoding depends on the binary
numbers. Therefore, the hardware cost could be lower when
the reduction rate is higher, and the hardware cost could be
higher when the reduction rate is lower.

C. Comparison with Related Work

We compared our method with recent work on FPGA NN
implementation, including logic synthesis of BNN (LSBNN)
[11], NullaNet [13], LogicNet [16], NullaNet Tiny [25], Au-
toHQ [26], FINN [8], [9], resource-optimized BNN (ROBNN)
[12]. We note that due to the different experimental settings
and reported data among the related efforts, it is difficult to
have a direct comparison for all the methods. However we tried
our best to make individual comparisons as fair as possible.

To compare with LSBNN [11], MNIST and CIFAR10 are
common datasets. The MNIST model in [11] consists of 6 FC

layers and each hidden layer contains 256 neurons. However,
because only FC layers of the CIFAR10 model were studied
in [11], we mainly compared the MNIST model as shown
in Table VI, where “-” indicates data unavailable. The LUT,
CARRY and net counts exclude the input layer because of
fundamental implementation difference4. Our implementation
requires about 8.3% and 11.7% of the LUT and net counts,
respectively, of LSBNN while achieving a similar accuracy.
The result shows that the severe accuracy degradation of BNNs
requires more hardware resources to achieve similar accuracy.

To compare with NullaNet [13], MNIST is the common
dataset. In [13], the trained model consists of three hidden
layers, each containing 100 neurons, and achieves accuracy
about 97%. Their synthesis results are only reported for the
2nd and 3rd hidden layers with the clock frequency set to 65.3
MHz. Due to their network architecture difference and partial
synthesis results, a head-to-head comparison is not possible.
Thus, we use the synthesis results of the 2nd (hidden) and
3rd (output) layers of our NN to compare with those reported
in [13]. Note that we used a relatively larger portion of our
model to compare with a smaller portion of their model. The
results are shown in Table VII, where the cost of NullaNet is
measured by the number of adaptive logic modules (ALMs)5

4LSBNN uses pipelining to handle the 8-bit input bit by bit since their layer
modules is designed to take 1-bit data as input. In contrast, our fixed-point
implementation allows 8-bit input. Although the input layer of LSBNN has a
smaller circuit size, it incurs a longer latency. Nevertheless, even if the input
layer is taken into account, we still use fewer LUTs and nets. We use 62990
LUTs and 176949 nets while LSBNN uses 166338 LUTs and 254748 nets.

5An ALM can be configured to different architectures including a 6-input
LUT. Hence an ALM is at least as complex as a LUT.

8

TABLE V
SYNTHESIS RESULTS OF SOME LAYERS OF RESNET18.

layer setting LUT (ratio) net (ratio) runtime (s)

conv1
plain 82228 (1.00) 285372 (1.00) 174
opt-b 82703 (1.01) 263051 (0.92) 144

opt-b+l 57557 (0.70) 167298 (0.59) 120

l1b0conv1
plain 314925 (1.00) 1103756 (1.00) 714
opt-b 322147 (1.02) 1082360 (0.98) 534

opt-b+l 206884 (0.66) 627766 (0.57) 342

l1b0conv2
plain 375487 (1.00) 1341042 (1.00) 702
opt-b 377364 (1.00) 1267985 (0.95) 618

opt-b+l 238502 (0.64) 728535 (0.54) 396

l1b1conv1
plain 348428 (1.00) 1260435 (1.00) 846
opt-b 369647 (1.06) 1245446 (0.99) 594

opt-b+l 233773 (0.67) 716330 (0.57) 396

l1b1conv2
plain 432742 (1.00) 1548713 (1.00) 1200
opt-b 429555 (0.99) 1441361 (0.93) 684

opt-b+l 267333 (0.62) 816864 (0.53) 432

l2b0conv1
plain 731644 (1.00) 2574193 (1.00) 1578
opt-b 827769 (1.13) 2763151 (1.07) 1566

opt-b+l 508768 (0.70) 1566730 (0.61) 942

l2b0conv2
plain 1212705 (1.00) 4318010 (1.00) 3570
opt-b 1380469 (1.14) 4595711 (1.06) 2904

opt-b+l 805935 (0.66) 2547204 (0.59) 1314

l2ds
plain 98935 (1.00) 307033 (1.00) 540
opt-b 81978 (0.83) 253761 (0.83) 276

opt-b+l 57380 (0.58) 168164 (0.55) 138

l2b1conv1
plain 1278912 (1.00) 4548210 (1.00) 3498
opt-b 1473027 (1.15) 4918463 (1.08) 3084

opt-b+l 854282 (0.67) 2715045 (0.60) 1386

l2b1conv2
plain 1304824 (1.00) 4628889 (1.00) 3636
opt-b 1480653 (1.13) 4942341 (1.07) 3168

opt-b+l 858766 (0.66) 2722117 (0.59) 1392

l3b0conv1
plain 2692679 (1.00) 9698021 (1.00) 8256
opt-b 3375219 (1.25) 11505651 (1.19) 10374

opt-b+l 1964089 (0.73) 6302067 (0.65) 3798

l3ds
plain 259948 (1.00) 933652 (1.00) 600
opt-b 321572 (1.23) 1051295 (1.13) 870

opt-b+l 219129 (0.84) 651447 (0.70) 408

l4ds
plain 1023071 (1.00) 3702576 (1.00) 2868
opt-b 1412867 (1.38) 4747743 (1.28) 6618

opt-b+l 890501 (0.87) 2729101 (0.74) 1734

TABLE VI
COMPARISON WITH LSBNN FOR MNIST DATASET.

models accuracy LUT (ratio) CARRY net (ratio)
LSBNN [11] 97.0% 98832 (1.00) - 146617 (1.00)

ours 97.3% 8043 (0.08) 1107 17203 (0.12)

and the power consumption of ours is according to the Vivado
power report. To further analyze the result, we normalize the
LUT or ALM counts with respect to the number of neurons.
The reported ALM count for NullaNet is for 200 neurons and
thus each neuron needs about 560.9 ALMs. Our reported LUT
count is for 58 neurons and thus each neuron needs about
138.7 LUTs, which is smaller. It is also reported in [13] that
the overall hardware uses 79,607 MACs and a MAC requires
541 ALMs. Hence their model needs about 40M ALMs.6 In
contrast, our implementation needs only 62990 LUTs in total,
which is much smaller. The binary activation used in NullaNet
degrades the accuracy and leads to a higher hardware resource
usage to achieve similar accuracy. For the power issue, from
the table we observe that although our LUT usage is about 14
times lower, the power consumption is only about 1.4 times
lower. There might be other sources contributing to the power
consumption.

6The excessive cost is due to the dominance of the input layer, where the
NullaNet optimization cannot be applied.

TABLE VII
COMPARISON WITH NULLANET FOR MNIST DATASET.

models LUT or ALM CARRY power (mW)
NullaNet [13] 112173 - 396.46

ours 8043 1107 281.00

TABLE VIII
COMPARISON WITH PRIOR WORK FOR JSC DATASET.

models accuracy LUT DSP CARRY Tclk latency
(ns) (ns)

JSC-L [16] 71.8% 37931 0 - 2.6 13.0
JSC-L [25] 73.4% 11752 - - 2.3 11.5a

QE [26] 72.3% 9149 66 - 5.0 55.0
ours 75.0% 2481 0 386 5.7 34.2

a Computed.

To compare with LogicNet under the “NID-M” model [16],
we train a model on the UNSWNB15 dataset [27], [28],
for network-packet malicious detection. We follow the data
preparation in [16] except that for each integer or floating-
point input, they convert it into a (fixed point) binary vector
and view each element in the vector as an input, while we use
6-bit fixed-point numbers to represent the input. Our model
consists of four FC layers (with 20, 10, 10, and 1 neurons in
order), using relu6 as their activation function except for the
output layer. The model is quantized to 4 bits and its accuracy
is about 91.36%, which is slightly higher than that, 91.30%,
of [16]. We use the same number of stages of pipelines and
enable retiming when synthesizing to compare the delay and
latency. The synthesis results show that our implementation
needs 316 LUTs, the maximum delay is 4.37 ns and the
latency is 21.8 ns. Their implementation needs 15949 LUTs,
the maximum delay is 2.12 ns and the latency is 10.5 ns. Our
implementation needs much fewer LUTs but the delay and
latency is longer, showing that their approach is effective for
getting high throughput and ours is resource efficient. Using
LUTs only without arithmetic operations in LogicNet results
in a lower latency. However, their hardware usage is higher due
to the exponentially growing LUT numbers; also, the required
sparsity in their model architecture degrades the accuracy.

Aside from UNSWNB15, the JSC [29] dataset is an-
other commonly studied application for low latency. For this
dataset, we trained a model which consists of three FC
layers, with 20, 20, 5 neurons, respectively, and quantized
the model to 4 bits. The testing accuracy for the quan-
tized model is about 75.0%, and that for the floating-point
version model is about 76.1%. We use our synthesis flow
to generate the circuit and implement it using Vivado with
the “Performance_ExtraTimingOpt” implementation
strategy. We compare our circuit with previous work, including
LogicNet [16], NullaNet Tiny [25] and AutoHQ [26]. The
results are shown in Table VIII, where “Tclk ” stands for the
clock period and the latency for JSC-L [25] is computed
from the information offered in the paper. We can observe
that our method, achieving similar accuracy, is much more
hardware efficient than the others. The efficiency comes from
computation sharing and the accuracy maintaining of our

9

TABLE IX
COMPARISON WITH FINN FOR MNIST DATASET.

models platform accuracy LUT CARRY clock frequency latency throughput on-chip power board power power efficiency
(Hz) (µs) (kFPS) (W) (W) (kFPS/W)

FINN SFC [8] ZC706 95.87% 91131 - 200M 0.31 12361 7.3 21.2 1693
FINN LFC [8] ZC706 98.40% 82988 - 200M 2.44 1561 8.8 22.6 177
FINN-R 1 [9] Ultra96 97.69% 38205 - 300M - 852 - 11.8 -
FINN-R 2 [9] PYNQ-Z1 97.69% 25358 - 100M - 162 - 2.5 -
FINN-R 3 [9] AWS F1 97.69% 337753 - 232.9M - 8463 - - -

ours Artix-7 97.30% 59285 12083 55.56M 0.126 27778 1.886 - 14728

method. Because we impose no extra constraints, such as
sparse connections and binary activations, on the NN model,
our method requires no extra hardware to mitigate accuracy
loss. On the other hand, the longer latency of our circuit
compared to those of [16] and [25] may be due to the fact
that we use the arithmetic operations in the software model
for circuit synthesis without particular optimization for latency.

To compare with FINN [8], [9], we implemented our QNN
for MNIST with a Xilinx Artix-7 FPGA. Pipelines are inserted
between layers and after the sub-adders, and the input data are
stored in block RAMs (BRAMs). The clock frequency is the
one that meets timing constraints after the implementation step
in Vivado. Since Artix-7 is a small board, the congestion level
is high. We use the “Flow_AreaOptimized_high” syn-
thesis strategy and “Congestion_SpreadLogic_high”
implementation strategy in Vivado and reduce the clock fre-
quency to successfully route the circuit. In fact, considering
only the logic delay, the frequency can reach over 94 MHz.
The power consumption is estimated using the Vivado power
report after implementation. The results are shown in Table IX,
where entries marked “-” indicate data unavailable. For the
models of [8], the SFC is a model consisting of three FC
layers, each with 256 neurons and the LFC is a model con-
sisting of three FC layers, each with 1024 neurons. Comparing
with them, we can achieve throughput 2.2 and 17.8 times
higher than that of SFC and LFC, respectively. Besides, we
can achieve 8.7 times and 83.2 times of power efficiency for
SFC and LFC, respectively.

For the models of [9], they have the same architecture
as LFC but with different hardware implementations. The
model FINN-R 3 implemented on AWS F1 has the highest
throughput among those reported in [9]. In comparison, our
implementation achieves 3.3 times higher throughput and
needs 5.5 times fewer LUTs. The model FINN-R 1 imple-
mented on Ultra-96 has the best power-efficiency among those
reported in [9], even considering implementations of QNNs
for other tasks. Because only the board power consumption is
available, we cannot directly compare. However we use LFC
[8] as a baseline to estimate the relative power efficiency as the
model architectures are identical. The board power efficiencies
of LFC and FINN-R 1 are 69 and 72 kFPS/W, respectively.
As the board power efficiency of these two are close and
our implementation can achieve about 83.2 times chip power
efficiency compared with the former one, these facts tend to
suggest that the power efficiency of our implementation could
be much better than that of FINN-R 1, although we need
1.55 times larger circuit size. We note that the smaller circuit

TABLE X
COMPARISON WITH ROBNN ON MNIST DATASET.

models LUT CARRY net throughput power pw. eff.
(FPS) (W) (FPS/W)

ROBNN 28618 - 48338 42.23M 0.70 60.33M
ours 5775 778 13694 64.52M 0.352 183.28M

size of FINN is due to its NPE-based implementation, which
allows NPEs to be reused for different neuron computation.
In contrast, direct logic implementation is advantageous in
throughput and power efficiency.

In ROBNN [12], the MNIST dataset was simplified to a
binary classification task to decide whether an input digit
is smaller than 4. To compare with it, we trained a model
consisting of three FC layers (with 16, 16, and 1 neurons in
order). The weights and activations are quantized to 4 bits.
The accuracy of our model is 97.36% while that in [12] is
96.13%. The accuracy of the floating-point version of our
model is 97.67%. The implementation results are listed in
Table X, where “pw. eff.” stands for power efficiency. Our
implementation needs only 20% LUTs and 28% nets to reach
a similar accuracy. Moreover, ours has a 1.53 times higher
throughput and 3.04 times better power efficiency. From the
results, we can also see that the accuracy degradation of BNNs
leads to higher hardware usage.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a synthesis flow for the direct trans-
formation of QNNs into logic circuits. Effective subadder
sharing has been achieved based on the use of the Booth
matrix. Experimental results have demonstrated substantial
reductions in LUT and net counts when implementing NNs
using the proposed techniques, and have shown the superiority
or competitiveness of our method compared to recent work.
The low-latency, high-throughput, and high-power-efficiency
implementation characteristics of our method make it suitable
for edge devices and various applications. As future work,
since our method can be applied to pretrained NNs, we plan
to extend it to work for recurrent NNs (RNNs).

REFERENCES

[1] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks: Training deep neural networks with weights
and activations constrained to +1 or -1,” arXiv:1602.02830, 2016.

[2] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proc. Conference on
Computer Vision and Pattern Recognition (CVPR), 2018, pp. 2704–
2713.

10

[3] J. Choi, P. I.-J. Chuang, Z. Wang, S. Venkataramani, V. Srinivasan,
and K. Gopalakrishnan, “Bridging the accuracy gap for 2-bit quantized
neural networks (qnn),” arXiv:1807.06964, 2018.

[4] B.-E. Verhoef, N. Laubeuf, S. Cosemans, P. Debacker, I. Papistas,
A. Mallik, and D. Verkest, “FQ-Conv: Fully quantized convolution for
efficient and accurate inference,” arXiv:1912.09356, 2019.

[5] Y. Choi, M. El-Khamy, and J. Lee, “Learning sparse low-precision
neural networks with learnable regularization,” IEEE Access, vol. 8, pp.
96 963–96 974, 2020.

[6] M. Nagel, M. V. Baalen, T. Blankevoort, and M. Welling, “Data-free
quantization through weight equalization and bias correction,” in Proc.
International Conference on Computer Vision (ICCV), 2019, pp. 1325–
1334.

[7] E. Meller, A. Finkelstein, U. Almog, and M. Grobman, “Same, same but
different-recovering neural network quantization error through weight
factorization,” arXiv:1902.01917, 2019.

[8] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre,
and K. Vissers, “FINN: A framework for fast, scalable binarized
neural network inference,” in Proc. International Symposium on Field-
Programmable Gate Arrays (FPGA), 2017, pp. 65–74.

[9] M. Blott, T. B. Preußer, N. J. Fraser, G. Gambardella, K. O’brien,
Y. Umuroglu, M. Leeser, and K. Vissers, “FINN-R: An end-to-end deep-
learning framework for fast exploration of quantized neural networks,”
ACM Trans. Reconfigurable Technol. Syst., vol. 11, no. 3, 2018.

[10] S. Sharify, A. D. Lascorz, M. Mahmoud, M. Nikolic, K. Siu, D. M.
Stuart, Z. Poulos, and A. Moshovos, “Laconic deep learning inference
acceleration,” in Proc. International Symposium on Computer Architec-
ture (ISCA), 2019, pp. 304–317.

[11] C. Chi and J. R. Jiang, “Logic synthesis of binarized neural networks
for efficient circuit implementation,” in Proc. International Conference
on Computer-Aided Design (ICCAD), 2018, pp. 1–7.

[12] T. Murovič and A. Trost, “Resource-optimized combinational binary
neural network circuits,” Microelectronics Journal, vol. 97, p. 104724,
2020.

[13] M. Nazemi, G. Pasandi, and M. Pedram, “Energy-efficient, low-latency
realization of neural networks through boolean logic minimization,” in
Proc. Asia and South Pacific Design Automation Conference (ASPDAC),
2019, pp. 274–279.

[14] S. Tridgell, M. Kumm, M. Hardieck, D. Boland, D. Moss, P. Zipf, and
P. H. Leong, “Unrolling ternary neural networks,” ACM Transactions
on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 4, pp.
1–23, 2019.

[15] E. Wang, J. J. Davis, P. Y. K. Cheung, and G. A. Constantinides,
“LUTNet: Learning FPGA configurations for highly efficient neural
network inference,” IEEE Transactions on Computers, vol. 69, no. 12,
pp. 1795–1808, 2020.

[16] Y. Umuroglu, Y. Akhauri, N. J. Fraser, and M. Blott, “LogicNets: Co-
designed neural networks and circuits for extreme-throughput applica-
tions,” in Proc. International Conference on Field-Programmable Logic
and Applications (FPL), 2020, pp. 291–297.

[17] A. D. Booth, “A signed binary multiplication technique,” The Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–
240, 1951.

[18] A. G. Dempster and M. D. Macleod, “Constant integer multiplication
using minimum adders,” IEE Proceedings - Circuits, Devices and
Systems, vol. 141, no. 5, pp. 407–413, 1994.

[19] S. Migacz, “8-bit inference with TensorRT,” 2017. [Online]. Avail-
able: https://on-demand.gputechconf.com/gtc/2017/presentation/s7310-
8-bit-inference-with-tensorrt.pdf (Accessed: Apr. 7, 2021)

[20] Z. Galil, “Efficient algorithms for finding maximum matching in graphs,”
ACM Computing Surveys, vol. 18, no. 1, pp. 23–38, 1986.

[21] Xilinx, UG474: 7 Series FPGAs Configurable Logic Block, 2014. [On-
line]. Available: https://docs.xilinx.com/v/u/en-US/ug474 7Series CLB

[22] Altera, FPGA Architecture White Paper, 2006. [Online]. Available:
https://www.intel.com/content/dam/support/us/en/programmable/support-
resources/bulk-container/pdfs/literature/wp/wp-01003.pdf

[23] C. Wolf, “Yosys Open SYnthesis Suite,” https://yosyshq.net/yosys/ (Ac-
cessed: Jul. 7, 2021).

[24] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[25] M. Nazemi, A. Fayyazi, A. Esmaili, A. Khare, S. N. Shahsavani, and
M. Pedram, “NullaNet Tiny: Ultra-low-latency DNN inference through
fixed-function combinational logic,” in Proc. International Symposium
on Field-Programmable Custom Computing Machines (FCCM), 2021,
pp. 266–267.

[26] C. N. Coelho, A. Kuusela, S. Li, H. Zhuang, J. Ngadiuba, T. K.
Aarrestad, V. Loncar, M. Pierini, A. A. Pol, and S. Summers, “Automatic
heterogeneous quantization of deep neural networks for low-latency in-
ference on the edge for particle detectors,” Nature Machine Intelligence,
pp. 1–12, 2021.

[27] N. Moustafa and J. Slay, “UNSW-NB15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data set),”
in Proc. Military Communications and Information Systems Conference
(MilCIS), 2015, pp. 1–6.

[28] N. Moustafa and J. Slay, “The evaluation of network anomaly detection
systems: Statistical analysis of the UNSW-NB15 data set and the
comparison with the KDD99 data set,” Inf. Sec. J.: A Global Perspective,
vol. 25, no. 1–3, pp. 18–31, 2016.

[29] M. Pierini, J. M. Duarte, N. Tran, and M. Freytsis, “HLS4ML
LHC jet dataset (150 particles),” 2020. [Online]. Available:
https://doi.org/10.5281/zenodo.3602260

Yu-Shan Huang (Student Member, IEEE) received
the B.S. degree in electrical engineering from Na-
tional Taiwan University, Taipei, Taiwan, in 2020,
where he is currently pursuing the master’s degree
with the Graduate Institute of Electronics Engineer-
ing.

His research interests include neural network syn-
thesis and machine learning.

Jie-Hong R. Jiang (Member, IEEE) received the
B.S. and M.S. degrees in Electronics Engineering
from National Chiao Tung University, Hsinchu, Tai-
wan, in 1996 and 1998, respectively, and the Ph.D.
degree in Electrical Engineering and Computer Sci-
ences from the University of California at Berkeley,
Berkeley, CA, USA, in 2004.

He is a Professor with the Department of Elec-
trical Engineering and the Graduate Institute of
Electronics Engineering, National Taiwan Univer-
sity, Taipei, Taiwan. He leads the Applied Logic

and Computation Laboratory, and has worked extensively on logic synthesis,
formal verification, electronic design automation, and computation models of
biological and physical systems.

Dr. Jiang is a member of Phi Tau Phi and the Association for Computing
Machinery.

Alan Mishchenko (Senior Member, IEEE) received
the M.S. degree from the Moscow Institute of
Physics and Technology, Moscow, Russia, in 1993
and the Ph.D. degree from the Glushkov Institute of
Cybernetics, Kiev, Ukraine, in 1997.

In 2002, he joined the EECS Department, Univer-
sity of California at Berkeley, Berkeley, CA, USA,
where he is currently a Full Researcher. His research
is in computationally efficient logic synthesis, formal
verification, and machine learning.

