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Abstract—In recent years SAT solving has been widely used to
implement various circuit transformations in logic synthesis. However,
off-the-shelf CNF-based SAT solvers often have suboptimal performance
on these challenging optimization problems.

This paper describes an application-specific circuit-based SAT solver
for logic synthesis. The solver is based on Glucose, a state-of-the-art CNF-
based solver and adds a number of novel features, which make it run faster
on multiple incremental SAT problems arising in redundancy removal and
logic restructuring among others. In particular, the circuit structure of
the problem instance is leveraged in a new way to guide variable decisions
and to converge to a solution faster for both satisfiable and unsatisfiable
instances. Experimental results indicate that the proposed solver leads to
a 2-4x speedup, compared to the original Glucose.

I. INTRODUCTION

Boolean satisfiability (SAT) solving is a key component of modern
logic synthesis and verification tools. In verification, SAT is used to
prove combinational and sequential properties in the design, such as
functional equivalence of outputs or some conditions, which should
always hold. The use of SAT in synthesis is less common and
is gradually becoming mainstream when SAT solvers replace less
scalable computation engines, in particular, binary decision diagrams
(BDDs), for the task of proving correctness of circuit transformations,
such as removing redundancies, merging of equivalent nodes, and
performing functional decomposition. [1].

In most cases, the SAT solver used is an off-the-shelf solver, such
as MiniSAT [2] or Glucose [3]. These solvers perform well on large
isolated problem instances, as witnessed by the fact that they won
SAT solver competitions. However, when it comes to logic synthesis,
a strong single-instance SAT solver is not needed. A flexible, robust,
light-weight solver performs better on a sequence of incremental
circuit-based problems generated when checking properties in logic
synthesis, such as detecting redundancies, validating structural choices
in technology mapping, or proving the existence of a decomposition,
etc.

The use of application-specific SAT solving has a long history. The
early work on efficient implementation of automatic test-pattern gen-
eration (ATPG) [4] coupled with the progress in conflict-driven SAT
solving [5][6] developed in the context of CNF-based SAT solving,
led to the development of circuit-based SAT solvers [7][8][9]. In the
last two decades, the technology for application-specific SAT solving
has matured, resulting in numerous improvements, such as [10], as
well as hybrid solvers, such as [11][12] focusing on cryptography.

The existing circuit-based solvers have several limitations:

• They often leave out some practical features of CNF-based
solvers because these cannot be readily transferred to work on
the circuit.

• They rely on circuit-based J-frontier, which is often at odds with
variable activity-based decision heuristics such as VSIDS used
in CNF-based solvers [6].
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• They are often stand-alone and require special effort to integrate
with the circuit representation used in a logic synthesis applica-
tion.

The SAT solver of this paper addresses the above limitations and
differs from state-of-the-art circuit-based solvers as follows:

• It is based on the award-winning CNF-based SAT solver Glucose
[3], thus leveraging the efficient infrastructure for constraint
propagation and conflict analysis along with other features.

• It uses a known data-structure called J-frontier while offering new
ways of making it work with activity-based variable decisions.

• It has novel APIs for sharing the circuit structure with a logic
synthesis application. ( Appendix of [13] )

The proposed solver is developed in the context of SAT sweeping,
which is a scalable way of detecting functionally equivalent nodes in
a combinational logic circuit. To understand the role of SAT solving
in this context, the reader is referred to [14].

The rest of the present paper is organized as follows. Section II
introduces the background on Boolean satisfiability and and-inverter
graphs used to represent circuits in circuit-based SAT solvers. Section
III presents the main contributions of the paper, which is the design
of a circuit-based solver for logic synthesis. Section IV presents
experimental results while Section V concludes the paper.

II. PRELIMINARIES

A. Boolean Satisfiability

A decision problem, which seeks an assignment such that a given
Boolean formula F is evaluated to 1, is a Boolean satisfiability (SAT)
problem. F is satisfiable if such assignment exists. Otherwise, the
problem is unsatisfiable and equivalent to constant 0. In practice, the
instance of F is often represented in conjunctive normal form (CNF)
[15]. A CNF expression is a conjunction of clauses where each clause
is a disjunction of literals. Literals are polarities (positive or negative)
of Boolean variables used to formulate F .

B. SAT Solving Framework

A program that solves SAT problems is called a SAT solver. Modern
SAT solvers often utilize conflict-driven clause learning (CDCL)
[5][16]. A SAT solver assigns 0 or 1 to variables by making decisions,
as a mean of satisfiability reasoning. Activity-based decision heuristic
is a robust strategy widely used in modern SAT solvers [6][2][3].
A necessary assignment deduced by reasoning is an implication.
Consecutive implications result in constraint propagation. A decision-
propagation cycle is a decision level. During propagation, a conflict
means a variable is implied to be 0 and 1 simultaneously. When a
conflict occurs, conflict analysis examines implication dependencies
on implication graph [5], and characterizes the root cause of conflict
as a learnt clause. In order to avoid the same conflict in later
reasoning, the learnt clause is added to CNF without altering the
satisfiability of original formula. After a conflict clause is learnt, solver
cancels some decisions, backtracks to a previous decision level, and
resumes the search.



Fig. 1. The state of a SAT solver, including clause sets, assignments, decision
level and implication graph, used in Example 1

Example 1. We use directed bipartite graph for a compact represen-
tation of solver state. As shown in Figure 1, the variable z is implied
to be 1 by the clause ω under the assignment (x, y) = (0, 1). Note
that, an assignment made at the beginning of each level is a decision
not pointed by any red arrow, while all other followup assignments in
the same level are implied by propagation. The red-black arrows in the
graph form an implication graph. When a conflict occurs, the conflict
analysis traces implications on the red-black arrows and adding to a
new learnt clause the assignments characterizing the conflict. Next,
backtracking cancels the assignments made later than the highest
decision level of the literals (except for the conflicting literal) involved
in the learnt clause.

Incremental solving mode is available in SAT solvers [2][3]. It
allows multiple calls to a solver with assumptions on variables,
without resetting the solver. Between the calls, the CNF loaded into
the solver can be reused by supplementing it with new clauses. Most
importantly, the learning, which happened, helps improve performance
of the solver.

C. And-Inverter Graph

Without losing generality, circuits are in the form of and-inverter
graphs (AIGs) [17]. An AIG is a directed acyclic graph (DAG)
consisting of primary input/output (PI/PO) and two-input and-nodes
with optional inverter marks on the fanin edges. Transitive fanin (TFI)
of a node is a set of nodes reachable by recursively traversing the
node’s fanins.

D. SAT Solving with Structural Guidance

Structural information, such as circuit connectivity, allows for a
legitimate proof of satisfiability with partial assignment. In circuit-
based SAT solving, input formula F is represented as a logic circuit
without generating CNF. A logic gate is a J-node and requires
justification, if its fanin values do not imply the output value of the
gate. The set of J-nodes at any time during solving is called J-frontier
[4][10]. Decisions made using a J-frontier aim at justifying all J-
nodes. When J-frontier becomes empty, i.e., all J-nodes are justified,
the solver concludes that the formula F is satisfiable. In contrast, pure
CNF-based solving without circuit information requires a complete
assignment on all variables as a witness of the satisfiability of formula
F . Figure 2 shows an example demonstrating output 0 is justified
recursively.

III. CONTRIBUTIONS

The main contribution of this paper is a hybrid SAT solver
in the tradition of [7] based on the award-winning CNF solver
Glucose [3], which is in turn based on MiniSAT [2]. The reason

Fig. 2. Four possible configurations justifying the output 0 of the circuit,
where colored dash-lines are justification frontiers. The branches without
annotating a number can be left as unassigned.

Fig. 3. An example of activity management in Section III-B

for selecting Glucose/MiniSAT as the base, is because they offer
a strong implementation of CNF-based features needed to maintain
learned clauses in a hybrid solver. In particular, CNF propagation
using two-literal watching, conflict-driven clause learning, and conflict
clause minimization, are reused in our solver without the need to
reimplement them.

On the other hand, the circuit-based features proposed in this paper
include the following novel building blocks: (1) efficient justification
with activity values, (2) considerations for using precise activity
values, (3) efficient non-chronological restoration of J-frontier, (4)
seamless adoption of clause minimization techniques to circuit struc-
ture, and (5) refining the solving scope for better performance.

A. Activity-Based Justification

In Figure 2, when branching occurs on J-frontiers, the strategy
selecting the fanin of the largest activity value is activity-based justi-
fication. In order to leverage activity-based decision and justification
mechanism, a data structure is required to store gates on J-frontier in
an efficient way, such that 1) gates with the highest activity can be
easily found and 2) newly propagated gates requiring justification can
be readily added.

A novel data structure, J-heap, makes it possible to perform efficient
activity-based justification. Similar to the heap used in CNF solvers,
J-heap stores variables according to the activity values. However,
due to the lack of circuit information, the traditional heap requires
initialization by adding all unassigned variables to the heap. In
contrast, J-heap is more efficient because variables are added to it
only when J-frontier explores the circuit by propagation or decision.
This property grants J-heap smaller size, compared to the traditional
heap, and thus J-heap has better performance when performing push
or pop operations.

B. Management of Activity Values

Variable activity values are frequently updated during conflict
analysis to ensure the quality of forthcoming decisions. When activity-
based justification is used, the management of activity values is
different from a CNF solver in two ways: 1) the activity value
of a J-node equals the max activity among its fanins, 2) when
conflict analysis bumps a variable, the position of its fanout J-nodes



TABLE I
SYMBOLS FOR DETAILED ANALYSIS OF J-WATCH

g, g′ SAT variables or logic gates.
level(g) Decision level of variable g.
J(g) Fanins forming an irredundant justification of g.
Jw(g) J-watch of variable g.
lc The level conflict and backtracking occur.
lb The target backtracking level.

in J-heap may need to be updated more than once. The max-heap
property of J-heap could be violated if an affected J-node updates its
position incorrectly. To decouple the J-heap update problem from the
increasing (bumping) or the decreasing (decaying) of variable activity,
we collect affected J-nodes during conflict analysis and update the
activity of variables in J-heap just before updating the heap.

Example 2. Max-heapify is a typical operation for heap updating.
In Figure 3, on the left are a circuit and sub-tree of the associated J-
heap, where initial activities hold a < b, c, d. On the right are possible
outcomes for the updated activities: b, c, d < a. In the incorrect case,
the validity of max-heapify becomes order-dependent, for all activities
J-heap referred to were updated at once. The blue node is blocked
by the yellow and stays below node d. In contrast, the correct case
updates the referred activity right before adjustment of a node.

C. Non-Chronological Restoration of J-frontier

Non-chronological backtracking allows SAT solving to resume at
a previous decision level where conflict originates. However, SAT
solver still restores its state chronologically by pushing all cancelled
variables back to the heap. In contrast, with the circuit information
used in the solver, we introduce J-watch mechanism to realize
non-chronological restoration of solver state during backtracking.
It associates each variable with a watch-list recording justification
dependency with two operations defined: (Symbols in Table I are
used in the following context.)

Definition 1. J-watch insertion if g ∈ J(g′) holds, then g′ is added
into Jw(g).

Definition 2. J-watch deletion if g is cancelled during backtracking,
then check and clear members of Jw(g). For any g′ ∈ Jw(g), push
g′ back to J-heap if level(g′) ≤ lb holds.

Backtracking in a typical SAT solver pushes N cancelled variables
back to heap of size K in time

O(NlogK). (1)

This could be quite costly, for N equals the area of a sub-circuit
consisting of cancelled decisions and propagated variables, as denoted
in the blue region in Figure 4. In contrast, J-watch enables non-
chronological restoration of J-heap such that N roughly equals the
difference of two cuts corresponding to respective J-frontier at level lb
and lc. The reduction in heap operations from the scale of sub-circuit
area to J-frontier size delivers better performance in our hybrid solver.

D. Engineering J-watch into CDCL framework

The overhead of using J-watches may be substantial during back-
tracking. For example, monitoring redundant justification degrades
performance and simplicity. The following paragraph addresses the
J-watch efficiency.

Definition 3. g′ is J-watch-free if level(g) ≤ level(g′) holds
for all g ∈ J(g′).

Theorem 1. J-watch subsumes J-frontier membership of g′ since
level(g′).

Fig. 4. Green and blue shapes are justified regions at level lb and lc
respectively. The red dashed lines are J-frontiers.

Fig. 5. Venn diagram for justification related concepts.

Proof. If g′ is J-watch-free and pending for justifying, then fanin g ∈
J(g′) exists where level(g′) < level(g) holds. A contradiction.

Note that, when g′ has been justified and left J-frontier, g′ is
monitored by J-watch of its justification. Therefore, the inverse of
Theorem 1 does not hold. Figure 5 depicts this relation.

Corollary 1. 1-valued and-gate g′ is J-watch-free.

Proof. Assigning 1 to an and-gate conceptually corresponds to the
implications of 2-literal clauses where any unassigned fanin g has
propagated at level(g′). A direct result from Theorem 1.

Corollary 1 avoids part of redundant justification in performance-
critical code. In other words, an and-gate assigned to 1 is either
automatically justified, or conflicts during propagation. Furthermore,
no need to monitor their justification by J-watch.

Corollary 2. |J(g′)| < 2 holds for any and-gate.

Proof. Corollary 1 indicates that output 0 is the only cared condition,
where 0 is the controlling value of and-gate.

Corollary 2 keeps engineering simplicity. To be specific, a gate g′

can directly represent itself in unique Jw(g) without the need of extra
placeholder.

Corollary 3. Jw(g) and Jw(g
′), share the same semantic if

level(g) = level(g′).

Proof. Let m ∈ Jw(g) and m′ ∈ Jw(g
′), then m and m′ leave

corresponding Jw simultaneously whenever backtracking occurs with
lb < level(g). A direct result of Definition 2.

Corollary 3 allows for a transition from the gate-based to level-
based J-watch scheme, by showing the identical behavior between
the two when backtracking occurs. From engineering perspective,
Corollary 3 improves memory footprint, since it indicates that each
decision level requires only one J-watch list, where the number
of unique decision levels is often much fewer than the number of
variables during constraint propagation.

Another improvement comes from the definition of J-watch itself.
Theorem 1 avoids unnecessary J-heap operations. In other words,
a gate g once requiring justification could become J-watch-free
after propagation. In practice, we stack propagated variables until
propagation has fully completed without conflict. Variables becoming
J-watch-free are exempted from being pushed to J-heap.



TABLE II
SYMBOLS FOR DETAILED ANALYSIS OF INTERPRETATION

⊥ Unassigned value.
t Traced variable.
r Reason which implies value of t.

I(t, r) The clause deduced from reason r, implying t.
D(t) Direction of the first controlling fanin.

TABLE III
LOOKUP TABLE FOR INTERPRETING s0 = s1 ∧ s2 .

t (s0, s1, s2) I(t, s0) comments

s0

(0, 0,⊥) (¬s0 ∨ s1)
covered by

(¬s0 ∨ sD(s0))
(0,⊥, 0) (¬s0 ∨ s2)
(0, 0, 1) (¬s0 ∨ s1)
(0, 1, 0) (¬s0 ∨ s2)
(0, 0, 0) (¬s0 ∨ sD(g))
(1, 1, 1) (s0 ∨ ¬s1 ∨ ¬s2)

s1

(0, 0,⊥) - justification
(0, 0, 1) (s0 ∨ ¬s1 ∨ ¬s2)
(1, 1, 1) (¬s0 ∨ s1)

s2

(0,⊥, 0) - justification
(0, 1, 0) (s0 ∨ ¬s1 ∨ ¬s2)
(1, 1, 1) (¬s0 ∨ s2)

E. Interpreting Implication Graph On-the-fly

The edges in a hybrid implication graph can be clauses or circuit
gates. Interfacing between the two is important for efficient conflict
analysis and learnt clause minimization [18]. (Symbols in Table II
are used in the following context.)

A typical CNF-based implication graph is a DAG where each propa-
gated variable t is associated with a reason clause r implying the value
of t. These properties allows us to define an interpretation function
I(t, r) depicted in Figure 6, which takes a logic gate as the reason r of
t and view the gate as a clause. Table III shows that such I(t, r) exists
and gives the reason clause for the implication propagated by the
gate s0 uniquely, for each combination of (s0, s1, s2) assignment and
tracing target t. Based on the uniqueness of I(t, r) interpretation, it is
trivial to show that I(t, r) generates an implication graph isomorphic

Fig. 6. Comparing CNF database and circuit clause deduction.

Fig. 7. I(t, r) casts clause queries in hybrid environment.

Fig. 8. The state of a circuit-based SAT solver using I(t, r) in Example 3.

to its pure CNF counterpart if the circuit gates are represented using
CNF.

In practice, I(t, r) gives the result of querying the reason clause as
shown in Figure 7, where r is a polymorphic datatype [19] capable
of storing both a pure clause and a logic gate. During traversal of a
hybrid implication graph, I(t, r) visits reason r one at a time and
interprets clauses on-the-fly. Therefore, the temporary clause used
to represent reasons for each implication generated by the circuit
composed of two-input nodes can be stored in a three-literal buffer. In
summary, the capability of traversing hybrid implication graph enables
seamless adoption of existing clause minimization techniques [18] in
the proposed solver.

Example 3. Figure 8 depicts a circuit-based SAT solver using
one-the-fly interpretation. Different from conventional CNF solvers
shown in the Figure 1, the interpretation function I(t, r) grants
a single buffer the capability to represent arbitrary members in
the set of circuit clauses during conflict analysis or learnt clause
minimization. Given and-gate z = x ∨ y, according to Table III,
while tracing z under the reason z, the buffer clause is interpreted to
I(z, z) = (z ∨ x ∨ y).

F. Topological Abstraction for Solving Scope

Justifying circuits in large scale often requires incremental solving
for better performance offered by learnt clauses. However, the accu-
mulated sub-circuits in a solver are not necessarily relevant to every
rounds of solving and can degrade performance. In order to resolve the
trade-off, we apply topological abstraction, which recursively marks
TFI from root nodes, to further refine the solving scope of current
window. Afterwards, propagation and justification occur only in the
relevant region, thus the window size of our solver can grow more
aggressively for better reuse of the learnt information.

IV. EXPERIMENTAL RESULTS

The proposed solver is integrated into state-of-the-art SAT sweeper
[14] in ABC [20] and can be called using command ”&fraig -x”. The
experiments were run on AMD Ryzen 7 4800HS CPU with 40GB
RAM. A single core and less than 1GB were used for any test case
considered in this section. Due to the limited access to other circuit-
based solvers, we compare our solver with original Glucose in a logic
synthesis application, and also show the effect of our techniques.

A. Evaluating the Solver Performance in SAT Sweeping

Table IV shows experimental results on a subset of randomly
selected large benchmarks from ITC’99, ISCAS’85/’89, IWLS’05
[21], and HWMCC’15 [22] benchmarks suites. Section “Statistics”
lists the benchmark name (Name) (the number in parentheses next
to the name, if present, shows the timeframe count used to unfold
sequential AIGs), the number of primary inputs (PI), primary outputs
(PO), logic levels (Lev), and internal and-nodes in the original AIG



(And). Section ”Solver calls” lists the number of satisfiable calls
(SAT) and total calls made by the SAT solver while running the SAT
sweeper.

The section “SAT sweeping time” shows (1) the total time of SAT
sweeping (column “Total”), (2) the time spent by the proposed solver,
including data initialization and solving (column “Solver”), (3) the
pure solving time (column “Solving”). The columns “NoCir” and
“New” denote the runtime of using original Glucose and the proposed
solver, respectively. The SAT solver conflict limit was disabled in all
runs. However, the testcases running more than 900 seconds were
aborted and the corresponding entries in the table contain a dash. The
aborted runtime is assumed to be 900 seconds.

The last section shows improvements in runtime. The last row lists
geometric averages for each runtime metric. The proposed solver runs
3.7x faster on average, resulting in a 2x speedup in SAT sweeping.
Furthermore, if the data initialization is considered, including loading
CNF into original Glucose and computing the cone of influence, the
SAT solver speedup is about 4.2x. Besides, the huge improvement
ratio shown in the case “s35932(40)” demonstrates the advantage of
activity-based justification. The “NoCir” configuration encounters, on
average, 1000 times more conflicts compared to the “New” in the
satisfiable calls.

B. The Effect of J-Heap and J-Watch

The cost of using the heap can be evaluated based on the operation
complexity and the heap size. Formula 1 shows the cost of applying N
operations when the heap size is K. To consider the sum of individual
costs of N cases with the respective heap size, the cost of J-heap
operation is formulated as

SJ =

N∑
i=1

log(Ki), (2)

where N is the number of heap operations, including push and
pop, indexed with i, performed when the heap has size Ki, in the
actual order during the SAT solving process. In order to compare the
effectiveness of using J-heap, the cost of operating a conventional
heap is formulated in a similar way

SC =

N∑
i=1

log(Ui), (3)

where Ui is the number of unassigned variables at the i-th heap
operation. Due to the assignment made by propagation, the actual
heap size is often larger than Ui. Thus, it is fair to use Ui as a
conservative estimate of the conventional heap size.

Formula 2 and 3 allow for the comparison of computational cost
between a J-heap and a conventional heap for the common push and
pop operations. In addition, the effect of not using J-watch can be
formulated as the penalty cost

PC =

A∑
j=1

log(Uj), (4)

where there are A indexed heap operations, representing the push
operations ruled out when level(g’) > lb occurs in Definition 2.
On the other hand, the Uj shares the definition with Formula 3. The
subscript j is used to emphasize that N and A refer to two different
sets of heap operations occurring at different times.

Table V compares the computational cost of the experiments in
Table IV. The section “Cost” shows the computational cost SJ , SC ,
and the penalty cost PC defined in Formula 2, 3 and 4 respectively. In
the case of benchmark “s35932(20)”, the three cost values are zeros
since the equivalence is proved at top decision level while the non-
equivalence is solved by simulation. The section “Op. #” shows the
number of heap operations “N”, including push and pop, described

by Formula 2 and 3, while “A” is the skipped push described by
Formula 4. The next section shows (1) the ratio of the cost using
J-heap to that of using conventional heap without J-watch (column
“SJ/(SC + PC)”), (2) the ratio of the number of the skipped push
operations A to the total heap operations (column “A/(N+A)”), (3)
the ratio of the penalty cost to the J-heap cost (column “PC/SJ”).

The last row shows geometric averages for each cost metric. The
computational cost of using J-heap is, on average, 25% compared to
not using J-heap. The penalty cost PC of not using J-watch in the
conventional heap, i.e. non-chronological restoration, can be as high
as 71% of the SJ cost, even if the skipped push operations amount
to only 19% to the total heap operations.

V. CONCLUSIONS

The paper introduces an efficient circuit-based SAT solver for logic
synthesis applications. In such applications, the solver typically pro-
cesses a sequence of incremental SAT problems, which are numerous
(typically more than a thousand, possibly a few million), topologically
related (have overlapping logic cones), and relatively simple (the
majority of them is solved after a few conflicts).

To address such problems in an application-specific solver, several
novel data-structures (such as J-heap and J-watch) are used in combi-
nation with J-frontier, which is a well-known solution for tracking
relevant nodes in circuit-based solvers. Additionally, several novel
implementation tricks for developing and integrating circuit-based
solvers are presented.

The proposed solver has been tried in several applications, in
particular, in the context of SAT sweeping, that is, proving and
merging of equivalence nodes in a combinational logic circuit. The
experimental results show that the proposed solver achieves a 4x
speedup of SAT solving, resulting in a 2x speedup of SAT sweeping,
compared to a well-tuned integration of the original CNF-based
Glucose.

Future work may include extending the solver to work on larger
gates, such as muxes and multi-fanin and-nodes, and integration into
applications using observability don’t-cares, since currently it supports
only satisfiability don’t-cares.
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TABLE IV
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netcard 195730 97805 40 803848 6 599 3.82 3.68 0.19 0.04 0.02 0.00 1.04 4.75 1.00
RISC 15678 8111 40 75613 72 941 0.34 0.30 0.04 0.01 0.02 0.01 1.13 4.00 2.00
vga lcd 34247 21412 24 126708 0 159 0.22 0.22 0.00 0.00 0.00 0.00 1.00 1.00 1.00
6s100 127138 97599 79 636637 2504 10189 4.71 2.92 2.25 0.48 1.59 0.35 1.61 4.69 4.54
6s203b41 80192 68958 65 474322 203 5525 2.40 2.29 0.12 0.04 0.05 0.03 1.05 3.00 1.67
6s281b35 268334 177236 121 2076248 10695 17095 55.12 13.54 42.79 2.54 37.13 1.82 4.07 16.85 20.40
6s299b685 719410 467370 75 4111296 902 59972 20.91 19.81 1.76 0.61 0.74 0.42 1.06 2.89 1.76
6s322rb646 82513 80928 108 641468 32 22365 2.88 2.17 0.96 0.26 0.26 0.14 1.33 3.69 1.86
6s342rb122 59253 56839 52 330130 191 3221 0.58 0.52 0.11 0.06 0.02 0.04 1.12 1.83 0.50
6s350rb46 245680 243400 194 1550412 112 3428 8.37 7.04 1.50 0.21 0.64 0.07 1.19 7.14 9.14
6s382r 106395 104831 2752 1756654 1493 6246 36.58 32.74 26.03 22.27 24.63 22.00 1.12 1.17 1.12
6s387rb291 30615 29495 30 330186 251 14760 0.92 0.78 0.26 0.09 0.12 0.07 1.18 2.89 1.71
6s392r 80920 80151 538 1599275 582 2877 1.61 1.32 0.37 0.09 0.25 0.08 1.22 4.11 3.13

geomean 2.09 4.18 3.70

PI and PO reported include both primary inputs/outputs and flop outputs/inputs.

TABLE V
COMPARING COMPUTATIONAL COST OF USING J-HEAP VS USING CONVENTIONAL HEAP

Cost Op. # Ratio

Name SJ SC PC N A
SJ

SC+PC
A

N+A
PC
SJ

b07(100) 3.28E+07 5.43E+07 6.21E+06 4.10E+06 4.94E+05 0.54 0.11 0.19
b07(50) 4.85E+06 8.64E+06 9.08E+05 6.82E+05 7.62E+04 0.51 0.10 0.19
b18(10) 9.99E+07 2.32E+08 7.03E+07 1.36E+07 4.22E+06 0.33 0.24 0.70
b18(15) 4.25E+08 9.02E+08 2.15E+08 4.97E+07 1.20E+07 0.38 0.20 0.50
b19(5) 6.23E+07 1.60E+08 6.63E+07 1.03E+07 4.31E+06 0.28 0.30 1.06
b19(7) 1.33E+08 3.41E+08 1.32E+08 2.03E+07 8.01E+06 0.28 0.28 1.00
s35932(20) 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 - - -
s35932(40) 7.06E+03 3.35E+04 1.46E+04 1.81E+03 7.94E+02 0.15 0.30 2.07
s38584(10) 6.42E+06 1.51E+07 4.29E+06 9.85E+05 2.85E+05 0.33 0.22 0.67
s38584(15) 2.91E+07 5.87E+07 1.29E+07 3.64E+06 8.13E+05 0.41 0.18 0.44
leon2 2.23E+07 4.17E+07 2.07E+07 2.47E+06 1.23E+06 0.36 0.33 0.93
netcard 8.58E+02 7.97E+03 1.72E+03 5.00E+02 1.03E+02 0.09 0.17 2.01
RISC 5.14E+04 1.49E+05 4.74E+04 1.33E+04 4.27E+03 0.26 0.24 0.92
vga lcd 1.50E+01 3.89E+02 0.00E+00 4.10E+01 0.00E+00 0.04 - -
6s100 7.33E+06 1.43E+07 6.99E+06 1.16E+06 5.66E+05 0.34 0.33 0.95
6s203b41 1.18E+05 4.61E+05 9.61E+04 4.18E+04 8.46E+03 0.21 0.17 0.82
6s281b35 3.48E+06 1.66E+07 7.55E+06 1.15E+06 5.24E+05 0.14 0.31 2.17
6s299b685 9.30E+05 2.42E+06 3.71E+05 2.10E+05 3.29E+04 0.33 0.14 0.40
6s322rb646 2.85E+03 1.90E+04 9.25E+02 1.66E+03 8.30E+01 0.14 0.05 0.33
6s342rb122 2.45E+05 5.82E+05 2.28E+05 5.25E+04 2.07E+04 0.30 0.28 0.93
6s350rb46 7.60E+04 2.74E+05 1.12E+05 1.89E+04 7.55E+03 0.20 0.29 1.47
6s382r 4.23E+07 7.87E+07 2.10E+07 6.01E+06 1.85E+06 0.42 0.24 0.50
6s387rb291 8.62E+04 6.19E+05 3.10E+04 6.08E+04 3.30E+03 0.13 0.05 0.36
6s392r 1.70E+06 3.37E+06 1.13E+06 2.92E+05 9.92E+04 0.38 0.25 0.66

geomean 0.25 0.19 0.71
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