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Abstract 
When synthesizing hardware designs, the frontend of a 
synthesis tool often elaborates control logic as multiplexers 
and selectors, which are next bit-blasted into simple gates 
and processed by a logic synthesis flow. This approach may 
lead to suboptimal results or take a prohibitive runtime to 
synthesize optimally. The present paper focuses on a 
specialized logic synthesis method applied to a word-level 
view of the control logic after elaboration before bit-
blasting, or to the control logic extracted from a netlist after 
bit-blasting. The method detects clock-enables and other 
types of shared logic, resulting in substantially reduced area 
and delay, at a negligible runtime cost. 

1. Introduction 
In a typical synthesis scenario, a hardware design in 

Verilog or VHDL is entered into the tool via a frontend, 
which elaborates it into word-level operations and bit-blasts 
them into elementary logic gates. The gate-level netlist goes 
into a logic synthesis engine, which applies standard 
optimization techniques. In the general case, synthesis 
works well but often fails to find good solutions for 
specialized logic. Analyzing the problematic test cases 
helps logic synthesis researchers and CAD tool developers 
isolate design/elaboration patterns and address them by 
dedicated transforms.  

One class of such patterns concerns next-state logic cones 
of word-level registers present in typical hardware designs. 
In particular, when an N-bit register stores data from 
multiple places in the design, a typical next-state logic cone 
selects among the data sources. For example, in designing 
datapaths, the data saved in a register may come from a 
multiplier, an adder, a bit-shifter, etc. The data source is 
determined by the output of the instruction decoders, data 
comparators, etc., serving as inputs to the next-state logic. 

We observed that the default elaboration often leads to 
suboptimal synthesis results or long synthesis runtimes. 

This paper proposes a new way of restructuring word-
level next-state logic cones, isolating the shared control 
logic and using the smallest possible multiplexer needed to 
select among the data inputs using the shared controls. 

Another approach to multiplexer transforms [3] focuses 
on resource sharing rather than control logic minimization.  

The rest of this paper is organized as follows. Section 2 
describes the background. Section 3 shows a motivating 
example. Section 4 describes the algorithm. Section 5 
reports experimental results. Section 6 concludes the paper 
and outlines future work. 

2. Background 
A Boolean network is a directed acyclic graph (DAG) 

with nodes corresponding to logic gates and edges 
corresponding to wires connecting the gates. The terms 
Boolean network, netlist, and circuit are used 
interchangeably in this paper. In this paper, we consider 
only combinational Boolean networks.  

A node n has zero or more fanins, i.e., nodes that are 
driving n, and zero or more fanouts, i.e., nodes driven by n. 
The primary inputs (PIs) are nodes without fanins in the 
current network. The primary outputs (POs) are a subset of 
network nodes, which deliver the functionality of the 
network to its environment. A fanin (fanout) cone of node n 
is a subset of all the network nodes, reachable through the 
fanin (fanout) edges of the node. 

A combinational And-Invertor Graph (AIG) is a Boolean 
network composed of two-input ANDs and inverters. To 
derive an AIG, the SOPs of the nodes in a logic network are 
factored, the AND and OR gates of the factored forms are 
converted into two-input ANDs and inverters using 
DeMorgan’s rule, and these two-input ANDs are added to 
the AIG manager in topological order. The size (area) of an 
AIG is the number of its nodes; the depth (delay) is the 
number of nodes on the longest path from the PIs to the 
POs. The goal of optimization by local transformations of 
an AIG is to reduce both area and delay.   

Structural hashing of AIGs ensures that all constants are 
propagated and, for each pair of nodes, there is at most one 
two-input AND with them as fanins (up to a permutation). 
Structural hashing is performed by hash-table lookups when 
AND nodes are created and added to an AIG manager. 
Structural hashing can be applied on-the-fly during AIG 
construction, which reduces the AIG size. 

The concepts of area and the number of AIG nodes are 
used interchangeably in this paper. The concepts of delay, 
depth, and logic level are also used interchangeably.  

A local function of an AIG node n, denoted fn(x), is a 
Boolean function of the logic cone rooted in n and 
expressed in terms of the leaves, x, of a cut of n. The global 
function of an AIG node is its function expressed in terms 
of the PIs of the AIG. 

AIGs can represent both local and global functions. 
Because of low memory usage, speed of manipulation, and 
scalability, AIGs have recently emerged as a widely-used 
data-structure in logic synthesis and formal verification. 

Additional information can be found in the following 
publications on AIGs [4] and AIG-based synthesis [5][6]. 



3. Motivation 
This section shows a motivating example, followed by the 

outline of the proposed algorithm in the next section. 
Hardware designs in RTL Verilog [10] represent control 

logic using always-statements. Figure 1 below shows a 
small design containing one word-level (32-bit) register out 
whose next-state function is given by an always-statement. 
Three control variables, c0, c1, and c2, determine what data 
is written into the register on the rising edge of the clock 
signal clk. For example, if c0 is 0 and c1 is 1, 32-bit data a 
is written into out. If for some inputs, the register rvalue is 
not defined, it is assumed to be the same as in the previous 
cycle. For example, if c0 is 0 and c1 is 0, out is not defined.  
 
module example ( clk, c0, c1, c2, a, b, out ); 

input clk; 
input c0, c1; 
input [1:0] c2; 
input [31:0] a, b; 
output [31:0] out; 

reg [31:0] out; 
always @ (posedge clk) 
  if (c0 == 1'b0) 
     begin 
       if (c1 == 1'b1) 
          out <= a; 
     end 
  else // c0 == 1’b1 
     begin 
       case (c2) 
         2'b00: ; 
         2'b01: out <= a; 
         2'b10: out <= b; 
         2'b11: ; 
       endcase 
    end 

endmodule 
 

Figure 1: A small design block used for illustration. 
 
When the Verilog in Figure 1 is elaborated by a synthesis 

tool, a circuit in Figure 2 is typically generated. This circuit 
is suboptimal, as shown below. In the case of small always-
statements, such as the one in Figure 1, suboptimality is 
overcome by performing logic synthesis. However, in the 
case of larger always-statements, generic logic synthesis 
does not lead to an optimal solution, or requires prohibitive 
runtime. Thus, specialized methods are of great interest. 

The method proposed in this paper takes a control logic 
cone after elaboration and performs restructuring, resulting 
in a near-optimal circuit structure. The restructuring isolates 
control logic signals shared across all bits of the register. 
One of such signals is clock-enable, which is commonly 
extracted by synthesis tools. Other types of shared logic are 
not commonly extracted by the tools, but can be extracted 
using the proposed method.  

3.1 Clock-enable extraction 
If the hardware primitive used to implement the 32-bit 

register has a clock-enable (CE) pin, the next-state logic of 
the register out in Figure 1 can be simplified by extracting 
the condition when the register value changes. This 
condition can be used to drive the CE pin, as shown in 
Figure 3.   

3.2 Optimizing next-state logic using CE 
The next-state logic after the CE extraction shown in 

Figure 3 can be further simplified by noticing that, when the 
value of the CE is zero, the value of the next-state function 
does not matter. In this case, the logic shown in Figure 3 
can be transformed into the structure shown in Figure 4. 
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Figure 2: The circuit derived by elaborating the design. 
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Figure 3: The circuit after the clock-enable extraction. 
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Figure 4: The circuit after the proposed optimization. 
 
If 4-input LUTs are used to realize logic functions, the 

logic cone in Figure 2 requires 128 LUTs. This is because 
each 2:1 MUX takes one LUT, while each 4:1 MUX takes 
two LUTs in each of the 32 bit-level cones. Meanwhile, the 
simplified logic cone in Figure 4 requires only 33 LUTs (32 
LUTs for the next-state functions plus an extra LUT to 
generate the shared CE signal). This is an almost 4x area 
reduction compared to the naïve solution. If the bit-level 



flip-flops do not have the CE pin, the logic cone in Figure 4 
would require 64 LUTs, which is still a 2x area reduction. 

 

4. Algorithm 
The input to the algorithm is a multi-output bit-level 

combinational logic cone of the next-state functions of a 
word-level data register. The logic cone is represented as an 
AIG whose inputs are primary inputs and flop outputs of 
the design to which the data register belongs.  

4.1 Detecting data and control variables 
The algorithm begins by analyzing the multi-output logic 

cone and detecting control and data variables. Both of 
these variables can be primary inputs or internal nodes of 
the AIG. The main difference between control and data is 
that the data variables are written into the flops when 
control variables have specific values.  

A practical way to distinguish the control and data 
variables is to observe that control variables are shared 
among the logic cones of the bit-level next-state functions, 
while the data variables are unique for each function. 

For example, consider logic cones shown for in Figure 2 
derived by elaborating the design in Figure 1. All of the 32 
bit-level cones depend on the same control variables, c0, c1, 
and c2. However, each bit-level data variable appears only 
in one bit-level logic cone, in particular, ai and bi appear 
only in the logic cone of i-th flop. 

In the proposed approach, the detection of control and 
data variables in the bit-level logic cones is performed as 
follows: 
 For each bit-level input of the N-bit word-level register 
o Find the maximum fanout-free cone (MFFC) of the 

input, that is, those AIG nodes that would be 
removed if the input were removed. 

o Mark the AIG nodes connected to the MFFC nodes 
(these can be primary inputs or internal AIG nodes). 

 Consider AIG nodes marked by the above procedure.  
o If a node has been marked once, it is a data variable. 
o If a node has been marked N times, it is a control 

variable, shared across N logic cones. 
o If a node has been marked more than once and less 

than N times, abort the computation because control 
logic cannot be extracted from all logic cones. 

Please note that the computation may be aborted for 
several reasons: (a) some bit-level functions of the word-
level register indeed have different functions and thus logic 
sharing cannot be extracted by the proposed method, 
(b) some form of logic synthesis has been applied to the 
next-state logic cones after elaboration, resulting in the loss 
of structural uniformity. In both cases, it may be possible to 
address the situation: for example, split the bit-level 
function into several groups with uniform bit-level logic 
within each group. In the interest of focused presentation, 
we do not consider such complications. 

4.2 Transforming one bit-level logic cone 
Next, we discuss application of the algorithm to a single-

output next-state logic function, F(C, X), represented as an 
AIG logic cone in terms of two groups of variables: control 
variables C and data variables X = (x0, x1, …, xn-1), which 
can be either primary inputs or internal nodes of the AIG, 
detected as discussed in Section 4.1. 

The main idea is to decompose this function as follows: 

F(C, X) = x0 & f0(C) + x1 & f1(C) + … + xn-1 & fn-1(C)    (1) 

where functions f0(C), f1(C), … fn-1(C) do not depend on 
data variables, X, and are mutually disjoint, that is, fi(C) & 
fj(C) = 0 for all i and j such that i ≠ j. 

Assuming that this condition holds, the algorithm tries to 
find functions fi(C) by setting corresponding values to the X 
variables. For example, by substituting into F(C, X) value 0 
for all X variables, except for one variable xi set to value 1, 
we can determine function fi(C). When all f-functions are 
found, equivalence checking is performed to confirm that 
the composition of these functions with the corresponding 
data variables is equivalent to the given function F(C, X). If 
the check fails, the algorithm quits, indicating failure to 
perform logic restructuring. It was observed that failures 
happen rarely in practice, most often due to functions f0(C), 
f1(C), … fn-1(C) not being mutually disjoint. This situation 
can also be addressed, but the detailed discussion is beyond 
the scope of this paper. 

4.3 Extracting clock enable  
This subsection shows that detecting of the clock-enable 

condition of a bit-level flop can be performed as a by-
product of applying the proposed algorithm. 

Indeed, if the function F(C, X) is transformed into the 
expansion (1), as shown in Section 4.2, the data variables, 
X, may contain the flop-output variable xfo. In this case, the 
corresponding control function Ffo(C) represents the clock-
enable condition that can be used to drive the clock-enable 
pin of the bit-level flops.  Other functions of the expansion 
(1) can now be minimized using Ffo(C) as the care set. In 
practice, this may leads to a substantial reduction in the size 
of AIG for F(C, X). We refer the interested reader to the 
following publications discussing minimization of logic 
functions using don’t-cares [7][8]. 

4.4 Transforming multiple logic cones 
In previous sections, we discussed transformation by the 

above algorithm of a single-output logic function, F(C, X).  
Now, we recall that this function is one bit-level next-state 

function of an N-bit register. We can apply the same 
transformation to each next-state function and, if all of them 
are successfully decomposed using the same control logic 
functions f0(C), f1(C), … fn-1(C) and different data-bits, the 
shared logic in the N-bit next-state cone has been extracted. 

However, in practice, we can avoid transforming each bit-
level function and instead assume that the same transformed 
structure holds for all of them. Thus, we duplicate the 
transformed cone for each other bit, while keeping the same 



control functions and replacing data variables accordingly. 
As a result, the shared control functions are automatically 
extracted, while the resulting logic needs to be checked for 
equivalence against the original multi-output logic cones 
before the transformation. If the equivalence holds, the 
transformation is correct; otherwise, it is rejected, and the 
original multi-output logic cone is used. 

It can be noted that the transformed multi-output logic 
cone includes the shared control logic (one per all bit-level 
flops) and individual MUXes (one MUX per each bit-level 
flop). The shared control logic selects the input for each 
flop using the smallest MUX needed to choose among the 
corresponding data variables.  

The resulting area reduction achieved in practice by the 
proposed algorithm ranges from 10% to 10x. Several 
factors determine the efficiency, such as:  
 The number of bits in the word-level register (the more 

bits, the more beneficial is sharing of the control logic).  
 The complexity of the shared control conditions (the 

more complex the shared logic, the more savings).  
 The number of data sources of the word-level register 

(the fewer are data sources, the smaller are the MUXes 
selecting data into each bit-level flop, relative to the 
size of the shared control logic, and the more savings). 

5. Experiments 
The proposed algorithm is implemented in ABC [1][2] as 

command &reshape and tested on the example in Figure 1 
and logic cones extracted from the hardware design blocks 
publicly available in the OpenCores design repository [9]. 

Two experiments have been performed. The first 
experiment in Section 5.1 lists detailed optimization results 
for individual word-level registers. The second experiment 
in Section 5.2 shows the cumulative effect of the 
optimization applied to the corresponding design blocks. 

5.1 Optimizing logic of word-level registers  
For this experiment, we selected several word-level 

registers from different designs and applied the proposed 
optimization. The results are reported in Table 1.  

The table reports the following statistics for each word-
level register: the block name (“Design block”) and the 
register name (“Register”), the bit-width (“Bits”), the 
number of control variables (“CVars”), and data variables 
(“DVars”) detected when considering bit-level functions  
(as discussed in Section 4.1), the original AIG size before 
and after AIG rewriting using command &dc2 (“Base” and 
“BaseOpt”), the transformed AIG size before and after AIG 
rewriting using &dc2 (“Trans” and “TransOpt”).  

Table 1 shows that in some cases the AIG size is not 
reduced, and in some cases it is reduced substantially.  

The runtime of the proposed method is not reported 
because it was negligible (less than 5%) compared to that of 
command &dc2, which takes a few seconds for the largest 
logic cone reported in Table 1. 

5.2 Optimizing the design blocks 
For this experiment, we selected several design blocks 

containing word-level registers whose next-state logic cones 
could benefit from the proposed optimization. Table 2 
reports the following information: the design block name 
(“Design block”), the number of primary inputs (“PI”), 
primary outputs (“PO”), word-level registers (“FF”), bit-
level flip-flops (“FF”), and internal AIG nodes after 
elaboration (“Base”). The optimization baseline is given by 
the number of AND nodes after running command &dc2 
once (“BaseOpt”) and 10 times (“BaseOpt10”).  

The method proposed in this paper is applied to the AIG 
after elaboration, resulting in a transformed AIG (“Trans”) 
followed by the same logic synthesis script applied once 
(“TransOpt”) and 10 times (“TransOpt10”).  

As mentioned in Section 5.1, the runtime of the proposed 
method is not reported because in all cases it was a small 
fraction (less than 5%) of the runtime of logic synthesis. 

Comparing AIG sizes reported in columns “BaseOpt” and 
“BaseOpt10” with those in columns “TransOpt” and 
“TransOpt10”, shows that, for large design blocks, the 
proposed optimization substantially reduces the AIG size. 
On the other hand, for smaller block, iterating logic 
synthesis reduces the difference. 

It should be noted that Table 1 and Table 2 list the results 
obtained without using don’t-cares derived from extracting 
CEs. The results may be better when this feature is enabled. 

6. Conclusions  
This paper describes a fast way of detecting shared logic 

in the next-state logic cones of multi-bit data registers 
frequently found in hardware designs. The logic cones may 
be hard to optimize using traditional synthesis because the 
front-end of the synthesis tools automatically transforms 
next-state logic cones into bit-level gates, making it 
impossible or time-consuming to extract the shared logic.  

The proposed algorithm performs quick structural 
analysis to detect control and data variables, followed by 
restructuring of the multi-bit next-state cones to expose the 
shared control logic functions.  In most cases, the shared 
clock enable signal is detected as a by-product of the 
proposed transform. The clock enable, if detected, can be 
used as the source don’t-cares to further reduce the size of 
shared control logic cones. 

Future work may include: (a) addressing the case when a 
word-level register has to be divided into several parts to 
expose logic sharing specific to each part, (b) improving the 
quality of don’t-care-based optimization applied to shared 
control logic functions, (c) extending the algorithm to work 
for other types of shared logic. 
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Table 1. Transforming individual word-level registers by restructuring control logic. 

Register Statistics Baseline Transformed Design 
block  Bits CVars DVars Base BaseOpt Trans TransOpt 

example out 32 4 3 480 480 172 167 

i2c wb_dat_o 8 3 7 146 137 109 109 

syntax_dec mvd_reg 8 7 2 204 36 55 30 

iter_pred inter_pred_reg_ctrl 8 17 5 37604 1035 481 189 

 

Table 2. Optimizing design blocks by restructuring control logic. 

Design Baseline Transformed Design 

block PI PO Reg  FF Base BaseOpt BaseOpt10 Trans TransOpt TransOpt10 

example 69 32 1 32 480 480 480 172 167 167 

i2c 19 14 11 129 1601 890 815 1328 862 798 

syntax_dec 74 114 21 114 7874 925 912 2080 902 879 

iter_pred 55 104 169 1352 391536 123053 94441 29772 22267 20984 

 

 


