
Control Logic Restructuring for Area Optimization
 Alan Mishchenko Robert Brayton Walter Lau Neto Pierre-Emmanuel Gaillardon Luca Amarù

 University of California, Berkeley University of Utah Synopsys Inc

 {alanmi, brayton}@eecs.berkeley.edu {walter.launeto, pierre-emmanuel.gaillardon}@utah.edu lamaru@synopsys.com

Abstract
When synthesizing hardware designs, the frontend of a
synthesis tool often elaborates control logic as multiplexers
and selectors, which are next bit-blasted into simple gates
and processed by a logic synthesis flow. This approach may
lead to suboptimal results or take a prohibitive runtime to
synthesize optimally. The present paper focuses on a
specialized logic synthesis method applied to a word-level
view of the control logic after elaboration before bit-
blasting, or to the control logic extracted from a netlist after
bit-blasting. The method detects clock-enables and other
types of shared logic, resulting in substantially reduced area
and delay, at a negligible runtime cost.

1. Introduction
In a typical synthesis scenario, a hardware design in

Verilog or VHDL is entered into the tool via a frontend,
which elaborates it into word-level operations and bit-blasts
them into elementary logic gates. The gate-level netlist goes
into a logic synthesis engine, which applies standard
optimization techniques. In the general case, synthesis
works well but often fails to find good solutions for
specialized logic. Analyzing the problematic test cases
helps logic synthesis researchers and CAD tool developers
isolate design/elaboration patterns and address them by
dedicated transforms.

One class of such patterns concerns next-state logic cones
of word-level registers present in typical hardware designs.
In particular, when an N-bit register stores data from
multiple places in the design, a typical next-state logic cone
selects among the data sources. For example, in designing
datapaths, the data saved in a register may come from a
multiplier, an adder, a bit-shifter, etc. The data source is
determined by the output of the instruction decoders, data
comparators, etc., serving as inputs to the next-state logic.

We observed that the default elaboration often leads to
suboptimal synthesis results or long synthesis runtimes.

This paper proposes a new way of restructuring word-
level next-state logic cones, isolating the shared control
logic and using the smallest possible multiplexer needed to
select among the data inputs using the shared controls.

Another approach to multiplexer transforms [3] focuses
on resource sharing rather than control logic minimization.

The rest of this paper is organized as follows. Section 2
describes the background. Section 3 shows a motivating
example. Section 4 describes the algorithm. Section 5
reports experimental results. Section 6 concludes the paper
and outlines future work.

2. Background
A Boolean network is a directed acyclic graph (DAG)

with nodes corresponding to logic gates and edges
corresponding to wires connecting the gates. The terms
Boolean network, netlist, and circuit are used
interchangeably in this paper. In this paper, we consider
only combinational Boolean networks.

A node n has zero or more fanins, i.e., nodes that are
driving n, and zero or more fanouts, i.e., nodes driven by n.
The primary inputs (PIs) are nodes without fanins in the
current network. The primary outputs (POs) are a subset of
network nodes, which deliver the functionality of the
network to its environment. A fanin (fanout) cone of node n
is a subset of all the network nodes, reachable through the
fanin (fanout) edges of the node.

A combinational And-Invertor Graph (AIG) is a Boolean
network composed of two-input ANDs and inverters. To
derive an AIG, the SOPs of the nodes in a logic network are
factored, the AND and OR gates of the factored forms are
converted into two-input ANDs and inverters using
DeMorgan’s rule, and these two-input ANDs are added to
the AIG manager in topological order. The size (area) of an
AIG is the number of its nodes; the depth (delay) is the
number of nodes on the longest path from the PIs to the
POs. The goal of optimization by local transformations of
an AIG is to reduce both area and delay.

Structural hashing of AIGs ensures that all constants are
propagated and, for each pair of nodes, there is at most one
two-input AND with them as fanins (up to a permutation).
Structural hashing is performed by hash-table lookups when
AND nodes are created and added to an AIG manager.
Structural hashing can be applied on-the-fly during AIG
construction, which reduces the AIG size.

The concepts of area and the number of AIG nodes are
used interchangeably in this paper. The concepts of delay,
depth, and logic level are also used interchangeably.

A local function of an AIG node n, denoted fn(x), is a
Boolean function of the logic cone rooted in n and
expressed in terms of the leaves, x, of a cut of n. The global
function of an AIG node is its function expressed in terms
of the PIs of the AIG.

AIGs can represent both local and global functions.
Because of low memory usage, speed of manipulation, and
scalability, AIGs have recently emerged as a widely-used
data-structure in logic synthesis and formal verification.

Additional information can be found in the following
publications on AIGs [4] and AIG-based synthesis [5][6].

3. Motivation
This section shows a motivating example, followed by the

outline of the proposed algorithm in the next section.
Hardware designs in RTL Verilog [10] represent control

logic using always-statements. Figure 1 below shows a
small design containing one word-level (32-bit) register out
whose next-state function is given by an always-statement.
Three control variables, c0, c1, and c2, determine what data
is written into the register on the rising edge of the clock
signal clk. For example, if c0 is 0 and c1 is 1, 32-bit data a
is written into out. If for some inputs, the register rvalue is
not defined, it is assumed to be the same as in the previous
cycle. For example, if c0 is 0 and c1 is 0, out is not defined.

module example (clk, c0, c1, c2, a, b, out);

input clk;
input c0, c1;
input [1:0] c2;
input [31:0] a, b;
output [31:0] out;

reg [31:0] out;
always @ (posedge clk)
 if (c0 == 1'b0)
 begin
 if (c1 == 1'b1)
 out <= a;
 end
 else // c0 == 1’b1
 begin
 case (c2)
 2'b00: ;
 2'b01: out <= a;
 2'b10: out <= b;
 2'b11: ;
 endcase
 end

endmodule

Figure 1: A small design block used for illustration.

When the Verilog in Figure 1 is elaborated by a synthesis

tool, a circuit in Figure 2 is typically generated. This circuit
is suboptimal, as shown below. In the case of small always-
statements, such as the one in Figure 1, suboptimality is
overcome by performing logic synthesis. However, in the
case of larger always-statements, generic logic synthesis
does not lead to an optimal solution, or requires prohibitive
runtime. Thus, specialized methods are of great interest.

The method proposed in this paper takes a control logic
cone after elaboration and performs restructuring, resulting
in a near-optimal circuit structure. The restructuring isolates
control logic signals shared across all bits of the register.
One of such signals is clock-enable, which is commonly
extracted by synthesis tools. Other types of shared logic are
not commonly extracted by the tools, but can be extracted
using the proposed method.

3.1 Clock-enable extraction
If the hardware primitive used to implement the 32-bit

register has a clock-enable (CE) pin, the next-state logic of
the register out in Figure 1 can be simplified by extracting
the condition when the register value changes. This
condition can be used to drive the CE pin, as shown in
Figure 3.

3.2 Optimizing next-state logic using CE
The next-state logic after the CE extraction shown in

Figure 3 can be further simplified by noticing that, when the
value of the CE is zero, the value of the next-state function
does not matter. In this case, the logic shown in Figure 3
can be transformed into the structure shown in Figure 4.

CE

1

out

D
register

mux

mux mux

c0

c1
c2

out out
out a

a b

2

32 32

32

1

1

clk

Figure 2: The circuit derived by elaborating the design.

CE

c0&(c2[0]^c2[1]) | ~c0&c1

out

D
register

mux

mux mux

c0

c1
c2

0 0
0 a

a b

2

32 32

32

1

1

clk

Figure 3: The circuit after the clock-enable extraction.

CE

c0&(c2[0]^c2[1]) | ~c0&c1

out

D
register

mux c0 & c2[1]

a b

32

1
32

clk

Figure 4: The circuit after the proposed optimization.

If 4-input LUTs are used to realize logic functions, the

logic cone in Figure 2 requires 128 LUTs. This is because
each 2:1 MUX takes one LUT, while each 4:1 MUX takes
two LUTs in each of the 32 bit-level cones. Meanwhile, the
simplified logic cone in Figure 4 requires only 33 LUTs (32
LUTs for the next-state functions plus an extra LUT to
generate the shared CE signal). This is an almost 4x area
reduction compared to the naïve solution. If the bit-level

flip-flops do not have the CE pin, the logic cone in Figure 4
would require 64 LUTs, which is still a 2x area reduction.

4. Algorithm
The input to the algorithm is a multi-output bit-level

combinational logic cone of the next-state functions of a
word-level data register. The logic cone is represented as an
AIG whose inputs are primary inputs and flop outputs of
the design to which the data register belongs.

4.1 Detecting data and control variables
The algorithm begins by analyzing the multi-output logic

cone and detecting control and data variables. Both of
these variables can be primary inputs or internal nodes of
the AIG. The main difference between control and data is
that the data variables are written into the flops when
control variables have specific values.

A practical way to distinguish the control and data
variables is to observe that control variables are shared
among the logic cones of the bit-level next-state functions,
while the data variables are unique for each function.

For example, consider logic cones shown for in Figure 2
derived by elaborating the design in Figure 1. All of the 32
bit-level cones depend on the same control variables, c0, c1,
and c2. However, each bit-level data variable appears only
in one bit-level logic cone, in particular, ai and bi appear
only in the logic cone of i-th flop.

In the proposed approach, the detection of control and
data variables in the bit-level logic cones is performed as
follows:
 For each bit-level input of the N-bit word-level register
o Find the maximum fanout-free cone (MFFC) of the

input, that is, those AIG nodes that would be
removed if the input were removed.

o Mark the AIG nodes connected to the MFFC nodes
(these can be primary inputs or internal AIG nodes).

 Consider AIG nodes marked by the above procedure.
o If a node has been marked once, it is a data variable.
o If a node has been marked N times, it is a control

variable, shared across N logic cones.
o If a node has been marked more than once and less

than N times, abort the computation because control
logic cannot be extracted from all logic cones.

Please note that the computation may be aborted for
several reasons: (a) some bit-level functions of the word-
level register indeed have different functions and thus logic
sharing cannot be extracted by the proposed method,
(b) some form of logic synthesis has been applied to the
next-state logic cones after elaboration, resulting in the loss
of structural uniformity. In both cases, it may be possible to
address the situation: for example, split the bit-level
function into several groups with uniform bit-level logic
within each group. In the interest of focused presentation,
we do not consider such complications.

4.2 Transforming one bit-level logic cone
Next, we discuss application of the algorithm to a single-

output next-state logic function, F(C, X), represented as an
AIG logic cone in terms of two groups of variables: control
variables C and data variables X = (x0, x1, …, xn-1), which
can be either primary inputs or internal nodes of the AIG,
detected as discussed in Section 4.1.

The main idea is to decompose this function as follows:

F(C, X) = x0 & f0(C) + x1 & f1(C) + … + xn-1 & fn-1(C) (1)

where functions f0(C), f1(C), … fn-1(C) do not depend on
data variables, X, and are mutually disjoint, that is, fi(C) &
fj(C) = 0 for all i and j such that i ≠ j.

Assuming that this condition holds, the algorithm tries to
find functions fi(C) by setting corresponding values to the X
variables. For example, by substituting into F(C, X) value 0
for all X variables, except for one variable xi set to value 1,
we can determine function fi(C). When all f-functions are
found, equivalence checking is performed to confirm that
the composition of these functions with the corresponding
data variables is equivalent to the given function F(C, X). If
the check fails, the algorithm quits, indicating failure to
perform logic restructuring. It was observed that failures
happen rarely in practice, most often due to functions f0(C),
f1(C), … fn-1(C) not being mutually disjoint. This situation
can also be addressed, but the detailed discussion is beyond
the scope of this paper.

4.3 Extracting clock enable
This subsection shows that detecting of the clock-enable

condition of a bit-level flop can be performed as a by-
product of applying the proposed algorithm.

Indeed, if the function F(C, X) is transformed into the
expansion (1), as shown in Section 4.2, the data variables,
X, may contain the flop-output variable xfo. In this case, the
corresponding control function Ffo(C) represents the clock-
enable condition that can be used to drive the clock-enable
pin of the bit-level flops. Other functions of the expansion
(1) can now be minimized using Ffo(C) as the care set. In
practice, this may leads to a substantial reduction in the size
of AIG for F(C, X). We refer the interested reader to the
following publications discussing minimization of logic
functions using don’t-cares [7][8].

4.4 Transforming multiple logic cones
In previous sections, we discussed transformation by the

above algorithm of a single-output logic function, F(C, X).
Now, we recall that this function is one bit-level next-state

function of an N-bit register. We can apply the same
transformation to each next-state function and, if all of them
are successfully decomposed using the same control logic
functions f0(C), f1(C), … fn-1(C) and different data-bits, the
shared logic in the N-bit next-state cone has been extracted.

However, in practice, we can avoid transforming each bit-
level function and instead assume that the same transformed
structure holds for all of them. Thus, we duplicate the
transformed cone for each other bit, while keeping the same

control functions and replacing data variables accordingly.
As a result, the shared control functions are automatically
extracted, while the resulting logic needs to be checked for
equivalence against the original multi-output logic cones
before the transformation. If the equivalence holds, the
transformation is correct; otherwise, it is rejected, and the
original multi-output logic cone is used.

It can be noted that the transformed multi-output logic
cone includes the shared control logic (one per all bit-level
flops) and individual MUXes (one MUX per each bit-level
flop). The shared control logic selects the input for each
flop using the smallest MUX needed to choose among the
corresponding data variables.

The resulting area reduction achieved in practice by the
proposed algorithm ranges from 10% to 10x. Several
factors determine the efficiency, such as:
 The number of bits in the word-level register (the more

bits, the more beneficial is sharing of the control logic).
 The complexity of the shared control conditions (the

more complex the shared logic, the more savings).
 The number of data sources of the word-level register

(the fewer are data sources, the smaller are the MUXes
selecting data into each bit-level flop, relative to the
size of the shared control logic, and the more savings).

5. Experiments
The proposed algorithm is implemented in ABC [1][2] as

command &reshape and tested on the example in Figure 1
and logic cones extracted from the hardware design blocks
publicly available in the OpenCores design repository [9].

Two experiments have been performed. The first
experiment in Section 5.1 lists detailed optimization results
for individual word-level registers. The second experiment
in Section 5.2 shows the cumulative effect of the
optimization applied to the corresponding design blocks.

5.1 Optimizing logic of word-level registers
For this experiment, we selected several word-level

registers from different designs and applied the proposed
optimization. The results are reported in Table 1.

The table reports the following statistics for each word-
level register: the block name (“Design block”) and the
register name (“Register”), the bit-width (“Bits”), the
number of control variables (“CVars”), and data variables
(“DVars”) detected when considering bit-level functions
(as discussed in Section 4.1), the original AIG size before
and after AIG rewriting using command &dc2 (“Base” and
“BaseOpt”), the transformed AIG size before and after AIG
rewriting using &dc2 (“Trans” and “TransOpt”).

Table 1 shows that in some cases the AIG size is not
reduced, and in some cases it is reduced substantially.

The runtime of the proposed method is not reported
because it was negligible (less than 5%) compared to that of
command &dc2, which takes a few seconds for the largest
logic cone reported in Table 1.

5.2 Optimizing the design blocks
For this experiment, we selected several design blocks

containing word-level registers whose next-state logic cones
could benefit from the proposed optimization. Table 2
reports the following information: the design block name
(“Design block”), the number of primary inputs (“PI”),
primary outputs (“PO”), word-level registers (“FF”), bit-
level flip-flops (“FF”), and internal AIG nodes after
elaboration (“Base”). The optimization baseline is given by
the number of AND nodes after running command &dc2
once (“BaseOpt”) and 10 times (“BaseOpt10”).

The method proposed in this paper is applied to the AIG
after elaboration, resulting in a transformed AIG (“Trans”)
followed by the same logic synthesis script applied once
(“TransOpt”) and 10 times (“TransOpt10”).

As mentioned in Section 5.1, the runtime of the proposed
method is not reported because in all cases it was a small
fraction (less than 5%) of the runtime of logic synthesis.

Comparing AIG sizes reported in columns “BaseOpt” and
“BaseOpt10” with those in columns “TransOpt” and
“TransOpt10”, shows that, for large design blocks, the
proposed optimization substantially reduces the AIG size.
On the other hand, for smaller block, iterating logic
synthesis reduces the difference.

It should be noted that Table 1 and Table 2 list the results
obtained without using don’t-cares derived from extracting
CEs. The results may be better when this feature is enabled.

6. Conclusions
This paper describes a fast way of detecting shared logic

in the next-state logic cones of multi-bit data registers
frequently found in hardware designs. The logic cones may
be hard to optimize using traditional synthesis because the
front-end of the synthesis tools automatically transforms
next-state logic cones into bit-level gates, making it
impossible or time-consuming to extract the shared logic.

The proposed algorithm performs quick structural
analysis to detect control and data variables, followed by
restructuring of the multi-bit next-state cones to expose the
shared control logic functions. In most cases, the shared
clock enable signal is detected as a by-product of the
proposed transform. The clock enable, if detected, can be
used as the source don’t-cares to further reduce the size of
shared control logic cones.

Future work may include: (a) addressing the case when a
word-level register has to be divided into several parts to
expose logic sharing specific to each part, (b) improving the
quality of don’t-care-based optimization applied to shared
control logic functions, (c) extending the algorithm to work
for other types of shared logic.

Acknowledgements
This work has been supported in part by the NSA grant

“Novel methods for synthesis and verification in
cryptanalytic applications” and industrial sponsors: AMD,
Siemens, and Synopsys.

REFERENCES
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System

for Sequential Synthesis and Verification. http://www-
cad.eecs.berkeley.edu/~alanmi/abc

[2] R. Brayton and A. Mishchenko, "ABC: An academic industrial-
strength verification tool", Proc. CAV'10, LNCS 6174, pp. 24-40.

[3] C. Yu, M. J. Ciesielski, M. Choudhury, and A. Sullivan, “DAG-
aware logic synthesis of datapaths”, Proc. DAC’16.

[4] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
boolean reasoning for equivalence checking and functional property
verification”, IEEE TCAD, Vol. 21(12), Dec. 2002, pp. 1377-1394.

[5] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis", Proc. DAC
'06, pp. 532-536.

[6] A. Mishchenko and R. K. Brayton, "Scalable logic synthesis using a
simple circuit structure", Proc. IWLS '06, pp. 15-22.

[7] Y. Miyasaka, A. Mishchenko, J. Wawrzynek, and N. J. Fraser,
"Synthesizing practical Boolean functions using truth tables",
Submitted to IWLS'22.

[8] S.-Y. Lee, H. Riener, A. Mishchenko, R. K. Brayton, and G. De
Micheli, "Simulation-based resubstitution", Proc. IWLS'20.

[9] Free and Open Source Gateware IP Cores. https://opencores.org/
[10] IEEE Standard for Verilog Register Transfer Level Synthesis (1364-

2002).

Table 1. Transforming individual word-level registers by restructuring control logic.

Register Statistics Baseline Transformed Design
block Bits CVars DVars Base BaseOpt Trans TransOpt

example out 32 4 3 480 480 172 167

i2c wb_dat_o 8 3 7 146 137 109 109

syntax_dec mvd_reg 8 7 2 204 36 55 30

iter_pred inter_pred_reg_ctrl 8 17 5 37604 1035 481 189

Table 2. Optimizing design blocks by restructuring control logic.

Design Baseline Transformed Design

block PI PO Reg FF Base BaseOpt BaseOpt10 Trans TransOpt TransOpt10

example 69 32 1 32 480 480 480 172 167 167

i2c 19 14 11 129 1601 890 815 1328 862 798

syntax_dec 74 114 21 114 7874 925 912 2080 902 879

iter_pred 55 104 169 1352 391536 123053 94441 29772 22267 20984

