
Synthesizing a Class of Practical Boolean Functions Using Truth Tables

Yukio Miyasaka1, Alan Mishchenko1, John Wawrzynek1, Nicholas J. Fraser2
1University of California, Berkeley

2AMD AECG Research Labs, Dublin, Ireland
yukio_miyasaka@berkeley.edu

Abstract— Many EDA applications deal with logic functions
representing complex mathematical computations. Although in
many cases, these functions depend on a small number of
inputs, they often resemble random functions, making it hard
to synthesize them using the traditional methods based on SOP
minimization. This paper describes efficient synthesis and LUT
mapping for this class of functions using a novel method that
implements BDD-based minimization based on truth tables. The
paper also investigates optimization with don’t cares, when the
outputs of a function are unspecified for some inputs, which is
particularly useful in machine learning applications that trade
accuracy for area. Compared to optimization and mapping used
in academic and industrial tools, our method works faster and
results in 1.5x smaller networks.

I. INTRODUCTION

Logic synthesis, takes Boolean functions in the form
of truth tables, sums-of-products (SOPs) or unoptimized
circuits, and produces optimized circuits that are used to
map the design into a target technology, typically FPGAs or
standard cells. Improving logic synthesis methods remains
an important challenge for the developers of modern design
automation tools, especially given that design sizes keeps
growing while users expect tools to get faster.

In practice, different types of functions call for different
logic synthesis methods. For example, Boolean functions
appearing in control logic blocks (such as state-machines)
are amenable to synthesis by algebraic methods [1] applied
to minimized SOPs [2]. These functions having compact
SOP representations can be described as sparse because their
primes tend to have relatively few literals and cover large
areas of Boolean space.

In contrast, dense Boolean functions are those that do not
have compact SOPs. A class of dense functions can be found
in router designs, where this type of logic is often expressed
almost exclusively using large multiplexers and one-hot-
encoded selectors. An effective way to handle these circuits
is to recognize the multiplexers (or avoid bit-blasting them
during elaboration) and perform restructuring, followed by
specialized logic sharing extraction. Another class of dense
functions are those rich in XOR gates, appearing in CRC
checkers and cryptographic applications.

Despite decades of research, a “universal” synthesis
method has not been discovered. Attempts to apply one
synthesis method to all types of logic leads to mediocre
results, prohibitive runtime, or both. For example, applying
algebraic methods to XOR-rich logic leads to poor quality,
while applying them to multiplexer-rich designs often gives

good results but only after many synthesis iterations, render-
ing such an approach impractical due to long runtimes.

In this paper, we develop a novel synthesis method target-
ing a class of logic functions, which can be characterized
as random-looking dense functions with limited support,
especially for LUT mapping. Random-looking implies that
these functions are hard for synthesis but they are not ran-
dom, because truly random functions cannot be compacted
by synthesis, but they can be decomposed by brute-force
cofactoring [3]. On the other hand, the fact that the functions
are dense means that they do not have compact SOPs. Finally,
the last characteristic, limited support, implies that they can
be efficiently represented using truth tables stored in small
arrays of unsigned integers and manipulated in software
using bit-wise operators. In practice, functions up to 16
inputs are often manipulated using truth tables, although in
some applications, such as equivalence checking, truth tables
have been successfully used for blocks up to 32 inputs, if a
longer runtime is acceptable.

Random-looking dense functions with limited support arise
in several applications. One of these applications is Deep
neural networks (DNNs), where quantized Boolean functions
of the neurons are random-looking and dense, although these
functions often do not have limited support. However, in
some types of neural networks, such as LogicNets [4], the
neurons are designed to have limited connectivity and there-
fore, after quantization, they have limited support. Synthesis
and mapping of Boolean functions arising in the LogicNets
project has served as a primary motivation for this work.

DNNs are not the only source of random-looking dense
functions with limited support. When designing datapaths,
complicated logic blocks, such as exponentiation, sigmoid,
or trigonometric functions, are often specified in a tabular
form because they are often too complex to be implemented
natively in hardware. For example, for an N -bit input,
it is simpler to list the 2N output values for each input
value, rather than implement complex functionality using
multipliers, adders, shifters, etc. When an M -bit output is
required, the resulting implementation is an N -bit-input M -
bit-output random-looking dense function. When N does not
exceed 16, such functions form another target application of
our proposed method.

To efficiently deal with the selected class of functions,
we developed a novel method that employs truth tables to
manipulate Binary Decision Diagrams (BDDs) [5]. However,
in a somewhat contradictory way, we are using BDDs



without actually constructing them. As a truth table can be
seen as an expanded decision diagram, we avoid explicitly
maintaining BDDs with unique tables and other auxiliary
data structures, and instead count unique cofactors on each
level in a top-down manner. This way we can know the exact
number of nodes in the BDDs without actually constructing
them. Next, we reorder the truth table, as we would have
reordered the BDDs while trying to minimize the number of
BDD nodes, and using the don’t-cares if they are available.
The don’t-care based minimization is similar to the known
methods on BDD minimization [6], as will be discussed in
the background section.

We note several advantages of not explicitly using BDDs:
• the runtime with truth tables is about 1.5x faster
• no need to develop or integrate a BDD package
• the code can be simplified by avoiding recursion
The contributions of the paper are:
• a novel truth-table-based method to perform logic syn-

thesis for LUT mapping with or without don’t cares
• isolating a practical class of functions, which allows for

an efficient solution using the proposed method
• experimental evaluation demonstrating 1.5x reduction

in area and 10x reduction in runtime, compared to the
methods implemented in the existing CAD tools

The rest of the paper is organized as follows: Section II
describes the background. Section III describes the proposed
algorithm. Section IV lists experimental results. Section V
concludes the paper.

II. BACKGROUND

A BDD is a binary tree that represents a single-output
logic function [5]. Each non-leaf node is associated with an
input variable, and depending on the value of the variable,
one of its two child nodes is selected to determine the
output value. BDDs are ordered if the variable associated
with a node always precedes the variable associated with its
child node in a given variable order. BDDs are reduced if
every node has a unique function and is not redundant. A
redundant node is a node with a function that has identical
Shannon cofactors with respect to the associated variable. So,
a non-redundant node has two unique child nodes. A child
node may be shared by multiple nodes. For a multi-output
function, a BDD is built for each output. The BDDs are
shared if they are ordered using the same variable order and
reduced together. EDA applications use ordered, reduced,
and shared BDDs, in order to achieve compact representation
and efficient manipulation. In this paper, BDDs are always
assumed to be ordered, reduced, and shared unless otherwise
stated.

To further compress the size of a BDD, complemented
edges are frequently used [7]. When a child node is con-
nected by a complemented edge, the function of the child
node is negated. With complemented edges, we need only
one leaf node. In this paper, we use the leaf node 0, since
the other constant (1) is its complement. When evaluating the
output, we count the number of complemented edges passed

from the root node, and flip the output value accordingly.
We assume the use of complemented edges in this paper.

Since the size of a BDD depends on the variable order,
there have been many studies to find a good variable order
that makes the BDD small. Variable reordering by sifting [8]
is one of the successful approaches. After building a BDD,
this method picks up a variable with the largest number of
nodes, and iteratively swaps its position with the adjacent
variable in the current variable order. The best position where
the smallest BDD was observed, is remembered during the
iteration and restored after the iteration. The same procedure
is repeated for every variable. This approach is efficient
because each variable swap only affects the nodes associated
with the two swapped variables [9].

BDD minimization using don’t cares was studied in [6].
In principle, BDDs can be minimized by merging nodes,
while keeping their function unchanged on the care set—
the complement of the don’t-care set. They proposed three
matching criteria for merging nodes and two heuristics on
the order of nodes to compare as follows:

• Merging criteria
– OSDM: cj = 0
– OSM: (cj =⇒ ci) ∧ (cj =⇒ (fi = fj))
– TSM: (ci ∧ cj) =⇒ (fi = fj)

• Comparison order
– Sibling: child nodes of each node (depth-first)
– Level: set of nodes on a given level

where (fi, ci) and (fj , cj) are the pairs, containing the
function and the care set of the nodes to be compared.
The OSDM and OSM conditions are not symmetric, so the
comparison is performed both ways, and if it holds, (fi, ci)
replaces (fj , cj). If the TSM condition holds, both of the
nodes are replaced with a new node (fk, ck), which satisfies

(ci =⇒ (fi = fk)) ∧ (cj =⇒ (fj = fk)),

ck = ci ∨ cj .

For OSM and TSM, a complemented match is also consid-
ered, where fj in the condition is negated, and the merged
node is pointed to by the complemented edge.

The sibling order starts the comparison from the root node
and recurs on each child node. If the child nodes have been
merged, it recurs only on the merged node. In the level order,
they create a set of nodes on a specific level, and perform
the comparison for the pairs of nodes in the set. Here, the set
may include redundant nodes. Finding the optimal order to
pick up a pair is NP-complete, so they use a heuristic where
once the nodes are merged, the merged node is compared
with the rest of nodes before proceeding to another pair. In
the end, [6] proposed applying the sibling order OSM first
and the level order TSM later for a partitioned BDD.

III. PROPOSED METHOD

A. Truth-table-based node counting

Our method is as simple as constructing and reordering
BDDs, but we implemented it in a novel way. The advantage
of our implementation comes from small memory usage.



0

0 1 2 3

0 1

x=0 x=1

y=0 y=1 y=0 y=1 Ar
ra

y

Head

Tail

0

0

1

0

1

2

3

Non-Reduced BDD

LSB

MSB

Truth Table

Fig. 1. Indices of potential BDD nodes and the corresponding segments
of the truth table for a single output function with input {x, y, . . . }

Instead of storing the structure of BDDs as pointer-connected
nodes, we operate on the given truth table and keep track of
indices of unique nodes.

We assume that the truth table is stored as an array, where
each 64 bits are packed into one element—called word. For
example, in the first word, the first bit corresponding to an
input pattern 00 . . . 0 is stored at the LSB, the second bit
corresponding to 00 . . . 01 is stored at the second LSB, and so
on. The 65th bit of the truth table is stored in the LSB of the
second word. For multi-output functions, an array is created
for each output and then concatenated to form a larger array.

All potential (non-reduced) BDD nodes are 0-based-
indexed for each level as shown in Fig. 1. The function
of a node is represented by a segment of the truth table.
For example, on the 0-th level, each node corresponds to a
segment of 2N bits, where N is the number of inputs. On
the k-th level, each node corresponds to a segment of 2N−k

bits.
The proposed top-down procedure to count the number of

BDD nodes in the function represented by the truth table,
is shown in Code 1. On each level, it creates a vector of
unique indices, whose functions are unique and non-constant
(checked in the sub-procedure in Code 1). Below the 0-th
level, it checks only prospective unique indices, which are the
cofactors of unique indices on the higher level. Meanwhile,
if the cofactors are identical (confirmed by comparing their
locations in the vector, returned by the sub-procedure), that
unique index is redundant, so to exclude them from the final
count, it creates another vector memorizing them. To realize
the complemented edges, the function of each index is also
compared with the complemented functions of the unique
indices already existing in the vector. This complementary
information is returned by the sub-procedure along with the
location, while constants are expressed by negative locations.

B. Variable reordering

The simplest way to perform variable swap is to sort the
entries in the truth table and then recount the nodes in the
two swapped levels. The code fragment for variable swap in
the truth table is shown in Code 2.

// number of inputs
int nInput;
// number of outputs
int nOutput;
// vector of unique indices for each level
vector<vector<int>> vvIdx(nInput);
// vector of redundant indices for each level
vector<vector<int>> vvRedIdx(nInput);

int FindOrAdd(int idx, int lev) {
if(IsConst0(idx, lev))
return -2;

if(IsConst1(idx, lev))
return -1;

for(int loc = 0; loc < vvIdx[lev].size(); loc++) {
if(IsEq(idx, vvIdx[lev][loc], lev))
return loc << 1;

if(IsComplEq(idx, vvIdx[lev][loc], lev))
return (loc << 1) | 1;

}
int loc = vvIdx[lev].size();
vvIdx[lev].push_back(idx);
return loc << 1;

}

int CountNodes() {
for(int idx = 0; idx < nOutput; idx++)
FindOrAdd(idx, 0);

for(int lev = 1; lev < nInput; lev++)
for(int idx: vvIdx[lev - 1]) {

int cof0 = FindOrAdd(idx * 2, lev);
int cof1 = FindOrAdd(idx * 2 + 1, lev);
if(cof0 == cof1)
vvRedIdx[lev - 1].push_back(idx);

}
int count = 1; // constant node
for(int lev = 0; lev < nInput; lev++)
count += vvIdx[lev].size() - vvRedIdx[lev].size();

return count;
}

Code 1. Counting the number of nodes

// 64-bit type
typedef unsigned long long wrd;
// array holding the truth table
wrd t[];
// length of the array
int nWrd;

const wrd swapmask[] = {0x2222222222222222ull,
0x0c0c0c0c0c0c0c0cull,
0x00f000f000f000f0ull,
0x0000ff000000ff00ull,
0x00000000ffff0000ull};

void VariableSwap_Table(int lev) {
int nBitPerSeg = 1 << (nInput - lev - 2);
if(nBitPerSeg >= 64) {
int nWrdPerSeg = nBitPerSeg / 64;
for(int i = 0; i < nWrd; i += nWrdPerSeg * 4)
for(int j = 0; j < nWrdPerSeg; j++)

swap(t[i + nWrdPerSeg + j],
t[i + nWrdPerSeg * 2 + j]);

} else if(nBitPerSeg == 32)
for(int i = 0; i < nWrd; i += 2) {

t[i + 1] ^= t[i] >> 32;
t[i] ^= t[i + 1] << 32;
t[i + 1] ^= t[i] >> 32;

}
else
for(int i = 0; i < nWrd; i++) {

wrd mask = swapmask[log2(nBitPerSeg)];
t[i] ^= (t[i] >> nBitPerSeg) & mask;
t[i] ^= (t[i] & mask) << nBitPerSeg;
t[i] ^= (t[i] >> nBitPerSeg) & mask;

}
}

Code 2. Sorting the truth table for variable swap



// vector of cofactors for each level
vector<vector<int>> vvCof(nInput);

int CountNodes2() {
for(int idx = 0; idx < nOutput; idx++)
FindOrAdd(idx, 0);

for(int lev = 1; lev < nInput + 1; lev++)
for(int idx: vvIdx[lev - 1]) {
int cof0 = FindOrAdd(idx * 2, lev);
int cof1 = FindOrAdd(idx * 2 + 1, lev);
if(cof0 == cof1)

vvRedIdx[lev - 1].push_back(idx);
/* store cofactors of unique indices*/
vvCof[lev - 1].push_back(cof0);
vvCof[lev - 1].push_back(cof1);

}
int count = 1;
for(int lev = 0; lev < nInput; lev++)
count += vvIdx[lev].size() - vvRedIdx[lev].size();

return count;
}

Code 3. Storing cofactors of unique indices when counting the number of
nodes

However, although sorting the truth table is simple, it
is not as efficient as variable swap in the form of BDD.
Reconstructing BDDs after variable swap takes a linear time
over the number of nodes in the level below. On the other
hand, sorting takes a linear time over the number of truth
table segments therein, which is an upper bound of the
former number.

The proposed implementation adopts a hybrid approach.
When counting the number of nodes for the first time, we
also memorize the cofactors of the unique indices as shown
in Code 3. Then, we perform variable swap in a traditional
way while instantiating a unique table as shown in Code 4.
We reconstruct the lower level based on 2-level cofactors
using the unique table; refer to [9] for more details. This
unique table is a bit simpler than usual since it uses only
a pair of cofactors as a key. The unique indices in the
higher level remain the same, while their redundancy will
be reevaluated using the new cofactors.

C. BDD minimization using don’t cares

We implemented BDD minimization using don’t cares on
top of our truth-table-based algorithm. We adopted the level
order TSM, as presented in Section II. The sibling order
does not match our top-down algorithm. The reason why
we chose TSM is that, in the case of OSDM and OSM,
we have to check redundancy of nodes afterwards in a
bottom-up manner. Even if the child nodes look different
when they are checked, their functions could be modified by
node merging later. For example, let us assume that the 00-
cofactor and the 11-cofactor have the same function and no
don’t care, while the 01-cofactor and the 10-cofactor have
different functions but are entirely don’t care. Since the 0-
cofactor and 1-cofactor do not satisfy the merging condition,
they are regarded as different unique indices. However, when
checking their level, the 01-cofactor will be merged with
the 00-cofactor, and the 10-cofactor will be merged with
the 11-cofactor, having the same function. Then, not only
the 0-cofactor and 1-cofactor become redundant, their parent
node also becomes redundant. This does not happen in TSM

// hash table type
typedef unordered_map<pair<int, int>, int> ht;

/* find or add a unique index in the lower level */
int FindOrAdd2(int idx, int cof0, int cof1, int lev,

ht &ut, vector<int> &vCofLow) {
/* check constant */
if(cof0 < 0 && cof0 == cof1)
return cof0;

/* convention for complemented edges */
bool fCompl = cof0 & 1;
if(fCompl)
cof0 ^= 1, cof1 ^= 1;

/* check uniqueness by cofactors */
if(ut.count({cof0, cof1}))
return (ut[{cof0, cof1}] << 1) ^ fCompl;

/* add the index to unique indices */
int loc = vvIdx[lev].size();
vvIdx[lev].push_back(idx);
/* register the location with unique table */
ut[{cof0, cof1}] = loc;
/* store cofactors */
vCofLow.push_back(cof0);
vCofLow.push_back(cof1);
/* check redundancy */
if(cof0 == cof1)
vvRedIdx[lev].push_back(idx);

/* return location */
return (loc << 1) ^ fCompl;

}

void VariableSwap_Node(int lev) {
// vectors to store new cofactors
vector<int> vCofHigh, vCofLow;
// unique table
ht ut(2 * vvIdx[lev + 1].size());
/* clear vectors of indices to be updated */
vvIdx[lev + 1].clear();
vvRedIdx[lev].clear();
vvRedIdx[lev + 1].clear();
/* loop for each unique index in the higher level */
for(int loc = 0; loc < vvIdx[lev].size(); loc++) {

int idx = vvIdx[lev][loc];
/* get locations of cofactors */
int cof0loc = vvCof[lev][loc * 2] >> 1;
bool cof0c = vvCof[lev][loc * 2] & 1;
int cof1loc = vvCof[lev][loc * 2 + 1] >> 1;
bool cof1c = vvCof[lev][loc * 2 + 1] & 1;
/* get locations of 2-level cofactors */
int cof00, cof01, cof10, cof11;
if(cof0loc < 0)
cof00 = cof01 = -2 ^ cof0c;

else
cof00 = vvCof[lev + 1][cof0loc * 2] ^ cof0c,
cof01 = vvCof[lev + 1][cof0loc * 2 + 1] ^ cof0c;

if(cof1loc < 0)
cof10 = cof11 = -2 ^ cof1c;

else
cof10 = vvCof[lev + 1][cof1loc * 2] ^ cof1c,
cof11 = vvCof[lev + 1][cof1loc * 2 + 1] ^ cof1c;

/* calculate new cofactors */
int newcof0 = FindOrAdd2(idx * 2, cof00, cof10,

lev + 1, ut, vCofLow);
int newcof1 = FindOrAdd2(idx * 2 + 1, cof01, cof11,

lev + 1, ut, vCofLow);
/* store new cofactors */
vCofHigh.push_back(newcof0);
vCofHigh.push_back(newcof1);
/* check redundancy */
if(newcof0 == newcof1)
vvRedIdx[lev].push_back(idx);

}
/* update vectors of cofactors */
vvCof[lev] = vCofHigh;
vvCof[lev + 1] = vCofLow;

}

Code 4. Variable swap based on nodes



because, if a node can be redundant, its child nodes must
satisfy the condition and be merged immediately.

We can perform the minimization simply by replacing the
equivalence check of nodes by TSM. If an existing unique
index j matches the given index i, it updates the function
and the care set of j to (ITE(ci, fi, fj), ci ∨ cj), which is
an example of (fk, ck) shown above.

With BDD minimization using don’t cares, reordering is
no longer simple. The result of variable swap is affected
by the minimization performed previously. To see the actual
effect of variable reordering, we have to restore the original
BDDs before variable swap. While this looks complicated,
it can be integrated quite easily with our truth-table-based
implementation; what we must do is to only reload and sort
the original truth table, and rerun the procedure. Additionally,
we can save time by remembering the nodes above the
swapped level and how they were merged. This approach,
performing reordering based on the result of minimization,
results in a significant reduction in the number of nodes as
compared to just performing the minimization to reordered
BDDs.

IV. EXPERIMENTAL RESULTS

A. Benchmarks

We used Boolean functions from the LogicNets project [4]
as our target. These are functions of quantized sparse neural
networks, where each neuron is represented as a truth table to
comprise a truth table network. Let β denote the bit-width of
each activation and γ denote the number of input activations
per neuron, which are uniform across each network. The
number of inputs is β × γ and the number of outputs is β
for each truth table. The properties of the neural networks
used to generate functions in our experiments are shown in
Table I.

For some of the networks listed in Table I, the number
of inputs and outputs to each truth table is different for the
first and last layers of the network. Specifically, the input
bit-width and activations in the first layer are given by βi

and γi, respectively. Similarly, the input activations for the
last layer is given by γo, and the output bit-width of the last
layer is given by δ. The number of inputs and outputs for
each truth table in the first layer is βi× γi and β, and in the
last layer is β× γo and δ. For all networks in Table I, when
βi ̸= β, γi ̸= γ, γo ̸= γ or δ ̸= β, the values are specified
below:

• JSC_L: βi = 4, γi = 3, γo = 5, δ = 7
• NID_S: βi = 1
• NID_M: βi = 1
• NID_L: βi = 1, γi = 7

B. Performance of truth-table-based algorithm

We first conducted a runtime comparison against an ex-
isting BDD package, CUDD [10]. We performed variable
reordering by sifting, starting with a random initial variable
order, 20 times for each neuron [11]. We used a Intel Core
i7-9750H Processor for this experiment.

TABLE I
LOGICNETS BENCHMARK

Name Neurons per layer β γ Accuracy
JSC_S 64, 32, 32, 32 2 3 69.41%
JSC_M 64, 32, 32, 32 3 4 71.90%
JSC_L 32, 64, 192, 192, 16 3 4 73.01%
NID_S 593, 100 2 7 89.36%
NID_M 593, 256, 128, 128 2 7 92.62%
NID_L 593, 100, 100, 100 3 5 93.12%

TABLE II
PERFORMANCE COMPARISON (TIME IN SEC AND MEMORY IN MB)

CUDD Swap Table Swap Node
Time Mem Time Mem Time Mem

JSC_S 2.46 14.0 0.06 3.6 0.09 3.6
JSC_M 4.60 14.2 7.31 3.7 2.85 3.9
JSC_L 14.56 18.6 29.09 4.1 9.40 4.4
NID_S 12.29 14.5 7.00 3.8 3.13 4.0
NID_M 22.90 14.8 17.29 4.0 8.52 4.0
NID_L 24.23 16.6 55.55 4.4 14.38 4.4

The runtime and memory footprint are shown in Table
II. Our truth-table-based algorithm used less memory than
CUDD, and with the node-based variable swap, it worked
more than 1.5x faster than CUDD. CUDD takes a large
amount of memory to maintain data that are useful to dy-
namically apply many operations, which is not the case here.
Our truth table algorithm uses memory just to store the truth
table and the unique indices if variable swap is performed
by sorting the truth table. With node-based swap, it also
needs a storage for cofactors, which explains the observed
overhead. Except JSC_S, node-based swap was the fastest.
JSC_S is a special case where each truth table fits in one
word per output, and the truth-table-based implementations
worked much faster than CUDD.

C. LUT mapping comparison

We performed synthesis and mapping for 6-LUT networks.
For each neuron, we construct and reorder BDDs and map
them into 6-LUTs. We did not use don’t cares in this experi-
ment. Since each BDD node is a multiplexer, we constructed
a LUT network by grouping the multiplexers in a depth-first
order to have nodes with at most six inputs. Typically, two
cascaded multiplexers are grouped into a node with five in-
puts. Then, as an inter-neuron optimization, we apply ABC’s
optimization [12] ("mfs2" and "&if -K 6 -a") iteratively as
long as the area keeps on reducing. The command "mfs2"
optimizes a given network without converting it into AIG,
and "&if" reperforms mapping to restructure the network
and create more optimization opportunities for "mfs2". Other
AIG optimization commands in ABC did not work well
to reduce the LUT count for these benchmarks, sometimes
resulting in a larger network than without optimization.

We compared our method with Xilinx Vivado 2021.2 with
default synthesis settings, but with “resource sharing” set to
“on”. We also checked the results when we apply ABC’s
optimization to the original networks without applying the
proposed algorithm. Note that the following experiments



TABLE III
SYNTHESIS AND LUT MAPPING

Vivado ABC only Proposed method
LUTs Time(s) LUTs Time(s) LUTs Time(s)

JSC_S 227 56 242 1 233 3
JSC_M 14865 1159 31647 22 9665 45
JSC_L 35419 2373 87065 63 22997 144
NID_S 85 3191 30 12 29 49
NID_M 2690 7135 4080 51 1969 88
NID_L 6672 15248 13888 205 4057 277

TABLE IV
SYNTHESIS AND LUT MAPPING FOR DISCRETE COSINE TRANSFORM

Vivado ABC only Proposed method
LUTs Time(s) LUTs Time(s) LUTs Time(s)

859 71 6960 8 507 2

were done using a different environment: Intel Xeon Silver
4110 Processor.

The results are shown in Table III. In general, Vivado took
the longest time, 10x slower than the proposed method on
average, while only running ABC did not work well ending
up with the largest overall area. Except JSC_S, our method
achieved about 1.5x area reduction compared to Vivado.

D. Optimization using don’t cares

Finally, we performed don’t-care-based optimization when
some input patterns are treated as don’t cares. To begin with,
we assigned don’t care for the patterns that do not appear
at the inputs of a neuron on any examples from the training
set. Furthermore, we used a threshold, called rarity, where
the patterns that occur at least rarity times in the training
set are cares, while other patterns are don’t cares. The same
pattern can appear multiple times in the training set because
different examples may result in the same quantized values
at the inputs on a neuron. We considered values of rarity
equal to powers of two.

The results are shown in Fig. 2. The LUT count decreased
as rarity increased, except for NID_S. Meanwhile, the ac-
curacy decreased quite slowly. For example, JSC_L started
at 22997 LUTs and accuracy 73.01%. With don’t cares
generated by rarity 64, the LUT count decreased to 10914,
while the accuracy was still 71.06%. Regarding NID_S, the
network seems too small for LUT mapping to fully reflect
the results of BDD minimization. The runtime was at most
three minutes for each run.

E. Additional results of LUT mapping

We conducted another experiment on a mathematical func-
tion. It is a 12-input 32-output function that performs discrete
cosine transform, taken from [13]. We synthesized and
mapped it into 6-LUTs without don’t cares. Table IV shows
that our method outperformed Vivado achieving more than
1.5 area reduction for this function as well. Comprehensive
experiment on mathematical and other functions is part of
our future work.

V. CONCLUSION

The paper motivates the development of specialized logic
synthesis methods for well-defined classes of Boolean func-
tions. To this end, we isolate a practical class of Boolean
functions characterized as random-looking dense functions
with limited support. We observe that these functions appear
in quantized neural networks, datapath applications, crypto-
graphic applications, and possibly other areas.

For the selected class of functions, a novel synthesis
method is proposed. The method iteratively reorders the truth
table representation of the function while trying to minimize
the number of nodes, which would be present in the BDDs
of the function. The method efficiently exploits don’t cares
if they are present in the specification of the function.

The experimental results after LUT mapping show that
the area improvements produced by the proposed methods
are substantial, leading to 1.5x reduction, compared to the
results produced on these benchmarks by the available tools,
both academic and commercial. The proposed method is also
often at least 10x faster than those used by the tools.

A separate experiment motivates the use of truth tables
by showing that they speed up the implementation by about
1.5x, compared to using a state-of-the-art BDD package.

The MUX-based circuits derived by our method have an
advantage in Versal programmable architecture, which allows
a 7-input function composed of three MUXes, MUX(x0,
MUX(x1, C11, C10), MUX(x2, C01, C00)), to be mapped
into one 6-LUT by utilizing additional hardware resources.
This is in contrast with the previous architectures, which
use one 6-LUT only if it is a 6-input function (that is,
x1=x2). This would potentially improve the area (LUT
count) produced by our method even more, since many
MUX structures, which currently require two 6-LUTs, can
be packed into one 6-LUT.

REFERENCES

[1] R. Brayton et al., “The decomposition and factor-
ization of Boolean expressions,” in Proceedings of
ISCAS, 1982, pp. 29–54.

[2] R. Rudell et al., “Multiple-valued minimization for
PLA optimization,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems,
vol. 6, no. 5, pp. 727–750, 1987.

[3] T. Sasao et al., “LUTMIN: FPGA logic synthesis with
MUX-based and cascade realizations,” in Proceedings
of IWLS, 2009, pp. 310–316.

[4] Y. Umuroglu et al., “LogicNets: Co-designed neural
networks and circuits for extreme-throughput applica-
tions,” in Proceedings of FPL, 2020, pp. 291–297.

[5] Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” IEEE Transactions on Computers,
vol. C-35, no. 8, pp. 677–691, 1986.

[6] T. R. Shiple et al., “Heuristic minimization of BDDs
using don’t cares,” in Proceedings of DAC, 1994,
pp. 225–231.

[7] K. Brace et al., “Efficient implementation of a BDD
package,” in Proceedings of DAC, 1990, pp. 40–45.



100 101 102 103 104

 Rarity

60

80

100

120

140

160

180

200

220
LU

Ts

 LUTs
 Test Accuracy(%)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y(
%

)

JSC_S

100 101 102 103 104

 Rarity

0

1000

2000

3000

4000

5000

6000

7000

LU
Ts

 LUTs
 Test Accuracy(%)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y(
%

)

JSC_M

100 101 102 103 104

 Rarity

0

2500

5000

7500

10000

12500

15000

17500

LU
Ts

 LUTs
 Test Accuracy(%)

0

20

40

60

80

100

Te
st

 A
cc

ur
ac

y(
%

)

JSC_L

100 101 102 103 104

 Rarity

4

6

8

10

12

14

LU
Ts

 LUTs
 Test Accuracy(%)

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y(
%

)

NID_S

100 101 102 103 104

 Rarity

0

100

200

300

400

500

600

700

800

LU
Ts

 LUTs
 Test Accuracy(%)

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y(
%

)

NID_M

100 101 102 103 104

 Rarity

0

200

400

600

800

1000

LU
Ts

 LUTs
 Test Accuracy(%)

40

50

60

70

80

90

100

Te
st

 A
cc

ur
ac

y(
%

)

NID_L

Fig. 2. Effect of the minimization using don’t cares when changing rarity

[8] R. Rudell, “Dynamic variable ordering for ordered
binary decision diagrams,” in Proceedings of ICCAD,
1993, pp. 42–47.

[9] M. Fujita et al., “On variable ordering of binary deci-
sion diagrams for the application of multi-level logic
synthesis,” in Proceedings of DATE, 1991, pp. 50–54.

[10] F. Somenzi, “Efficient manipulation of decision dia-
grams,” International Journal on Software Tools for
Technology Transfer, vol. 3, no. 2, pp. 171–181, 2001.

[11] P. Fiser et al., “How much randomness makes a tool
randomized?” In Proceedings of IWLS, 2011.

[12] Berkeley Logic Synthesis and Verification Group,
ABC: A system for sequential synthesis and veri-
fication, release 20306. http : / / www . eecs .
berkeley.edu/~alanmi/abc/.

[13] OpenCores: Video compression systems, https://
opencores.org/projects/video_systems.


