
Improving LUT-based Optimization for ASICs
Walter Lau Neto∗, Luca Amarú†, Vinicius Possani†, Patrick Vuillod†, Jiong Luo†,

Alan Mishchenko‡, Pierre-Emmanuel Gaillardon∗

∗LNIS, University of Utah, Salt Lake City, Utah, USA
†Synopsys Inc., Design Group, Sunnyvale, California, USA

‡Department of EECS, University of California, Berkeley, USA

Abstract—LUT-based optimization techniques are finding new
applications in synthesis of ASIC designs. Intuitively, packing
logic into LUTs provides a better balance between functionality
and structure in logic optimization. On this basis, the LUT-
engine framework [1] was introduced to enhance the ASIC
synthesis. In this paper, we present key improvements, at both
algorithmic and flow levels, making a much stronger LUT-
engine. We restructure the flow of LUT-engine, to benefit from a
heterogeneous mixture of LUT sizes, and revisit its requirements
for maximum scalability. We propose a dedicated LUT mapper
for the new flow, based on FlowMap, natively balancing LUT-
count and NAND2-count for a wide range LUT sizes. We describe
a specialized Boolean factoring technique, exploiting the fanin
bounds in LUT networks, resulting in a very fast LUT-based
AIG minimization. By using the proposed methodology, we
improve 9 of the best area results in the ongoing EPFL synthesis
competition. Integrated in a complete EDA flow for ASICs, the
new LUT-engine performs well on a set of 87 benchmarks: -4.60%
area and -3.41% switching power at +5% runtime, compared to
the baseline flow without LUT-based optimizations, and -3.02%
area and -2.54% switching power with -1% runtime, compared
to the original LUT-engine.

I. INTRODUCTION

Look-up table (LUT) based techniques for logic synthesis
and mapping have significantly evolved in the last decades [2]–
[4], improving FPGA implementations dramatically. While
these methods naturally target FPGAs, LUT-based techniques
are also increasingly finding applications in logic synthesis for
ASICs [1]. Packing logic into LUTs offers the opportunity to
balance functionality and structure in the circuit representation.
With LUTs, Boolean optimizations are more powerful, since
functionality is more dense across levels, and the backbone
structure of the circuit is still retained, in contrast to a more
aggressive logic optimization by full or partial collapsing [5].
The LUT-engine framework was introduced to exploit this
opportunity and enhance the previous work on ASIC synthesis
[1]. It consists of iterative LUT-k mapping and LUT-k Boolean
simplifications, driven by optimizing optimizing the Number
of Literals in Factored Form (NLFF) rather than LUT counts,
followed by a final AIG decomposition.

This paper continues the line of research in harnessing LUT-
based techniques for ASICs. We investigate the available LUT-
engine with the goal of developing a new LUT-engine capable
of very fast inner-loop iterations, driven by the most scalable
mappers and optimizers, but at the same time not limited by
only one LUT size k for the duration of the engine. Such
goal requires algorithmic and flow level innovations to build a
quality of results (QoR) convergent framework. In particular,
the contributions of this work are:

• Restructuring the LUT-engine flow to accommodate het-
erogeneous values of k. Revisiting the sequence of

optimizations/mapping/network-transformations to max-
imize QoR and guarantee convergence, especially in the
presence of mixed-k LUTs. We also propose methods to
pick heterogeneous LUT sizes for best QoR.

• Introducing a new LUT mapper based on FlowMap [6]
that is more scalable than the previous one based on
binate covering. The new mapper natively balances the
LUT count and the NAND2 count. This allows for larger
sizes of k to be used while maintaining a tight control on
the NAND2 impact, which is key for QoR improvement.

• Developing a specialized Boolean factoring, based on the
known bounds on the nodes’ fanin in LUT networks. This
allows for a quick and scalable decomposition of LUTs
into minimized AIGs, a crucial step to achieve fast inner-
loop iterations in the new LUT-engine.

Altogether the new LUT-engine runs its inner loop up to
one order of magnitude faster than the baseline. Moreover, it
reaches deeper into the solution space, leading to the improved
QoR. The proposed new LUT-engine is tested on both aca-
demic and industrial benchmarks. When targeting the ongoing
EPFL synthesis competition, we improved 9 of the best known
area results. We embed our new LUT-engine in a commercial
EDA tool and test it on 87 RTL benchmarks: 22 public
OpenCore designs and 65 industrial designs. On average, our
new flow enables -4.60% area and -3.41% switching power at
+5% runtime, compared to the baseline flow not employing
LUT-based optimizations. When compared directly with the
original LUT-engine [1], the new flow shows -3.02% area and
-2.54% switching power with -1% runtime.

The paper is organized as follows: Section II presents
relevant background. Section III proposes a high-level flow of
LUT-based optimization. Section IV introduces a new scalable
LUT mapper and explains how it is modified for the use
in the proposed LUT-engine. Section V details the Boolean
factoring procedure employed. Section VI shows experimental
results for EPFL synthesis competition and comparison with
a commercial EDA tool. Section VII concludes this work.

II. BACKGROUND
A. Circuit Representation

A logic circuit can be naturally represented as a directed
acyclic graph (DAG), denoted by G = (N,E), where each
node n ∈ N may have incoming (fanin) edges. Nodes
without fanins are primary inputs (PIs) while nodes with fanins
implement Boolean functions. An outgoing edge of a node n
is the node’s fanout. Edges may or may not be complemented
[7]. A common type of DAG for logic manipulation is an
and-inverter graph (AIG) where each node has the Boolean
function of a two-input AND.

B. The Original LUT-Engine

LUT-engine maintains a synergistic balance between func-
tionality and structure while running LUT-based logic syn-
thesis methods for ASIC designs. The original LUT-engine
framework performs three main steps: (i) mapping an AIG
into a LUT network, (ii) running LUT-based optimizations,
and (iii) decomposing the LUT network back into an AIG.

The first step derives a valid LUT mapping of the initial
circuit by performing a pass of tree mapping [8] followed
by DAG mapping. The DAG mapping performs k-cut enu-
meration and builds a binate covering problem [9] solved by
a branch-and-bound approach. The value of k defining the
maximum LUT size is given by the user. The same value of k
is used throughout the LUT-engine flow for both LUT mapping
and LUT-based optimizations. The mapping uses the NLFF as
a cost function when targeting ASIC implementations.

Then, in a waterfall way, the algorithm dynamically chooses
among three efforts of optimizations to run over the mapped
LUT network: low effort, medium effort, and high effort.
While the network size is being improved from one iteration
to another, the algorithm applies low-effort optimizations. If
the gain is flat for a defined number of iterations, it uses
more aggressive optimizations as needed. The authors rely on
a gradient-based computation of the AIG size to set the gains
and choose between the three levels of optimization effort.

Optimizations done at the LUT level aim to reduce the
LUTs complexity, and use a specialized cost function to
optimize the NAND-2 implementation. This is because, at the
end of the loop, the LUT-network is decomposed into an AIG,
to be mapped into standard cells. Before mapping, the AIG
is optimized using the traditional AIG optimization passes,
such as rewriting, resubstitution, and refactoring [10]. The
optimized AIG is then tech-mapped for ASICs, resulting in
substantial QoR improvements.

III. RESTRUCTURING THE LUT-ENGINE

We propose a new flow for LUT-based optimization tar-
geting ASIC designs, with two aspects in mind: (i) achieving
better Power, Performance, and Area (PPA) and (ii) having
better scalability. To this end, we present and discuss the key
improvements and differences of the new LUT-engine.

The first key difference is that this work adopts different
LUT granularities during the optimization flow. Let k be the
number of LUT inputs. Whereas the previous LUT-engine
assumes a single k for the whole flow, we allow for a more
diverse set of LUT sizes. In practice, our flow considers both
smaller and bigger sizes of LUTs, compared to the previous
one. That may allow the proposed flow to strike a better
balance between functionality and structure on the fly. Thus,
every iteration uses a different k value. In this context, larger k
values provide powerful Boolean optimization opportunities to
reduce the complexity of the functions, whereas smaller sizes
unlock an iterative restructuring of the network. The values of
k may be chosen in different ways.

Furthermore, at every iteration, after doing optimization at
the LUT level, the mapped LUT network is decomposed into
an AIG, and AIG-based optimization takes place. This is in
contrast to the previous LUT-engine that decomposes the LUT

network into an AIG only at the end of the optimization
loop. Therefore, previously the functionality of the circuit was
optimized iteratively, and the structural optimization was done
using expensive AIG decomposition.

As the proposed flow decomposes the LUT network into
an AIG and optimizes it in every iteration, we need both: (i)
powerful and efficient AIG decomposition and optimization
methods; and (ii) a specialized LUT mapper that optimizes an
AIG-oriented cost function for different k sizes, resulting in a
quick runtime. This is important to ensure that the new flow
still converges towards a good AIG implementation, even for
a large range of different LUT sizes. This is a different goal
compared to reducing the number of LUTs in each iteration.
Indeed, we might increase the number of LUTs from one
iteration to another and yet have a better AIG implementation
cost.

Algorithm 1 presents a high-level view of the new LUT-
engine flow. The inputs are an AIG network N , an effort
level E , which in practice defines how many iterations are
performed, and a strategy S to chose the values of k. First,
the LUT-engine duplicates the input AIG and stores it in the
N ′ variable, which holds the best seen AIG. Then, an auxiliary
function sets the value of k for the LUT mapping and related
optimizations. Different strategies can be employed to select
k, as shown in Algorithm 2. Depending on the user input, the
engine can increment k by one, apply pseudo-randomization
based on a random seed provided by the user, iterate over a
pre-defined list of values, or increment k by different amounts,
not only one. Our flow adopts a custom function that increases
k in different ways and selects it using a pseudo-random
strategy S.

Algorithm 1: New LUT-engine Flow
Input: AIG N , Effort level E , Strategy S, Maximum k

size m, Seed x, List of sizes l
Output: Optimized AIG N ′

1 N ′ ← duplicate(N);
2 while E > 0 do
3 k ← select k(S , m, k, x, l);
4 compute choices(N);
5 BoundedNtk ← new specialized mapper(N , k);
6 boolean optimization(BoundedNtk);
7 N ← boolean decomposition(BoundedNtk);
8 aig optimization(N);
9 if num nodes(N ′) > num nodes(N) then

10 N ′ ← duplicate(N);

11 update effort(E);

12 return N ′;

Next, we compute structural choices used to reduce struc-
tural bias during technology mapping [2]. The input for the
choice computation is a decomposed and optimized AIG
network from several previous flow iterations. The main idea
of computing choices nodes is to group nodes with the same
functionality into equivalent classes given to the technology
mapper. A SAT-based approach is adopted to compute choices
nodes that work on an AIG structure [2]. Thus, it is crucial to

Algorithm 2: k Size Selection Algorithm
Input: Strategy S, Maximum k size m, Seed x, List of

sizes l
Output: LUT size k

1 k ← 0;
2 if S == 0 then
3 k ← increment by one(k, m);

4 else if S == 1 then
5 k ← deterministic randomization(k, m, s);

6 else if S == 2 then
7 k ← iterate over list(k, l);

8 else
9 k ← customized value(k, m);

10 return k;

have an AIG as small as possible to reduce the overall runtime,
justifying our need for an efficient Boolean decomposition.

Once the choice nodes are computed, the flow runs a
specialized LUT mapping tailored to ASICs. Since we run
technology mapping at every iteration, it is key to have an
efficient mapper that delivers good quality mapping in short
runtime. Thus, we propose a cut-based structural mapper
detailed in Section IV. This is different from the previous
LUT-engine, which relies on binate covering. After technology
mapping, the network goes through a sequence of Boolean
transformations, which optimize the functionality of the net-
work. Several methods are used. We quickly review these in
Section III-A.

The next step is to decompose the LUT network into an
AIG. For this, we propose to use a Boolean decomposition
tuned to consider the AIG implementation cost. That is another
key difference compared to the new LUT-engine because it
does not use algebraic factorization to decompose the network.
As the proposed flow works with LUTs up to 16 inputs,
truth-table-based methods can be employed with affordable
runtime. Details about the Boolean decomposition algorithm
are presented in Section V-A.

After decomposing the LUT network into an AIG, a se-
ries of AIG optimizations is performed. These optimizations
include four passes: (i) rewriting, (ii) refactoring, (iii) re-
substitution, and (iv) balancing. The idea is to optimize the
circuit structure, reducing the circuit size and depth. Finally,
the algorithm checks to see if the final network is better than
the initial network using the NAND2 gate count as a cost
function. If so, it accepts the transformations and updates the
number of iterations.
A. Boolean Optimization for LUT-Networks

This section quickly presents and reviews the methods we
adopt in our LUT-Optimization framework targeting ASICs.
There are three main steps: (i) LUT complexity minimization,
(ii) Boolean resubstitution, and (iii) Boolean re-wiring for
LUTs.

1) LUT Complexity Minimization: LUT complexity reduc-
tion aims to reduce the ASIC implementation cost, post-AIG
decomposition, and standard cell mapping. Our proposed flow
relies upon two main methods to reduce the intrinsic LUT

complexity: (i) 2-level Sum of Products (SOP) minimization
exploiting don’t cares and (ii) support reduction. The first
enables powerful don’t care based optimization thanks to a
tight boundary on the fanin given by the LUTs. That allows
us to exploit controllability don’t care (CDC) and observability
don’t care (ODC) efficiently without dramatically increasing
the flow runtime. We use as cost function to evaluate the SOP
minimization the factored literal cost, as it has a better co-
relation with the ASIC implementation. The support reduction
goal is to remove redundant inputs that LUTs might have when
considering the global network functionality. In this sense,
each LUT support is computed using either BDD or SAT
methods [3], [11], [12]. We can delimit a frontier to keep
the methods scalable. If the support size is smaller than the
current LUT, the LUT SOP is replaced by a new ISOP.

2) Boolean Resubstitution: Boolean resubstitution can
work remarkably well in LUT networks, as it allows for more
savings and high-order optimization opportunities, compared
to AIG networks [3], [13]. Here we start by sorting the
LUTs by their potential gains. The considered gain is the
NLFF that this LUT saves if removed, computing while
taking into account the Maximum Fanout-Free Cone (MFFC)
of each LUT. We then iterate over the LUTs, computing
their MSPF (flexibilities) and trying to re-express the LUT
functionality by leveraging other LUTs already presented in
the network. This set of candidate nodes to re-express the
original LUT functionality can be computed using BDDs, SAT,
or truth-tables [3]. Our method relies mostly upon a SAT-based
approach to compute the resubstitution candidates.

3) Boolean Re-wiring: Boolean re-wiring iteratively adds
and removes redundant wires in the network. The idea is that
adding a new redundant wire might lead to more wires being
redundant under certain conditions, then leading to new opti-
mization opportunities [14]. This is a multi-node optimization,
differing from Boolean resubstitution and LUT simplification,
which considers one node at a time. The rewiring can be done
by adding new gates or by replacing existing ones using gates
with more inputs. In the sequence, ATPG is applied to identify
possible redundancies in the modified network [15]. The final
goal of our Boolean re-wiring is to reduce the NLFF of the
network implementation.

IV. APPLICATION-SPECIFIC MAPPER FOR LUT-ENGINE

The main goal of the new application-specific LUT mapper
tailored to ASICs is to be highly scalable while delivering a
good quality of results. In particular, we want the mapper to
converge to a good NAND-2 gate count while working with
different values of k. That allows the proposed LUT-engine to
converge to a small AIG implementation when using a wide
range of LUT sizes.

The adopted mapper has six major steps: (i) computing
structural choices, (ii) computing k-cuts, (iii) computing the
cuts truth-table and NAND-2 equivalent cost, (iv) setting the
best cut for each node based on the selected cost function, (vi)
computing the network cover, and (vi) performing area recov-
ery for the mapped network. Below, we focus on explaining
the cut computation and efficient cut storage used. We then
present our heuristic to select the best cut. We also discuss

how we adapt area flow for area recovering. For a more in-
depth review on choice computation and network covering, we
refer the reader to [7], [16].

The first step is to compute the k-cuts. A cut c of a root
node n is a pair (n, L), where L is the set of cut leaves, such
that any path from a PI to n passes through at least one leaf.
A trivial cut of n is composed of n itself. Non-trivial cuts
cover all the nodes found on the paths from the root to the
leaves, including the root and excluding the leaves. A cut is
k-feasible if it has up to k leaves. Thus, starting from the PIs,
and given an internal node n with fanins a, b ∈ N , the set of
cuts for n, Φ(n), can be obtained through the Union of the
cut sets from a and b as follows:

Φ(n) = {{n}}∪{u∪v|u ∈ Φ(a), v ∈ Φ(b), |u∪v| ≤ k} (1)

During the k-cut enumeration, the Boolean function and the
area cost of each cut are computed on the fly. The functions
are compactly stored as truth tables, since the network has
a limit in the number of LUT inputs given by k. The area
cost is given by the literal count in the factored form [17].
A factorization method is used for area estimation. A good
factorization computation is key to enable good QoR. Still,
as it is expansive in runtime, we compute it only a single
time for every cut and cache this information to improve the
mapper runtime. For every cut, we store: (i) the unique IDs
of the cut leaves, (ii) the cut truth table, and (iii) the cut
area cost computed using its factored form. All information
is represented using integer numbers. Thus, for every node,
its cut set can be quickly retrieved using array indexing where
the index is given by the node ID. Similarly, as the number
of cuts in the cut set is known, it is possible to access any cut
of any node using array indexing. Therefore, reading the cut
information is done in constant (O(1)) time.

To define the best cut during the network covering, we use
an adaptation of the area flow heuristic (AF) [18], [19]. The
area flow provides an estimate of the area cost for a LUT
taking into account the logic sharing of the LUT inputs and
outputs. In the usual case for a generic LUT mapper, the
area used for every LUT during area flow is considered to
be unitary, i.e., all the k-input LUTs have the same area. In
our case, the area is given by the cached factored literal count.
Based on the best cut, the covering is performed. The caching
helps in saving runtime as computing the factored form of
the cuts has runtime costs, and the new mapper achieves great
scalability compared to the previous binate covering approach.
Relying on a good factorization for area estimation, we achieve
strong gains in PPA as discussed in Section VI.

Once the network is covered, the proposed flow performs
several iterations of area recovery based on our adaptations
of area flow and the exact (local) area [2]. The exact area of
a cut rooted at a node n is usually computed by summing
up the number of LUTs needed to implement the MFFC of
n, since all k-input LUTs are assumed to have the same area
cost. In our case, we compute it by summing up the factored
literal cost of the LUTs in the MFFC of n. The exact area
gives a local view of how many literals could be saved by
removing the LUT (cut) in the mapping. Our flow iterates the
area recovery using exact local area and area flow. The number

of iterations of each area recovery strategy can be controlled
to trade off QoR and runtime.

Altogether, these key enhancements enable our flow to run
LUT mapping iteratively while keeping the runtime under
control and converging to a better NAND2-equivalent imple-
mentation for different LUT sizes. A runtime profile of our
new mapper shows it takes a very small fraction of the flow
runtime, being an order of magnitude faster than the mapper
used in the original LUT-engine [1], which is helpful for
speeding up LUT-based optimizations.

V. SCALABLE BOOLEAN DECOMPOSITION FOR
LUT-ENGINE

This section presents and discusses a scalable Boolean
decomposition tailored to ASICs. Boolean factorization is a
crucial step of the proposed LUT-engine, since it enables
efficient iterative AIG decomposition while reducing the ASIC
implementation cost.

The logic division is a critical component of many tech-
niques [7]. In general terms, given two Boolean functions, f
and p, the division of f by p gives a quotient q and a remainder
r. Thus, f = p.q + r, where the sign . denotes the AND
Boolean operator, and the sign + denotes the OR Boolean
operator. If the remainder is not null, then p is a Boolean
divisor of f , otherwise, p is said to be a Boolean factor of
f . Note that, in the general case, q and r are not unique, and
a function might have several Boolean divisors and factors,
which introduces a problem of selecting a good divisor. A
restricted version of division is the algebraic division, where
the quotient is unique. It restricts the function to be minimal
with respect to single cube containment, i.e., there is not a
single cube containing another cube in the expression. An
algebraic product p.q is such that the supports of p and q
are disjoint, i.e., p and q have no variables in common. These
concepts are used in our flow to explain the Boolean division,
and how it fits in the Boolean decomposition algorithm. We
use the terms weak and algebraic division interchangeably.

A. Boolean Decomposition

Boolean decomposition can be done in a number of ways.
For instance, Boolean functions of the circuit outputs can be
derived and decomposition can be applied to these functions
[20]. However, this has a high complexity, and collapsing is
not always feasible. Another possibility is to run Boolean
decomposition to reduce the support of LUTs [12]. In our
case, reducing the LUT support is handled by our engine
during the Boolean optimization of LUT networks (see Section
III-A). Other methods rely on disjoint support decomposition
[21], and are less general because this decomposition does not
always exist. Therefore, in this work, we use a new specialized
Boolean decomposition that aims at reducing the factored
literal cost. This approach has a better correlation with our
goal to minimize the post decomposition NAND2-equivalent
implementation cost, instead of the LUT count.

The proposed algorithm based on Boolean division is de-
scribed in Algorithm 3. Boolean division is more powerful
than algebraic division and it can be achieved by tweaking
the weak division. In the proposed approach, a new variable
can be added to replace p (the divisor), i.e., let’s say x,

and the expression p ⊕ x can be introduced as a don’t care
condition for f . The ⊕ refers to the Exclusive-OR Boolean
operator. The function f is then minimized with a two-level
logic minimizer that considers the satisfiability don’t care
(SDC) condition introduced. Finally, weak division is run in
the resulting optimized function. In our proposed Boolean
decomposition flow, we leverage Boolean division.

Initially, the decomposition algorithm iterates over the LUTs
and retrieves their Boolean functions expressed as truth tables.
Since we are considering up to 16 input LUTs, truth table
computation can be handled efficiently with integer-based
implementation. For larger sizes, SAT engines can be used.
To have a proxy of each LUT complexity, we consider the
NLFF as the LUT cost.

In the sequence, the algorithm compute the candidate di-
visors based on kernels to decompose the LUT. Kernel inter-
section is performed to find candidate divisors that improve
sharing among LUTs [16]. As the input LUT network has a
tight boundary in the fanin number, kerneling computation and
intersection can be run with acceptable runtime. Nevertheless,
our framework lets us control the level of kernels and the
number of divisors to try.

Then, for each potential divisor, Boolean division takes
place. A new variable x is introduced in the function, and
the Exclusive-OR of this variable with the divisor is projected
as the SDC in the don’t care conditions of the function along
with the function’s don’t cares. The gain of the division is
given by how many literals are saved compared to the original
implementation of f . The best divisor is the one having the
biggest reduction in the literal count.

Once the best divisor is selected, each LUT is decomposed
to build a new AIG. Alternatively, if the division does not
improve the AIG implementation, the algorithm decomposes
f itself. Structural hashing takes place to increase logic sharing
whenever possible while creating new AIG nodes.

VI. EXPERIMENTAL RESULTS

This section presents experimental results for our new LUT-
engine, starting with the new best results in the ongoing EPFL
synthesis competition [22]. Next, we integrate our LUT-engine
in a commercial EDA flow. We show substantial improvements
in QoR, post place & route, and better runtime and scalability,
using the original LUT-engine [1] as the baseline.
A. Methodology

We integrate the proposed LUT-engine in a commercial
design flow. The new LUT-engine runs during Boolean opti-
mization and logic synthesis, driven by area minimization goal.
In addition to measuring area improvements, we also control
the level count and the net count. These metrics are known to
correlate with delay and congestion in the physical synthesis
portion of the design flow. To consider EPFL benchmarks, we
compiled the proposed engine as a standalone package capable
of processing LUT networks.

B. EPFL Benchmarks
In this section, we show the results for the EPFL bench-

marks. In particular, we challenge the area (i.e., number of
LUTs) category within the EPFL benchmark suite project that
keeps track of the best 6-input LUT synthesis results obtained

Algorithm 3: Boolean Decomposition Flow
Input: LUT-Mapped network N
Output: Decomposed AIG N ′

1 for each LUT L in topological order do
2 f ← lut fucntion(L);
3 current cost← factored form(f);
4 D ← compute recursively divisors(f);
5 best divisor ← Ø;
6 for each d ∈ D do
7 DC ← DC(f) + (x⊕ d);
8 f ′ ← two lvl minimizer(f,DC);
9 new cost← factored form(f ′);

10 if current cost > new cost then
11 current cost← new cost;
12 best divisor ← d;

13 if d != Ø then
14 build aig(N ′, d);
15 continue;

16 build aig(N ′, f);

17 return N ′;

by the participants since the beginning of the competition in
2015 [22]. We use the proposed new LUT-engine with k up
to 10, random S strategy, and runtime budget of 60 minutes,
with early bailout when no gain/change in the network cost is
observed for 5 consecutive loops. As final step, we add a k = 6
mapping with no ASIC considerations, targeting minimum
numbers of LUT-6, as mandated by the EPFL competition.
Most benchmarks run in minutes, with exception of the larger
ones, such as div and hypotenuse.

TABLE I
NEW BEST AREA CIRCUITS FOR THE EPFL SYNTHESIS COMPETITION

Benchmark I/O 6-input LUT count Level Count.
sin 24/25 1198 60
hypotenuse 256/128 39593 4438
i2c 147/142 198 12
cavlc 10/11 67 3
arbiter 256/129 305 78
sqrt 128/64 3026 1087
voter 1001/1 1280 19
divisor 128/128 3238 1185
mem ctrl 1204/1231 1986 22

We improve the previous best size (area) results1 for 9
benchmarks reported in Table I. Our improvements range from
few hundreds LUT-6 to few tens of LUT-6 or just a few
LUT-6 for smaller benchmarks. Interestingly, for the first time,
circuits i2c and mem ctrl reach sizes < 200 and < 2000 LUT-
6, respectively. This is significant because these circuits are
known to have good correlation with industrial designs. Our
circuit implementations can be downloaded at [23].
C. ASIC Synthesis Results

We present experimental results for 87 ASIC benchmarks,
including 22 OpenCore designs [24] and 65 industrial de-
signs. The OpenCore designs are ac97 ctrl, pci bridge32,

1The EPFL benchmark and best results are available at:
https://github.com/lsils/benchmarks. We compare our results to the latest
commit d783ca5

aes core, pci conf cyc addr dec, des area, pci spoci ctrl,
des perf, sasc, ethernet, simple spi, mem ctrl, spi, ss pcm,
steppermotordrive, systemcaes, systemcdes, tv80, usb funct,
usb phy, vga lcd, wb conmax, and wb dma. Since the 65
industrial designs come from major semiconductor companies,
with proprietary standard cell libraries and constraints, we
cannot disclose their details. To show the improvements of
the proposed flow, our implementation is compared against
the results obtained by the original flow [1]. We have setup
the original and the new LUT-engines to have similar runtime
budgets, modulo difference in early bailouts. This way, the
comparison is focusing on QoR, assuming the same optimiza-
tion effort. Both original and new LUT-engines are compared
with the baseline flow considered state-of-the-art commercial
EDA flow without a LUT-engine. The results for OpenCore
designs, post place & route, are summarized in Table II.

TABLE II
POST PLACE&ROUTE RESULTS ON 22 OPEN CORES DESIGNS

Flow Area Power WNS TNS Runtime
Baseline 1 1 1 1 1
Original flow -1.42% -1.29% +0.19% +0.74% +5%
New flow -3.23% -3.73% -3.41% -7.15% +4%

We can see that the new LUT-engine achieves more area
reduction while taking less time. When using original the LUT-
engine as the baseline, the proposed flow provides -1.84%
area and -2.47% switching power, better timing, with about
-1% runtime. The results for industrial designs, post place
& route, are summarized in Table III. The table shows that

TABLE III
POST PLACE&ROUTE RESULTS FOR 65 INDUSTRIAL DESIGNS

Flow Area Power WNS TNS Runtime
Baseline 1 1 1 1 1
Original flow -1.70% -1.31% -0.36% +1.01% +6%
New flow -5.06% -5.41% -3.09% -3.16% +5%

the new LUT-engine achieves much smaller area in less time.
When using original LUT-engine as the baseline, the proposed
flow provides -3.42% area and -2.57% switching power, better
timing, and -1% runtime. On a set of OpenCore and industrial
designs, the new LUT-engine produces -4.60% area and -
3.41% switching power with +5% runtime, compared to the
baseline flow, and -3.02% area and -2.54% switching power
with -1% runtime, compared to the original LUT-engine. All
results are verified using an industrial formal equivalence
checking flow.

VII. CONCLUSIONS

This paper continues the line of research to enable the
use of LUT-based techniques in logic synthesis for ASIC
designs. We presented key improvements to the recent LUT-
engine [1], resulting in a new LUT-engine. The new engine
exploits heterogeneous LUT sizes and leads to a 10× scala-
bility improvement. We introduced innovative LUT mapper
and Boolean factoring techniques, tailored to work as part
of the new flow. Our new LUT-engine improved 9 of the
best area results in the ongoing EPFL synthesis competition.
Integrated in an EDA flow for ASICs, our new LUT-engine
resulted in substantial QoR improvements on a set of 87
benchmarks: -4.60% area and -3.41% switching power with

+5% runtime, compared to a baseline flow not using LUT-
engine technology, and -3.02% area and -2.54% switching
power with -1% runtime, compared to the original LUT-engine.

ACKNOWLEDGMENT

This research is partially sponsored by DARPA, under
agreement number FA8650-18-2-7849.

REFERENCES

[1] L. Amaru, V. Possani, E. Testa, F. Marranghello, C. Casares, J. Luo,
P. Vuillod, A. Mishchenko, and G. D. Micheli, “LUT-based optimization
for ASIC design flow,” in 2021 DAC, 2021.

[2] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE TCAD, vol. 26, no. 2,
pp. 240–253, 2007.

[3] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable don’t-
care-based logic optimization and resynthesis,” ACM TRETS, vol. 4,
no. 4, pp. 1–23, 2011.

[4] G. Liu and Z. Zhang, “PIMap: A flexible framework for improving
LUT-based technology mapping via parallelized iterative optimization,”
ACM Transactions on Reconfigurable Technology and Systems, vol. 11,
no. 4, pp. 1–23, 2019.

[5] J. Cortadella, “Timing-driven logic bi-decomposition,” IEEE TCAD,
vol. 22, no. 6, pp. 675–685, 2003.

[6] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
IEEE TCAD, vol. 13, no. 1, pp. 1–12, 1994.

[7] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-
Hill Higher Education, 1994.

[8] R. Francis, J. Rose, and Z. Vranesic, “Chortle-crf: Fast technology
mapping for lookup table-based FPGAs,” in DAC, pp. 227–233, 1991.

[9] O. Coudert, “On solving covering problems,” in DAC, pp. 197–202,
1996.

[10] H. Riener, E. Testa, W. Haaswijk, A. Mishchenko, L. Amarù, G. D.
Micheli, and M. Soeken, “Scalable generic logic synthesis: One ap-
proach to rule them all,” in 2019 56th ACM/IEEE DAC, pp. 1–6, 2019.

[11] E. Testa, L. Amarú, M. Soeken, A. Mishchenko, P. Vuillod, J. Luo,
C. Casares, P.-E. Gaillardon, and G. De Micheli, “Scalable Boolean
methods in a modern synthesis flow,” in DATE, pp. 1643–1648, 2019.

[12] L. Machado and J. Cortadella, “Support-reducing decomposition for
FPGA mapping,” IEEE TCAD, 2018.

[13] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson,
R. Brayton, and G. De Micheli, “Improvements to Boolean resynthesis,”
in DATE, pp. 755–760, 2018.

[14] S.-C. Chang, L. P. Van Ginneken, and M. Marek-Sadowska, “Circuit
optimization by rewiring,” IEEE Transactions on computers, vol. 48,
no. 9, pp. 962–970, 1999.

[15] F. Brglez, D. Bryan, J. Calhoun, G. Kedem, and R. Lisanke, “Automated
synthesis for testability,” IEEE Transactions on Industrial Electronics,
vol. 36, no. 2, pp. 263–277, 1989.

[16] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2,
pp. 264–300, 1990.

[17] R. Brayton and C. McMullen, “The decomposition and factorization
of boolean expressions,” in International Symposium on Circuits and
Systems, pp. 29–54, 1982.

[18] V. Manohararajah, S. Brown, and Z. Vranesic, “Heuristics for area
minimization in lut-based fpga technology mapping,” IEEE TCAD,
vol. 25, no. 11, pp. 2331–2340, 2006.

[19] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient fpga mapping solution,” in Proc. FPGA ‘99, pp. 29–
35, ACM Press, 1999.

[20] N. Modi and J. Cortadella, “Boolean decomposition using two-literal
divisors,” in Proceedings of the 17th VLSID, (USA), p. 765, IEEE
Computer Society, 2004.

[21] A. Mishchenko, R. Brayton, and S. Chatterjee, “Boolean factoring and
decomposition of logic networks,” in 2008 IEEE/ACM ICCAD, pp. 38–
44, 2008.

[22] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “The EPFL com-
binational benchmark suite,” in International Workshop on Logic &
Synthesis, 2015.

[23] Link: https://tinyurl.com/dac22-results.
[24] OpenCores: https://opencores.org.

