
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 1

A Simulation-Guided Paradigm for Logic Synthesis
and Verification

Siang-Yun Lee, Heinz Riener, Alan Mishchenko, Senior Member, IEEE, Robert K. Brayton, Fellow, IEEE,
and Giovanni De Micheli, Fellow, IEEE

Abstract—This paper proposes a new logic synthesis and veri-
fication paradigm based on circuit simulation. In this paradigm,
high-quality, expressive simulation patterns are pre-generated
to be reused in multiple runs of optimization and verification
algorithms, resulting in reduced time-consuming Boolean com-
putations such as SAT-solving. Methods to generate expressive
simulation patterns are presented and compared, and a bit-
packing technique to compress them is integrated into the
implementation. The generated patterns are shown to be reusable
across different algorithms and after network function mod-
ifications. A logic synthesis algorithm, Boolean resubstitution,
and a verification algorithm, combinational equivalence checking,
are two examples of using this paradigm. In simulation-guided
Boolean resubstitution, simulation patterns are used for efficient
filtering of optimization choices, leading to a lower cost in
expanding the search space. By adopting the proposed paradigm,
we achieve a 5.9% reduction in the number of AIG nodes,
compared to 3.7% by a state-of-the-art resubstitution algorithm,
within comparable runtime. In simulation-guided equivalence
checking, the number of SAT solver calls is reduced by 9.5%
with the use of the expressive simulation patterns accumulated
in earlier logic synthesis stages.

Index Terms—Logic synthesis, formal verification, circuit sim-
ulation, Boolean methods, simulation patterns.

I. INTRODUCTION

LOGIC synthesis and verification play an important role
in electronic design automation (EDA), and extensive

research has been done on optimizing logic networks since
the emergence of this field. The numerous logic optimization
methods existing in the literature [1], [2] can be roughly
classified into two classes, namely algebraic methods, which
treat Boolean functions as polynomials and optimize the logic
network locally, and Boolean methods, which exploit global
Boolean logic and don’t-cares to improve the optimization
quality. As the size and complexity of digital circuits grow,
there is often a trade-off between efficiency and quality.
Algebraic methods, as well as other local-search methods
such as structural analysis and window simulation, are ef-
ficient but often sacrifice optimality. In contrast, Boolean
methods, such as Boolean decomposition [3], resynthesis [4]
and rewriting [5], usually achieve better quality at the cost of
solving NP-hard Boolean problems using a binary decision

This research was supported in part by the EPFL Open Science Fund, by the
SRC Contract 2867.001, and by the SNF grant “Supercool: Design methods
and tools for superconducting electronics”, 200021 1920981.

S.-Y. Lee, H. Riener and G. De Micheli are with the Integrated Systems
Laboratory, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne,
Switzerland.

A. Mishchenko and R. K. Brayton are with the Department of EECS, UC
Berkeley, Berkeley, California, USA.

diagram (BDD) [6], [7] package in earlier research, or a
satisfiability (SAT) problem [8], [9] solver in more recent
literature.

To balance between the two extremes, circuit simulation is
often used in Boolean methods as an efficient approximator of
the Boolean functions embedded in logic networks. However,
if the simulation is not exhaustive, formal verification, which
is usually done with SAT-solving, is still required [10]. In
this paper, we introduce a new paradigm, simulation-guided
logic synthesis and verification, where efforts are made in
pre-generating a set of high-quality, expressive simulation
patterns to be reused many times. By increasing the expressive
power of the simulation patterns, synthesis and verification
algorithms become more efficient, and the extension of the
search space in optimization algorithms becomes more af-
fordable. The underlying hypothesis, which is confirmed by
experimental results, is that expressive simulation patterns can
be amassed for a logic network and used later as an efficient
filter to avoid unnecessary SAT solver calls.

The proposed paradigm is useful for algorithms dominated
by expensive Boolean computations. Two representative appli-
cations are presented in this paper: Boolean resubstitution [11]
and combinational equivalence checking (CEC) [12].

The first representative application is to demonstrate a high-
quality and efficient Boolean resubstitution framework based
on the simulation-guided paradigm. The classic resubstitution
algorithm iterates over the nodes in a logic network and
attempts to re-express their functions using other nodes in the
network. If updating a node’s function makes other nodes in
its fan-in cone dangling (i.e., having no fan-out), they can be
deleted, resulting in the reduction of the network’s size. For
the special case of replacing a node directly with an existing
node, it is equivalent to functional reduction (FRAIG) [13].
In the presented simulation-guided resubstitution framework,
nodes fed into the resubstitution engine are represented by
their simulation signatures, and a SAT solver is used to
validate the computed resubstitution candidates. Using ex-
pressive simulation patterns, most illegal candidates can be
quickly identified and ruled out within the engine by simply
comparing simulation signatures and without the need for
SAT-based validation. The experimental results show that
simulation-guided resubstitution allows user-specified tuning
of the efficiency-quality trade-off and improves optimization
quality by considering a larger search space while maintaining
reasonable efficiency. Comparing to a state-of-the-art And-
Inverter Graph (AIG) resubstitution algorithm [11], average
reduction in the number of AIG nodes improves from 3.65%

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 2

to 5.90%.
The second representative application shows that the sim-

ulation patterns can be used in CEC. Similarly, simulation-
guided CEC leverages the expressive patterns generated in
earlier synthesis stages to disprove more non-equivalent nodes
than random simulation can do, thus reducing the effort needed
in SAT-based formal verification. In our experiment, a 9.5%
reduction in the number of SAT calls is achieved when
expressive patterns are used in CEC.

This motivates us to study what makes simulation patterns
expressive and profile different pattern generation strategies,
including random simulation, stuck-at-value testing [14], ob-
servability checking [15], and combinations of these. In the
process of resubstitution and CEC, pre-computed simulation
patterns can be refined further with the counter-examples
generated by SAT-solving. The generated patterns and the
supplemented counter-examples can be reused in two schemes:
across different algorithms, such as resubstitution followed
by CEC, and across different versions of the same design.
Reusability in the latter case is verified with experiments on
engineering change order (ECO) [16] benchmarks, which are
similar networks with functional modifications.

The contributions of the paper are: (1) a simulation-guided
logic synthesis and verification paradigm, which pre-generates
and reuses expressive simulation patterns to reduce the efforts
needed in SAT-based verification; (2) methods to generate
expressive simulation patterns, which are integrated with a
bit-packing technique; (3) demonstrations of the benefits of
the proposed paradigm with improved resubstitution quality
and reduced SAT calls in CEC; (4) the reusability of the
pre-generated patterns across different applications and with
network modifications, shown with experimental results.

The rest of this paper is organized as follows: After prelim-
inaries are given in Section II and related works introduced in
Section III, we first describe the simulation-guided paradigm
in Section IV. Then, pattern generation and compaction meth-
ods are explained in Section V. Two applications, Boolean
resubstitution and CEC, are demonstrated in Sections VI
and VII, respectively. Finally, experimental results are given
in Section VIII, and conclusions in Section IX.

II. PRELIMINARIES

A. Logic Networks

In this paper, we focus on technology-independent repre-
sentations of digital circuits, referred to as logic networks (or
simply networks). Logic networks are directed acyclic graphs
(DAGs), where nodes represent logic gates and edges represent
wires connecting them together. Incoming edges of a node are
called fan-ins, whereas outgoing edges are called fan-outs. The
transitive fan-in (TFI) or the transitive fan-out (TFO) of a node
n is the set of nodes such that there is a path between n and
these nodes in the direction of fan-in or fan-out, respectively.
A logic gate computes a Boolean function, which is a function
defined over the Boolean space B = {0, 1}, of its fan-ins and
passes the resulting output value to its fan-outs. Concatenating
the computation of the logic gates according to the structure of
a network, the global Boolean functions of each node can be

derived, which take primary inputs (PIs) as inputs. Two nodes
in a network are said to be functionally equivalent if their
global functions are logically equivalent; otherwise, they are
functionally non-equivalent. Overall, a logic network realizes
Boolean functions of the primary output (PO) nodes. The size
of a network is determined by its number of nodes.

In this paper, we work with AIGs [17], where every node is
an AND gate and the inverters are represented by edges with a
complement attribute and with no cost (that is, they do not add
to the network size). Nevertheless, this paradigm can also be
applied to other types of homogeneous logic networks, such as
Majority-Inverter Graphs [18], Xor-And-Inverter Graphs [19],
and Xor-Majority Graphs [20], as well as mapped networks
such as k-LUT networks [21].

B. Don’t-Cares

Boolean methods usually achieve better optimization quality
than algebraic methods because they consider the flexibilities
of the network, called don’t-cares. The don’t-care set in a
logic network indicates where local functions can be modified
without changing the global functions, which can be leveraged
to optimize the network. There are two types of don’t-cares:

1) For a set of internal nodes, there might be some value
combinations that never appear at these nodes. For
example, an AND gate g1 and an OR gate g2 sharing
the same fan-ins can never have g1 = 1 and g2 = 0 at
the same time. This combination is a satisfiability don’t-
care (SDC) of a common TFO node of g1 and g2.

2) A value assignment ~x ∈ Bn to the PIs is said to be un-
observable with respect to a node n if none of the POs
changes its value when n is replaced by its negation n.
~x is an observability don’t-care (ODC) of n because the
function of n under ~x does not matter.

C. Boolean Satisfiability Problem

Boolean optimization methods are often formulated as
a Boolean satisfiability problem and solved with a SAT
solver [9]. A SAT problem is asking whether a Boolean
formula, usually presented in a conjunctive normal form (CNF)
as a conjunction of clauses, is satisfiable. That is, whether
there exists a value assignment making the formula evaluate
to true. If so, the solver returns a satisfiable (SAT) result along
with a satisfying value assignment; otherwise, it concludes
that the problem is unsatisfiable (UNSAT). Logic networks can
be translated into CNF formulae with the Tseytin transforma-
tion [22].

By using SAT in logic optimization, we benefit from its
global consideration of the Boolean functions and hence
better optimization quality. However, SAT is an NP-complete
problem [23]. Although many approaches have been proposed
to solve SAT problems efficiently for EDA applications [9] and
efficient SAT solvers have been developed, SAT-solving is still
slower than algebraic and local-search methods in general. In
practice, to avoid the program being stuck in a difficult SAT
solve, a timeout can be set to limit the time spent in solving
SAT; and/or a conflict limit can be set to restrict the effort
made by the SAT solver.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 3

D. Windowing

A window is a sub-graph constructed from a root node r
and a cut C = (r, L), which is a pair of the root node and a set
of leaf nodes L. The set of leaf nodes fulfills the requirement
that any path from a PI to r passes through exactly one node
in L. All the internal nodes on the paths from any node in L to
r are included in the window. Additionally, nodes outside of
the TFI cone of r but having all of their fan-ins in the window
can also be added into the window. A window can be viewed
as a smaller network with the leaf nodes as PIs and the root
node as the PO.

E. Circuit Simulation

A simulation pattern (or abbreviated as a pattern) is a
collection of Boolean values assigned to each primary input
of a network. Circuit simulation is done by visiting nodes in a
topological order and computing their output values with their
input values. In practice, several simulation patterns can be
bundled together by using machine words, instead of a single
bit, to represent a sequence of Boolean values. This way, 32
or 64 patterns can be computed for a node within a single
CPU instruction using bitwise logical operations supported by
modern arithmetic logic units. The simulation signature of a
node is an ordered set of values produced at the node under
each simulation pattern.

A set of simulation patterns is exhaustive if it covers all
possible combinations of value assignment, which requires
2k patterns for k PIs. The simulation signatures produced
by simulating an exhaustive pattern set are also called truth
tables and they completely specify the Boolean functions of
the nodes.

Simulation can be done globally in the entire network or
locally in a small window. In the former case, the simulation
pattern set is possibly non-exhaustive because 216 patterns are
already impractical to handle, but the number of PIs is usually
larger than 16. To use an exhaustive set of patterns, simulation
must be restricted to a window of less than 16 (typically 8 to
10) leaf nodes.

F. Resubstitution

Boolean resubstitution is one of the combinational opti-
mization methods aiming at reducing sizes of logic networks.
For each node in a network, called the root, the algorithm
tries to find a smaller replacement for the sub-graph that
only contributes to the root, called the maximum fan-out free
cone (MFFC) [24]. A node n is said to be in the MFFC of
the root node r if n is in the TFI of r and all paths from
n to the primary outputs pass through r. The MFFC of a
node can be efficiently computed by recursively referencing
and dereferencing nodes in the network. If the root node
is replaced and deleted, all nodes in its MFFC can also be
deleted, reducing the size of the network.

The replacement for the root node, called the dependency
circuit, is built upon a set of potentially useful nodes existing
in the network, called divisors. A divisor should not be in the
TFO cone of the root, otherwise the resulting network would
be cyclic. It should also not be in the MFFC because nodes

in the MFFC are to be removed after resubstitution. Nodes
depending on primary inputs that are not in the TFI of the
root node can also be filtered out from the set of divisors
because their functions are unrelated to that of the root node.
In practice, to keep the runtime reasonable, a priority is given
to nodes in a window composed of the TFI cone of the root
with maximum support size K and nodes outside of the TFI
depending entirely on other divisors. [11]

A resubstitution candidate (also abbreviated as a candidate)
is either a divisor itself or a single-output function, named the
dependency function, built with several divisors. In the latter
case, the candidate is represented by the top-most node of the
dependency circuit. A resubstitution, or simply substitution, is
a pair (r, c) of a root node r and a resubstitution candidate c,
and it is said to be legal if replacing r with c does not change
the functions of any PO. Otherwise, the resubstitution is said
to be illegal.

III. RELATED WORK

Random simulation is a core tool in logic synthesis and
verification, which has been used successfully to reduce the
runtime of various computations. In this section, we first
review some works leveraging the power of random sim-
ulation. Then, with Boolean resubstitution being our main
example algorithm adopting the simulation-guided paradigm,
some existing resubstitution techniques are also described.

In functional reduction [13], random and guided simulation
are used to identify equivalent nodes and merge them. In
combinational equivalence checking [12], simulation is also
used to find cut-points between two networks that serve as
stepping stones for the proof of equivalence at the primary
outputs. In [10], [25], a combination of random simulation
and SAT solving was proposed to compute flexibilities (don’t-
cares) of Boolean networks within a window, and to compute
the dependency function in resubstitution. Motivated by the
efficacy of these techniques adopting random simulation, the
simulation-guided paradigm in this paper focuses on identify-
ing a set of expressive simulation patterns to further strengthen
the power of simulation. Once identified, the patterns can
be reused multiple times to speed up logic synthesis and
verification for the same or a similar network in various
applications.

Research in Boolean resubstitution techniques dates back
to the 1990s [26], [27]. In the 2000s, efforts were made
to improve the scalability of BDD-based computations [28]
and to move away from BDDs to simulation and SAT solv-
ing [4], [10]. In [10], the dependency function is computed
by enumerating its onset and offset cubes using SAT and
interpolation [29], where random simulation is used for the
initial filtering of potentially useful divisors. In [4], structural
analysis (windowing) was introduced to speed up the algorithm
further. Windowing is used to limit the search space and the
SAT instance size, with the inner window as a working space,
and the outer window as the scope for computing don’t-cares.

An efficient Boolean resubstitution algorithm for AIGs
using windowing was presented in [11], which is considered
as the state-of-the-art to be compared to in this paper. It relies

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 4

Fig. 1. The simulation-guided logic synthesis and verification paradigm. For each design (named design1 in the figure), a set of expressive simulation
patterns is generated once (design1.pat) and is used several times throughout logic synthesis and verification. The same pattern set is applicable for
various versions of the design with functional modifications (design1_v1, design1_v2, etc.). When the pattern set is used in one of the simulation-
guided algorithms, it is also supplemented and refined with the counter-examples (CEXs) generated as side-products during execution of the algorithm. The
blocks shaded in grey are implemented and described in this paper: pattern generation in Section V, resubstitution in Section VI, and equivalence checking in
Section VII. While other logic synthesis algorithms may also benefit from adopting the paradigm (the blank blocks in the figure), we present only resubstitution
as an example in this paper.

entirely on truth table computation, without any use of BDDs
or SAT. The search for divisors is limited to a window near
the root node, which is constructed from a size-limited cut to
allow exhaustive simulation. The node functions in the window
are expressed in terms of the cut nodes. The dependency
function is not computed as a separate step after minimizing
its support, as in [4]. Instead, simple dependency circuits of up
to three AND gates are explicitly tried for resubstitution using
several heuristic filters. This windowing-based and truth-table-
based resubstitution framework has been generalized for many
different gate types including majority gates [30] and complex
gates [31].

IV. THE SIMULATION-GUIDED PARADIGM

This paper introduces a new paradigm for logic synthesis
and verification that exploits fast bit-parallel simulation to
reduce the number of expensive NP-hard equivalence checks
based on SAT. The rationale behind the idea is to pre-compute
a set of simulation patterns for a given logic network, which
can efficiently rule out most non-equivalences by simply
comparing simulation signatures. Motivated by the fact that
detecting and verifying functional equivalence are the major
tasks in many logic optimization (especially Boolean methods)
and verification algorithms, we define expressive simulation
patterns as follows.

Definition: A non-exhaustive set of simulation patterns for
a logic network is said to be expressive if the simulation
signatures obtained by simulating the patterns can be used to
pair-wisely distinguish functionally non-equivalent nodes that
either already exist in the logic network or can be derived
from some existing nodes.

The exhaustive set of simulation patterns satisfies the latter
part of this definition, but this is typically too large for logic

networks with 16 or more primary inputs. In practice, only
expressive simulation patterns that can be efficiently stored
and simulated using less than, say, a few hundred or thousand
bits are of interest.

We assume that, for a given logic network of interest, a set
of expressive simulation patterns with size proportional to the
network size can be found. This means that, as depicted in Fig-
ure 1, the expressive simulation patterns can be pre-computed,
stored, and reused by different logic synthesis or verification
algorithms when applied to the same network, or by the same
algorithm when invoked multiple times with slightly different
networks. The assumption is verified with experimental results
in Section VIII by showing pattern reusability after ECOs,
which are typically small functional modifications to networks
under design [16]. With this assumption, we claim that the
time needed to generate the expressive patterns is not critical
because they will be reused many times such that the benefits
are more substantial.

Expressive simulation patterns cannot be derived directly
from the Boolean functions of the primary outputs, but must
account for some structural information of the network. An
intuitive explanation of this observation is that a PO function
can be implemented by a large number of structurally different
logic networks. Despite this, the idea of reusing simulation pat-
terns in multiple optimization or verification runs is still valid
because the initial structure of the network often is determined
by high-level synthesis and later carefully fine-tuned by logic
optimization. Consequently, only a small fraction of closely-
related structures is encountered during logic optimization and
the final verification of the network. Several pattern generation
strategies are discussed in Section V.

The proposed simulation-guided paradigm can be adopted
by algorithms dealing with the Boolean relation among nodes
in logic networks. For example, in Section VI, the paradigm

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 5

is demonstrated with Boolean resubstitution, where simulation
signatures are used as an approximation of node functions
when finding resubstitution candidates. This way, restriction
to local windows is avoided and global information is utilized
with low cost. In Section VII, benefits of the expressive
patterns in CEC are demonstrated as another application of
this paradigm. As simulation patterns are already generated
for the optimization algorithms prior to verification, reusing
them in CEC comes at no extra cost. With their stronger ability
to distinguish non-equivalent nodes without SAT solving, the
overall number of SAT calls in CEC can be reduced. The
paradigm is potentially suitable for other algorithms, such as
computation of structural choices [32], to improve the quality
of mapping and gate matching between several versions of the
same logic network. Furthermore, the resulting patterns can
also be used in automatic test pattern generation (ATPG) [33]
and in circuit reliability analysis [34].

To conclude, simulation signatures are used as efficient ap-
proximations of node functions to reduce NP-hard equivalence
checks. As they may not cover all circuit states under all
possible input assignments, formal verification (in this paper,
by SAT-solving) is inevitable in simulation-guided algorithms,
which generates counter-examples in terms of PI value assign-
ments, i.e., new simulation patterns. To reduce unnecessary
SAT-solving, we seek to increase the accuracy of this approxi-
mation. On one hand, we propose to pre-generate an expressive
pattern set to be reused across multiple optimization runs and
across different algorithms, and we study methods to ensure
good quality of these patterns in the first place. On the other
hand, motivated by the success of various counter-example-
guided logic synthesis and verification works [10], [13], [35],
[36], we propose to collect and keep the counter-examples
generated by different algorithms and use them to enhance
the initial pattern set.

V. SIMULATION PATTERN GENERATION

Following the previous section, several strategies to generate
expressive simulation patterns are formulated in this section.
Two types of patterns are used as the basis: random patterns
which are random values generated with equal probability of
0 or 1 for each primary input, and stuck-at patterns which are
generated by trying to distinguish each node from constant
functions 0 and 1. Generating random patterns is straightfor-
ward. The procedure to generate stuck-at patterns is described
in Section V-A. Then, in Section V-B, an observability-based
method to strengthen stuck-at patterns is elaborated. Finally,
a bit-packing method to compress the pattern set is explained
in Section V-C.

A. Stuck-at Values

In random simulation, the possibility of a certain bit value
(0 or 1) appearing in the simulation signature of some nodes
in the network may be relatively low. For example, a 2-input
AND gate only produces 1 when both of its fan-ins are 1,
which is of 25% possibility if the fan-in values are randomly
assigned. However, a value of 1 at this node may be necessary
for disproving some non-equivalence. Thus we refine the set

StuckAtCheck
input: a logic network N
output: a set S of expressive simulation patterns
01 S := a small set of random patterns
02 N .simulate(S)
03 initialize Solver
04 Solver.generate CNF(N)
05 foreach node n in N do
06 if n.signature = ~0 or n.signature = ~1 do
07 if n.signature = ~0 do
08 Solver.add assumption(n)
09 else do
10 Solver.add assumption(¬n)
11 result := Solver.solve()
12 if result = SAT do
13 S := S ∪ {Solver.pi values}
14 else if result = UNSAT do
15 Replace n with constant node.
16 return S

Fig. 2. Algorithm StuckAtCheck: Generation of expressive simulation pattern
by asserting stuck-at values.

of simulation patterns by checking that every node has both
values appearing in its simulation signature. If only one value
occurs, a new simulation pattern is created by solving a SAT
problem, which forces the node to have the other value.

The algorithm, named StuckAtCheck, is illustrated in Fig-
ure 2. In lines 01-02, we start with a small set of random
simulation patterns and simulate the network to get the initial
simulation signatures of each node. A SAT solver is also
initialized and loaded with the CNF clauses translated from
the network in lines 03-04. Then, in line 05, for each node
in the network, if 0 or 1 does not appear, we try to generate
a pattern by assuming the missing value and solving the
SAT instance (lines 06-11). If the solver finds a satisfying
assignment, the desired pattern is generated (lines 12-13).
In an un-optimized network, there may be nodes which never
take one of the values and the solver will conclude that the
problem is unsatisfiable (line 14). These nodes can be replaced
by a constant node in line 15. If the solver times-out or a
given conflict limit is exceeded, we simply skip the node and
continue the process with the next node.

The pattern set can be further strengthened by assuring both
values appear multiple times (for example, at least 10 times) in
the signature of every node. This can be done by running the
SAT solver multiple times while making sure it takes different
computation paths.

An example is shown in Figure 3. Suppose there are two
random patterns in the initial set S = {000,110}. After
simulation, the simulation signature obtained for node n is
00 where 1 does not appear. Hence, by assuming n = 1 and
solving SAT a new pattern 011 is generated and added to the
end of S. Now the simulation signature of n is 001.

B. Observability

As described in Section II-B, there may be some simulation
patterns that are not observable with respect to an internal

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 6

f
0
0
0
1

0
0
1
1

1
0
0
0

n

a 0
1
0
1

b 0
1
1
0

c 0
0
1
1

Fig. 3. Example network for pattern generation methods. A simulation pattern
is a value assignment to ~x = (a, b, c). Suppose initially, two patterns 000 and
110 are generated randomly. Node n is stuck at 0 because its output value is
0 under both patterns. StuckAtCheck thus generates a pattern 011 to produce
a 1 at n. However, this pattern is not observable because flipping the value
of n from 1 to 0 does not affect the PO f , as a = 0 keeps the PO value at
0. Hence, another pattern 101 is generated by ObservablePatternGeneration
to ensure that the pattern is observable and makes n = 1.

node; these patterns are possibly less useful in disproving non-
equivalence. Here, two cases are identified where a generation
or re-generation of an observable pattern may be done:

• Case 1: In StuckAtCheck when a node is stuck at a value,
and a new pattern is generated to express the other value,
but this pattern is not observable.

• Case 2: A node assumes both values, but for all the
patterns under which the node assumes one of the values,
it is not observable.

The first case is identified during StuckAtCheck. Whenever
a new pattern is generated (line 13), its observability with
respect to the node n is checked according to the definition
in Section II-B using the following steps: (1) Simulate the
network to obtain the PO values under this pattern. (2) Flip
the simulation value at the output of n and simulate its TFO
cone again. (3) Check if all of the PO values remain the same.
If so, the pattern is un-observable. (4) Restore the value of n
and simulate again.

The second case is checked after procedure StuckAtCheck is
completed. We iterate over all the nodes in the network again
and check if for each node, there is at least two patterns which
are observable with respect to the node and the node assumes
0 and 1 respectively under the two patterns. The procedure
to check whether each pattern is observable is the same as
described above.

To resolve un-observable patterns, a procedure Observ-
ablePatternGeneration is devised, which generates an observ-
able simulation pattern ~x with respect to a given node n and
makes sure that n expresses a specified value v under ~x.
This procedure builds a CNF instance, whose corresponding
network is shown in Figure 4, and solves it using the SAT
solver. If the instance is SAT, an observable pattern is gener-
ated (Claim 1), and we say that the originally un-observable
pattern is resolved. Otherwise, if the solver returns UNSAT, n

1

. . .

TFO TFO

.

n n

v

TFI1 TFI2

Fig. 4. Corresponding network of the CNF instance built in procedure
ObservablePatternGeneration. The lower two triangles TFI1 and TFI2 are
the TFI cones of the two fan-ins of node n. n is created and connected to
the same TFI cones as n. The TFO cone of n is duplicated (the upper two
triangles) and the counterpart is connected to n. Primary outputs in the two
TFO cones are matched and connected to XOR gates, and the XOR gates
are fed to an OR gate, whose output is asserted to be 1, forming a miter
sub-network. The output value of node n is asserted to be v.

is found to be un-observable with value v and can be replaced
by the constant node in the respective polarity (Claim 2).

Claim 1: A satisfying input assignment ~x in the network of
Figure 4 is an observable pattern with respect to node n.
Proof. By the definition in Section II-B, ~x is observable with
respect to n if the value of at least one of the primary outputs
of the network under ~x is different when n is replaced by n.
This condition is ensured by the miter of the TFO cones of n
and n in Figure 4.

Claim 2: If a node n is never observable with value v (v ∈
{0, 1}), then it can be replaced by constant ¬v (¬0 = 1,¬1 =
0) without changing the network function(s). That is, there
does not exist a primary input assignment ~x, such that one of
the primary outputs has different values in the original network
and in the modified network.
Proof. Assume the opposite: there exists a primary input
assignment ~x, such that at least one of the primary outputs
has a different value after replacing n with ¬v. If the value
of n is ¬v under ~x, all node values in the network, including
primary outputs, remain unchanged if n is replaced by ¬v.
If the value of n is v under ~x, because n is not observable
with v, all primary outputs remain at the same value when the
node value of n changes to n = ¬v, which contradicts the
assumption.

In order to limit the computation in large networks, the
TFO in Figure 4 can be restricted to nodes within a certain
distance from n, called the depth of the TFO cone, instead of
extending all the way to primary outputs. In this case, all the
leaves of the cone should be XOR-ed with their counterparts
to build the miter. Note that restricting the TFO depth weakens

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 7

the definition of observability, but is essential for scalability.
Empirically, using a depth of 5 logic levels is a good tradeoff
between quality and runtime.

After an observable pattern ~x is generated, in Case 1, we
can replace the pattern generated by StuckAtCheck with ~x. In
Case 2, we simply add ~x to the set of patterns.

We continue with the example in Figure 3 with three
patterns in the set S = {000,110,011}. By checking
the observability of each pattern, it is found that only 110
is observable and the value of n under this pattern is 0.
Hence, procedure ObservablePatternGeneration generates an-
other pattern 101 making n = 1. This pattern is indeed
observable because flipping the value of n from 1 to 0 also
makes the PO value f change from 1 to 0.

C. Bit-Packing

For some large benchmarks with many primary inputs,
the size of the generated pattern set can be large, slowing
down simulation. In the field of ATPG, test patterns are often
compressed by first identifying care and don’t-care bits in
them [37]. The set of care bits in a test pattern is the set of
PI values that contribute to detecting a certain fault, while the
don’t-care bits are the PIs that can be assigned to any value.
We integrated a similar technique in our simulation pattern
generation.

Similar to test pattern compression, the care bits in a
simulation pattern are the PI values that contribute to proving
that the node is not stuck-at and in fact observable at one
of the outputs. During simulation pattern generation with the
previously described methods, care bits are identified by a
simple structural support analysis, which highlights control
paths from the inputs to the target node, and from the target
node to at least one output where it is observed.

After generating several patterns, the pattern set is com-
pressed by trying to pack each new pattern into one of the
preceding patterns. Two patterns can be packed together if
their care bits do not overlap. To pack a pattern p1 into another
pattern p2, the care bits of p1 are written into don’t-care bits
of p2, and these bits are marked as cares in p2.

D. Discussion

In this section, we illustrate methods to derive an initial set
of expressive patterns serving as the basis of the simulation-
guided paradigm. Starting from a mixture of random patterns
and stuck-at patterns as the basis and depending on the
computation effort taken by the pattern generation phase,
observability checks can be applied to strengthen or append
the pattern set. It may seem, from the algorithms, that each
pattern is generated for a specific node in the network, which
may be removed later during logic optimization and the
pattern becomes useless. However, we argue that this is not
a problem because even random patterns play an important
role in this paradigm, as shown in our experimental results.
Moreover, it is practically inefficient to keep track of which
pattern is generated for which node and which patterns are
still useful, especially after bit-packing. As another evidence,
our experimental results on ECO benchmarks show that the

generated patterns are as useful for a functionally modified
network even if they are generated with the original version
of the design.

VI. SIMULATION-GUIDED RESUBSTITUTION

In this section, the simulation-guided paradigm is demon-
strated with Boolean resubstitution as an example application
in logic synthesis. The main difference of our algorithm,
compared to a state-of-the-art resubstitution algorithm [11],
is in the representation of the divisors. Instead of using the
complete truth table of the local function of the node, we use
the simulation signature approximating the global function of
the node. The algorithm consists of the following steps:

1) Generation of a set of expressive simulation patterns, as
described in Section V.

2) Simulation of the network with these patterns to obtain
simulation signatures for each node.

3) Iterating over all nodes in the network and calling the
currently chosen node the root node. Estimating the gain
by computing the root node’s MFFC and collecting the
divisors. Skipping the node if the gain is too small or if
there are no divisors. This step is the same as in [11],
so we omit the details here.

4) Searching for resubstitution candidates in terms of de-
pendency functions using simulation signatures.

5) Validating the resubstitution with SAT solving by as-
suming non-equivalence. An UNSAT result validates the
resubstitution, while a SAT result provides an input
assignment under which the optimized network is not
equivalent to the original network. In the latter case,
the counter-example is added to the set of simulation
patterns.

6) Iterating starting from Step 3, until all nodes in the
network have been processed.

Simulation of the entire network in Step 2 enables better
incorporation of global satisfiability don’t cares without extra
cost, which allows more optimization potential comparing
to the windowing-based approach as in [11]. Collection of
counter-examples in Step 5 expands the simulation pattern
set, which further improves the efficiency of later optimization
runs. In the remainder of this section, we focus on Steps 4 and
5, shown in Figure 5, which differ the most.

A SAT solver is initialized and the CNF clauses encoding
gate logic are generated and added to the solver in lines
01-02. In line 04, a simulation-signature-based dependency
function computation algorithm is used to find a dependency
circuit of up to N∗ nodes, where N∗ is the smaller value
among a user-specified parameter N and the size of the
MFFC. Procedure compute function heuristically searches for
a minimum-node AIG implementation F of the target function
ft using a set of divisors D as PIs. Both the target function
and the divisors are represented by their simulation signatures.
The PO of F has the same signature as the given target ft.
The divisors are classified as either unate or binate by the
implication relationship of their signatures fd with the target
function ft. If either fd → ft or ft → fd holds, the divisor
d is said to be unate. Since inverters are for free in AIGs,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 8

SimResub
input: a root node n in a simulated network N ,

its MFFC MFFC, and a set D of divisors
output: a legal (verified) candidate to substitute n, if exists
01 initialize Solver
02 Solver.generate CNF(N)
03 while TRUE
04 F := compute function(n, D, min{|MFFC|, N})
05 if F 6= NULL do
06 result := Solver.verify(n, F)
07 if result = TRUE do
08 return F
09 else if result = FALSE do
10 N .re simulate()
11 else break
12 else break
13 return NULL

Solver.verify
input: a root node n in a simulated network N , and

a dependency circuit F with some nodes in N as PIs
and Fout as PO

output: whether it is legal to substitute n with F
14 Solver.generate CNF(F)
15 Solver.add assumption(literal(n) ⊕ literal(Fout))
16 result := Solver.solve()
17 if result = UNSAT do
18 return TRUE
19 else if result = SAT do
20 N .add pattern(Solver.pi values)
21 return FALSE
22 return UNKNOWN

Fig. 5. Algorithm SimResub: One iteration of Steps 4 and 5 in simulation-
guided Boolean resubstitution.

the complement d of a divisor d is also considered, separately
from d. If neither d nor d is unate, d is said to be binate.
First, it is checked if the function can be implemented by a
constant node or if one divisor can implement it in the direct
or complemented polarity, both meaning that no gate insertion
is needed to express the function. Next, it is checked if the
function or its complement can be implemented with an AND
gate, leading to a single-node dependency circuit. Then, if
there are some unate divisors, the function or its complement
is implemented using an AND gate whose one input is a
unate divisor d and the other input is an incompletely-specified
remainder function fr satisfying fr ∧ fd = ft. The unate
divisor covering the most of the onset (or offset) minterms of
ft is selected first, and the implementation of fr is computed
by calling compute function recursively.

Since the simulation signatures are an approximation of
the node’s function, the resubstitution candidate needs to be
formally verified. Procedure verify in line 06 uses the SAT
solver to try to find a pattern, under which nodes n and
Fout have different values. The resubstitution is legal if the
solver returns UNSAT (lines 17-18); otherwise, a new pattern
is added to the set and the network is re-simulated if the
solver returns SAT (lines 19-21 and 09-10). Note that if
the simulation signatures are stored as sequences of multiple
machine words, a new pattern is appended to the end of

the last word and only this word needs to be re-computed
because the other words remain the same. With the appended
signatures, compute function gives a different result in the next
invocation. The process continues until one resubstitution is
validated (lines 07-08), or the SAT solver times-out (lines
22 and 11), or until the engine cannot find another candidate
dependency function (line 12).

VII. SIMULATION-GUIDED EQUIVALENCE CHECKING

CEC after logic synthesis can benefit from the simulation
information collected and used for logic optimization. This is
because, in the process of CEC [12], one of the major tasks
is disproving candidate equivalences, which relies on SAT-
solving when counter-examples cannot be easily found with
random simulation. The pre-computed expressive simulation
patterns provided to the CEC engine can be used to disprove
many of the non-equivalent nodes directly without any SAT-
solving.

The command &cec in ABC1 [38], which is an improved
version of cec [12], compares AIGs derived from two ver-
sions of the design presented for CEC. Internally, it generates
random simulation patterns iteratively to detect candidate
equivalent pairs and to filter out non-equivalent nodes. Ran-
dom simulation is repeated until no more refinement can be
made, i.e., no more non-equivalent nodes being distinguished.
Then, a SAT solver is called to formally prove the equivalence
pairs by assuming non-equivalence, similarly to the verifica-
tion procedure in the resubstitution algorithm presented in the
previous section. If the solver returns UNSAT, the equivalence
pair is formally proved; otherwise, if the solver returns SAT, a
counter-example is generated. The counter-example disproves
the given candidate equivalence and potentially other unproved
ones.

We implemented simulation-guided CEC by modifying
command &cec to use pre-generated patterns instead of
generating random patterns. This can be useful when the
design is optimized with the proposed paradigm, for example,
the simulation-guided resubstitution developed in this paper,
so that an expressive set of patterns pre-generated, and maybe
even supplemented with the counter-examples generated dur-
ing optimization, is already in hand. Without any extra cost, the
patterns can be reused in CEC to reduce SAT calls disproving
equivalence.

VIII. EXPERIMENTAL RESULTS

The pattern generation algorithms and the simulation-guided
resubstitution framework are implemented in C++-17 as part
of the EPFL logic synthesis library mockturtle2 [39]. In Sec-
tions VIII-A and VIII-B, we first investigate the expressiveness
of simulation patterns generated using different methods by
comparing the number of counter-examples encountered in
resubstitution. After finding a good strategy, we use it to
generate a pattern set to be used for other experiments and
report its size before and after bit-packing in Section VIII-C.
Then, Section VIII-D demonstrates how an expressive pattern

1Available: github.com/berkeley-abc/abc
2Available: github.com/lsils/mockturtle

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 9

Fig. 6. Decreased percentages of counter-examples when provided with
different number (#pat) of random simulation patterns, compared to the
baseline #pat = 4.

Fig. 7. Decreased percentages of counter-examples when using different sets
of stuck-at simulation patterns, compared to the baseline set “1x s-a”.

set makes a shift in runtime from optimization to pattern
generation, and Section VIII-E confirms the reusability of
patterns for functionally-modified networks with a set of ECO
benchmarks. Finally, the advantages of simulation-guided re-
substitution and simulation-guided equivalence checking are
shown in Sections VIII-F and VIII-G, respectively.

The experiments are performed on a Linux machine with
Xeon 2.5 GHz CPU and 256 GB RAM. The OpenCore designs
from IWLS’05 benchmark3 are used in all experiments, except
for those in Section VIII-E. When generating the patterns and
testing the quality of resubstitution and equivalence checking
in Sections VIII-C, VIII-D, VIII-F and VIII-G, the benchmarks
are preprocessed with redundancy removal by iterating com-
mand ifraig in ABC until no reduction in size. The results
for the preprocessed benchmarks are reported in Table I. The
preprocessed benchmarks and the simulation patterns used can
be found online4.

A. Size of Simulation Pattern Set
Intuitively, the more simulation patterns used, the higher is

the chance that the paradigm saves time by not attempting

3Available: iwls.org/iwls2005/benchmarks.html
4Available: github.com/lsils/sim-LSV exp

to prove non-equivalences, i.e., a larger set of simulation
patterns is expected to be more expressive. Following the
definition of expressive patterns in Section IV, we measure
the expressive power of a pattern set using the percentage
decrease, as compared to a baseline set, in the number
of counter-examples encountered in resubstitution, which is
calculated separately for each benchmark. Different from the
resubstitution framework described in Section VI, the counter-
examples are not added to the simulation set, to isolate the
impact of the provided patterns.

We start by investigating the expressive power of random
patterns based on their count. In Figure 6, each bar represents
how expressive is a pattern set of the respective size, com-
pared to the baseline of using only four simulation patterns.
The smaller sets are subsets of the larger sets to avoid the
biasing effect of randomness. Since the trend is similar for
each benchmark, only some medium-sized benchmarks (with
around 10 to 20 thousand nodes) are shown here. As the size
grows by the factor of four (leading to 4, 16, 64, etc. patterns),
the expressive power increases very fast at first, as expected,
but saturates at a few hundreds to a few thousands of patterns.
Fortunately, a thousand patterns is still a practical size, for
which bit-parallel simulation runs fast.

A similar phenomenon is observed when patterns are gener-
ated by StuckAtCheck. As discussed in Section V-A, additional
patterns can be used to ensure that every node has at least b
bits of 0 and b bits of 1 in its signature. In the following
experiments, stuck-at patterns are abbreviated as “s-a”, with
a prefix “bx” listing parameter b. In Figure 7, since the stuck-
at pattern counts are different for each benchmark, the pattern
set size is normalized to the network size and plotted in the
logarithmic scale. Only benchmarks that are smaller than 25k
nodes are included. The baseline pattern set is “1x s-a”.
It is observed that larger sets of patterns are usually more
expressive. Note that randomness plays a role in this case,
since the default variable polarities, which determine initial
variable values in the SAT solver, are randomly reset before
each run.

B. Pattern Generation Strategies
In this section, the expressive power of simulation patterns

generated by StuckAtCheck is compared with the case when
observability is used (suffix “-obs”) and/or when an initial
random pattern set of size 256 is used (prefix “rand 256”).

The observability check and observable pattern generation
are done with a fan-out depth of 5 levels. A conflict limit
of 1000 is set for the SAT solver, and there is no time-out
limit set. A set of 256 random patterns is used as the baseline
in Figure 8. Four small benchmarks, for which the random
pattern sets are more expressive than “1x s-a” and/or “1x
s-a-obs”, are not shown in the figure. Larger benchmarks
with more than 25k nodes are also excluded. The geometric
means of the sizes of the pattern sets are 143 for “1x s-a”,
244 for “1x s-a-obs”, 354 for “rand 256 + 1x s-a”
and 462 for “rand 256 + 1x s-a-obs”. On the other
hand, the geometric means of the decreased percentages of
the counter-examples are 91.3%, 96.5%, 97.1% and 99.5%,
respectively.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 10

Fig. 8. Decreased percentages of counter-examples when using pattern sets
generated with different strategies, compared to the baseline set “rand 256”.

It is observed that patterns generated by StuckAtCheck are
usually more expressive than random patterns, except for a
few, typically small, benchmarks. Also, using observability
increases the expressive power of the generated patterns.
Finally, seeding the pattern generation engine with an initial set
of random patterns not only speeds up the generation process,
but also makes the resulting patterns more expressive.

As the patterns generated with “rand 256 + 1x
s-a-obs” are shown to be the most expressive, these pattern
sets are used in the following experiments in Sections VIII-C,
VIII-D, VIII-F and VIII-G. Table I lists some information of
the benchmarks and their pattern sets. On average, about 80%
of the runtime (about 50% for the largest five benchmarks)
in pattern generation were spent in the observability-based
methods, including time for checking if a pattern is observable,
SAT-solving with the TFO cone, and re-simulation after a new
pattern is generated. As seen in Figure 8, using observability
increases the expressive power of the generated patterns, but
not much. Thus, in practice, one may consider disabling
observability awareness for larger benchmarks. There is no
constant node detected because the benchmarks are prepro-
cessed with redundancy removal, and there is about 0.1% un-
observable nodes found, on average.

C. Pattern Compression with Bit-packing

As discussed in Section V-C, the generated patterns can be
packed together to reduce the pattern set size and speed up the
simulation. This technique becomes more important in larger
benchmarks with huge amounts of primary inputs. The middle
part of Table I shows the total number of generated patterns
(column gen.), the final number of patterns after bit-packing
(column packed), and the ratio of the two sizes (column (%)).
The 256 random patterns are not bit-packed, neither included
in this table. On average, the sizes of the packed pattern sets
are about 70% of the original sets.

D. Effect of Expressive Patterns in Resubstitution

As stated in the introduction, an expressive set of simulation
patterns is used to shift the computation effort from the

TABLE I
NUMBER OF GENERATED PATTERNS BEFORE AND AFTER BIT-PACKING.

benchmark #patterns runtime
name size #PIs gen. packed (%) (s)
leon2 787972 298888 23526 14858 63.2 17080.75
leon3 opt 972952 370159 24820 16448 66.3 24566.67
leon3 1085718 370159 24739 16161 65.3 23471.45
leon3mp 650722 217858 13799 9483 68.7 5045.94
netcard 802846 195730 28206 13944 49.4 8896.10
ac97 ctrl 14199 4482 88 27 30.7 0.38
aes core 21441 1319 163 18 11.0 0.74
des area 4827 496 18 18 100.0 0.19
des perf 81998 17850 54 54 100.0 3.95
DMA 21992 5070 886 384 43.3 2.11
DSP 44132 7835 1374 736 53.6 6.87
ethernet 86293 21216 2787 1340 48.1 27.59
i2c 1120 275 65 57 87.7 0.02
mem ctrl 7870 2281 601 393 65.4 0.70
pci bridge32 22521 6880 714 207 29.0 1.82
RISC 73789 15678 3139 1012 32.2 17.30
sasc 770 250 1 1 100.0 0.00
simple spi 1034 280 32 25 78.1 0.01
spi 3762 505 184 184 100.0 0.18
ss pcm 405 193 2 2 100.0 0.00
systemcaes 12108 1600 39 38 97.4 0.23
systemcdes 2857 512 3 3 100.0 0.07
tv80 9091 732 408 404 99.0 0.55
usb funct 15245 3620 643 238 37.0 0.92
usb phy 440 211 9 8 88.9 0.00
vga lcd 126427 34247 5142 2957 57.5 120.34
wb conmax 47449 2670 206 170 82.5 1.60

TABLE II
RESUBSTITUTION RUNTIME AS A FUNCTION OF THE NUMBER OF

COUNTER-EXAMPLES PRODUCED.

rand 256 rand 256 + 1x s-a-obs
benchmark #cex runtime (s) #cex runtime (s)

patgen resub patgen resub
aes core 69 0.01 0.72 7 0.74 0.34
des perf 11 0.01 3.23 2 3.95 3.50
DMA 4923 0.01 2.15 440 2.11 0.41
DSP 8436 0.01 5.71 510 6.87 1.71
ethernet 50334 0.01 67.27 5329 27.59 10.63
pci bridge32 3303 0.01 2.61 484 1.82 0.96
RISC 15052 0.01 16.02 589 17.30 2.81
vga lcd 88008 0.01 182.36 3749 120.34 13.16
wb conmax 920 0.01 0.66 146 1.60 0.64

optimization algorithms to pattern pre-computation. Table II
shows how the quality of the patterns affects the runtime
of pattern generation (patgen) and resubstitution (resub). For
simplicity, only some of the larger benchmarks with more
obvious effect are shown in this table. A better set of patterns
(Table II, “rand 256 + 1x s-a-obs”) efficiently filters
out many illegal resubstitutions without calling the SAT solver,
resulting in the reduced counter-example counts (#cex) and
faster runtimes. Note that there is no difference in optimization
quality (i.e., circuit size reduction) caused by using different
patterns because if an illegal resubstitution is not filtered out
by simulation signatures, it is still disproved by SAT solving.

Furthermore, in practice, when the same design is repeatedly
synthesized during development or when simulation patterns
are reused by different optimization engines, counter-examples
from the previous runs can be saved for later use. In this case,
the additional counter-example count during later runs can go
down to nearly zero, and the runtime is only spent on logic
synthesis or verification tasks, such as proving equivalences
among the nodes or computing dependency functions and
validating them. The latter scheme will be verified in the next
section and be used from then on.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 11

TABLE III
RESUBSTITUTION EFFICIENCY AFTER ECO WITH OR WITHOUT COUNTER-EXAMPLE LEARNING.

A B C D B vs. D (A+B) vs. (A+D)
benchmark version old new old new

pattern set generated generated with CEX from A with CEX from A reduction rate reduction rate
benchmark size #cex time (s) #cex time (s) #cex time (s) #cex time (s) #cex (%) time (%) #cex (%) time (%)
design1 218679 2711 30.92 2869 31.75 0 12.39 441 17.63 84.63 44.47 43.51 22.53
design2 344 16 0.01 11 < 0.01 0 0.00 11 < 0.01 0.00 N/A* 0.00 0.00
design3 453920 3089 48.52 3006 46.76 0 19.56 219 23.37 92.71 50.02 45.73 24.55
design4 30819 579 0.81 594 0.82 0 0.36 150 0.55 74.75 32.93 37.85 16.56
design5 3582 76 0.04 63 0.04 0 0.03 6 0.03 90.48 25.00 41.01 12.50
design6 77555 1161 4.40 1180 4.51 0 2.24 126 2.78 89.32 38.36 45.02 19.42
design7 62336 844 2.10 907 2.18 1 1.13 123 1.41 86.44 35.32 44.77 17.99
design8 20517 540 0.59 575 0.65 0 0.31 130 0.46 77.39 29.23 39.91 15.32
design9 4650 69 0.05 83 0.05 0 0.03 26 0.04 68.67 20.00 37.50 10.00
design10 15995 86 0.23 138 0.21 0 0.18 71 0.20 48.55 4.76 29.91 2.27
design11 48817 949 2.17 931 2.10 0 1.06 94 1.18 89.90 43.81 44.52 21.55

average 920.00 8.17 941.55 8.10 0.09 3.39 127.00 4.33 72.99 32.39* 37.25 14.79

*The runtime is too fast to compute the reduction rate, hence this benchmark is excluded from the average.

E. Reusability of Simulation Patterns

In support of our assumption, the reusability of the gen-
erated patterns and the counter-examples are verified with
a set of ECO benchmarks [40]. For each design, there is
an old version and a new version which are functionally
different. The results of two runs of resubstitution with the
two versions of benchmarks are reported and compared in
Table III. First, a set of patterns is generated for the old version
with “rand 256 + 1x s-a-obs” where only the first
case of observability check is performed. Columns A and B
show the number of counter-examples (#cex) and the runtime
of resubstitution on the two versions of benchmarks using this
generated pattern set. Comparing them, it is observed that
the patterns are as effective on the new benchmarks, even
though they are generated with the old ones. In columns C and
D, resubstitution is performed again, but using the generated
patterns appended with the counter-examples collected in A.
There are almost no new counter-examples in column C
when the same optimization algorithm is applied on exactly
the same benchmarks, as expected. Moreover, when applying
on slightly different networks in column D, the number of
counter-examples is reduced by 73% comparing to the first run
(B). The runtime in D is only slightly higher than C, showing
that most of the runtime is spent on computing dependency
functions and validating the legal resubstitutions, which are
inevitable. The last column compares a flow optimizing first
the old networks and then the new ones without learning of
counter-examples (A+B) against one that learns the counter-
examples from previous runs (A+D).

F. Quality of Simulation-Guided Resubstitution

This section shows the improvements in terms of resubstitu-
tion quality. Table IV compares the proposed framework with
command resub [11] in ABC [38], which performs truth-
table-based resubstitution. Because computing simulation pat-
terns in our framework results in detecting combinational
equivalences [13], for a fair comparison, the benchmarks are
preprocessed by repeating the command ifraig in ABC
until no more size reduction is observed. The quality of results,
presented in the gain columns, is measured with the reduction

percentage in network size after optimization, i.e., the differ-
ence in the number of nodes before and after resubstitution,
divided by the original network size. Simulation patterns used
in our framework are initially generated with “rand 256 +
1x s-a-obs”, bit-packed (as described in Section V-C), and
then incrementally supplemented with the counter-examples
generated from the previous runs of the same resubstitution
settings in each column. After the resubstitution run in the last
column, the sizes of pattern sets increase by 30% on average.

Two parameters can be set in both flows: the maximum
cut size K used to collect divisors in the TFI of the root
node and the maximum number N of nodes in the dependency
function. Since [11] relies on computing truth tables in the
window, K ≤ 10 is typically used as a reasonable trade-off
between efficiency and quality. In contrast, windowing in our
framework is applied only to avoid potential runtime blow-up
for large benchmarks, and K can be set to arbitrarily large
values when longer runtime is acceptable.

When the algorithms are limited to at most one node
insertion (N = 1), the middle part of Table IV shows
that our framework achieves 2.18% network size reduction
on average using the same, small window size (K = 10),
comparing to 1.58% by the state-of-the-art. This improvement
is due to better consideration of global satisfiability don’t-
cares. Moreover, we are able to arbitrarily extend the window
size and achieve up to 2.78% gain when longer runtime is
acceptable.

In the last columns of Table IV, parameters in resub are
set to their extreme values (K = 16, N = 3), and parameters
in our framework are set to large values semantically close
to infinity. It is observed that our framework can achieve
up to 5.90% reduction while 3.65% is the best resub can
do, and the improvement comes even with faster runtime in
most of the benchmarks. The reason why our framework is
especially slow in the largest five benchmarks is because they
also have large numbers of primary inputs and large sizes of
pattern sets (shown in Table I), which slow down simulation
as well as the computation of dependency functions. This can
be ameliorated, however, by fine-tuning the trade-off between
quality and runtime according to the user’s needs.

Furthermore, the proposed framework is also shown to
be applicable on 2-LUT networks, or essentially, Xor-And

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 12

TABLE IV
RESUBSTITUTION QUALITY ON AIGS COMPARING AGAINST ABC’S RESUB COMMAND.

Baseline: at most one node insertion Best achievable quality
abc> resub Ours, Ours, abc> resub Ours,
-K 10 -N 1 K = 10, N = 1 K = 100, N = 1 -K 16 -N 3 K = 100, N = 20

benchmark size gain (%) time (s) gain (%) time (s) gain (%) time (s) gain (%) time (s) gain (%) time (s)
leon2 787972 0.11 69.48 0.13 65.52 0.32 1639.16 0.35 1811.35 0.65 5984.96
leon3 opt 972952 0.18 55.40 0.23 82.55 0.28 1113.55 0.73 1273.16 1.02 5462.90
leon3 1085718 0.10 55.11 0.11 90.25 0.19 1347.85 0.28 1824.90 0.63 5239.15
leon3mp 650722 0.08 30.16 0.10 41.04 0.19 406.59 0.80 875.65 0.57 1342.39
netcard 802846 0.08 52.79 0.09 60.21 0.13 1062.90 0.28 1562.19 0.56 5425.19
ac97 ctrl 14199 1.25 0.15 1.25 0.08 1.27 0.10 2.24 4.81 6.87 0.93
aes core 21441 1.50 0.42 1.60 0.48 2.32 2.59 3.02 19.53 6.29 8.62
des area 4827 1.82 0.08 2.15 0.07 2.15 0.50 3.09 3.50 5.72 1.08
des perf 81998 6.07 1.37 7.01 2.91 7.17 3.61 8.70 74.10 15.78 7.32
DMA 21992 0.89 0.27 1.04 0.20 1.29 1.12 1.93 8.49 2.78 3.36
DSP 44132 2.13 0.54 2.71 0.64 3.32 4.08 4.14 48.02 5.74 13.92
ethernet 86293 0.31 2.03 0.34 1.95 0.49 15.76 0.95 106.04 2.72 74.15
i2c 1120 4.29 0.01 5.09 0.01 7.68 0.02 8.48 0.56 11.88 0.13
mem ctrl 7870 1.91 0.08 3.44 0.07 5.17 0.89 4.08 3.67 8.93 2.64
pci bridge32 22521 0.78 0.40 0.86 0.26 1.19 0.76 2.33 17.52 2.78 3.27
RISC 73789 1.83 0.71 2.18 0.91 4.21 3.94 3.47 56.22 7.56 17.04
sasc 770 0.65 < 0.01 0.65 < 0.01 0.65 < 0.01 1.56 0.13 1.82 0.02
simple spi 1034 1.74 0.01 1.64 0.01 2.22 0.01 4.64 0.35 5.32 0.06
spi 3762 2.15 0.07 2.23 0.04 2.37 0.36 3.19 2.16 5.24 0.74
ss pcm 405 0.25 < 0.01 0.25 < 0.01 0.25 < 0.01 0.99 0.03 1.23 < 0.01
systemcaes 12108 0.30 0.11 0.40 0.10 0.45 0.48 0.64 11.04 1.68 2.16
systemcdes 2857 4.83 0.04 5.50 0.06 5.67 0.23 7.46 1.87 11.41 0.28
tv80 9091 2.41 0.15 2.85 0.13 4.93 2.67 5.26 8.62 11.75 7.34
usb funct 15245 2.93 0.16 3.67 0.14 7.65 0.35 7.04 7.56 11.82 1.96
usb phy 440 2.73 < 0.01 3.64 < 0.01 3.64 < 0.01 7.73 0.07 10.91 0.01
vga lcd 126427 0.09 5.07 0.12 4.59 0.14 51.31 0.26 207.27 0.48 153.19
wb conmax 47449 1.19 0.78 9.59 0.67 9.59 1.99 14.95 48.41 17.15 6.54

average 1.58 10.20 2.18 13.07 2.78 209.66 3.65 295.45 5.90 879.98
geomean 0.81 0.38* 1.02 0.39* 1.35 1.81* 2.13 14.72 3.55 6.15*

*The values smaller than 0.01 are replaced with 0.005 when calculating geomean.

TABLE V
RESUBSTITUTION QUALITY ON XAGS COMPARING AGAINST ABC’S

&MFS COMMAND.

abc> &mfs -a Ours, K = 10, N = 1
benchmark size gain (%) time (s) gain (%) time (s)
leon2 785623 0.12 612.10 0.11 103.89
leon3 opt 970570 0.13 697.90 0.21 139.80
leon3 1082547 0.10 705.60 0.09 139.79
leon3mp 649333 0.13 317.60 0.09 59.96
netcard 800880 0.07 676.90 0.09 91.23
ac97 ctrl 13945 0.47 0.50 1.23 0.09
aes core 18951 0.82 5.54 1.89 0.48
des area 4673 1.16 2.20 2.23 0.08
des perf 76458 3.23 11.96 7.53 2.87
DMA 21435 0.55 3.37 1.03 0.25
DSP 41795 1.06 15.97 1.90 0.55
ethernet 85355 0.17 19.00 0.30 2.06
i2c 1101 3.72 0.09 5.09 0.01
mem ctrl 7408 4.94 1.96 3.62 0.07
pci bridge32 21759 0.38 1.79 0.86 0.25
RISC 69514 1.72 12.79 1.46 0.90
sasc 733 0.82 0.02 0.68 0.01
simple spi 1003 1.60 0.05 1.69 0.01
spi 3697 0.70 1.29 1.87 0.06
ss pcm 398 0.00 0.01 0.25 0.01
systemcaes 10652 0.70 1.55 0.58 0.09
systemcdes 2744 3.72 0.62 5.69 0.07
tv80 8751 2.79 9.26 2.43 0.13
usb funct 14201 1.88 1.00 3.15 0.13
usb phy 408 3.19 0.01 3.43 0.01
vga lcd 126093 0.06 56.83 0.11 5.25
wb conmax 47449 14.38 8.75 9.59 0.63

average 1.80 117.21 2.12 20.32
geomean N/A 3.93 0.97 0.46

Inverter Graphs (XAGs). Table V compares the proposed

framework with command &mfs [4] in ABC.5 The ifraig-
preprocessed benchmarks are mapped into 2-LUT networks
by the command &if -K 2 in ABC and read in as XAGs
in mockturtle. The simulation pattern set generated in Sec-
tion VIII-C with the AIG benchmarks and used in the ex-
periments in Table IV is reused for the XAG experiment. In
Table V, the numbers of 2-LUTs (or XAG nodes) are reported
in column size, and the percentage reduction and runtime of
the two algorithms are reported in columns gain and time,
respectively. Using only an unaggressive parameter setting
(K = 10, N = 1), our framework outperforms command
&mfs in both optimization quality and efficiency.

G. Reduction on SAT Calls in CEC with Expressive Patterns

Finally, to show the effectiveness of the proposed paradigm
on other logic synthesis and verification algorithms, we take
CEC as another example. The &cec command in ABC [12] is
considered the state of the art. It iteratively generates random
patterns for simulation to find equivalent pair candidates. This
command is modified to take pre-generated patterns and use
them for simulation. The number of SAT results (disproving
equivalence; #SAT) and UNSAT results (proving equivalence;
#UNSAT) in &cec with and without using pre-generated
expressive patterns are reported in Table VI. For simulation
efficiency, an upper limit of 3200 on the number of patterns is
set. It can be observed from the table that the average number

5While the paper was published in 2011, the technical implementation has
been continuously improved over time and there are several versions of the
same concept in ABC, such as commands mfs and mfs2. Among them,
&mfs is believed to be the newest and the best version.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 13

TABLE VI
EFFICIENCY OF CEC WITH OR WITHOUT USING EXPRESSIVE PATTERNS.

abc> &cec &cec with expressive patterns
benchmark size #SAT #UNSAT time (s) #patterns #SAT #UNSAT time (s)
leon2 787972 8579 19738 32.32 3200 7150 19465 41.53
leon3 opt 972952 19529 50162 42.15 3200 14751 50020 49.10
leon3 1085718 113427 127162 88.64 3200 80242 127163 82.64
leon3mp 650722 65439 90482 43.78 3200 37522 84326 35.52
netcard 802846 21691 107513 31.14 3200 19269 107523 28.93
ac97 ctrl 14199 0 2215 0.19 384 41 2215 0.17
aes core 21441 0 3177 0.71 320 2 3177 0.65
des area 4827 0 393 0.08 320 0 393 0.07
des perf 81998 0 5423 1.22 320 0 5423 0.99
DMA 21992 337 2981 0.45 832 298 2981 0.34
DSP 44132 911 6232 1.60 1600 249 6230 1.23
ethernet 86293 596 10505 1.19 1408 9817 10486 2.25
i2c 1120 65 165 0.03 320 33 163 0.03
mem ctrl 7870 651 927 0.24 832 166 929 0.18
pci bridge32 22521 612 3132 4.44 576 511 3132 4.40
RISC 73789 3638 9084 2.37 1472 500 9083 1.37
sasc 770 0 116 0.03 320 0 116 0.02
simple spi 1034 14 157 0.03 320 24 157 0.03
spi 3762 109 469 0.12 448 160 469 0.12
ss pcm 405 0 62 0.02 320 0 62 0.02
systemcaes 12108 0 1384 0.24 384 6 1384 0.23
systemcdes 2857 0 329 0.06 320 1 329 0.05
tv80 9091 279 1160 0.33 704 225 1160 0.27
usb funct 15245 809 2003 0.37 512 275 2003 0.25
usb phy 440 0 57 0.02 320 0 57 0.02
vga lcd 126427 13852 13682 4.28 3584 1055 13670 2.28
wb conmax 47449 2 3793 0.61 448 3 3793 0.51

average 994.32 3065.73 0.85 730.18 607.55 3064.18 0.70

of SAT results is reduced by about 40%; when combined with
the UNSAT results, which are unchanged, the total number of
SAT solver calls is reduced by about 9.5%. In most cases,
the runtime does not decrease because it is dominated by
the UNSAT calls, and that too many patterns slow down
simulation. Nevertheless, the runtime overhead in simulation
can be mitigated if the patterns can be better compacted, or if
the simulation can be speeded up (e.g., by using Haswell New
Instructions (AVX2) which provides single-cycle bitwise op-
erations on longer machine words) in a future implementation
of simulation-guided CEC. More importantly, by showing a
decrease in unnecessary SAT solver calls, the idea of guiding
CEC with expressive simulation patterns is shown to be useful
in verification as well.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we (1) present a simulation-guided logic
synthesis and verification paradigm, which leverages pre-
generated expressive simulation patterns to approximate the
global Boolean functions with reduced need for SAT-based
verification; (2) propose several strategies to generate expres-
sive simulation patterns, including seeding with random pat-
terns, stuck-at value checking, and resolving un-observability;
(3) demonstrate the benefits of the proposed paradigm with
improved resubstitution quality and reduced SAT solver calls
in CEC; (4) show the reusability of the expressive patterns and
counter-examples across different algorithms and with ECO
modifications.

Parameters influencing the expressiveness of the simulation
patterns are studied. In particular, stuck-at patterns generated
with observability awareness and seeded with a small set of
random patterns are found to be the most expressive. The
expressive patterns are shown to be able to move runtime from

optimization and verification to their pre-generation, which is
advantageous because they are also shown to be reusable in
resubstitution after ECO and in a different algorithm such
as CEC. The experimental results show that the simulation-
guided resubstitution framework allows low-cost consideration
of global satisfiability don’t-cares and unlimited extension of
the window sizes used, which improves the average network
size reduction from 1.58% to 2.77%, compared to a state-
of-the-art windowing-based resubstitution algorithm. When
comparing the best achievable quality of the two frameworks,
a larger improvement from 3.65% to 5.83% is shown. Effec-
tiveness of the proposed paradigm in CEC is also supported
by experimental results with a 9.5% reduction in the number
of SAT solver calls.

While resubstitution guided by simulation signatures auto-
matically accounts for satisfiability don’t-cares, observability
don’t-cares can also be considered in resubstitution, resulting
in better quality. Our preliminary result on utilizing ODCs
in simulation-guided resubstitution shows about 1% further
circuit size reduction at the cost of 5x more runtime. It remains
our future work to enhance the efficiency of resubstitution
with ODCs. On the other hand, as shown in Section VIII-D,
using expressive patterns reduces the chance of encountering
counter-examples, making it possible to further reduce the use
of SAT solving by validating several candidates at the same
time if the majority of them are legal.

Other future works include developing strategies to refine
and enhance the generated simulation patterns further and
metrics to evaluate and sort the patterns. To maximize the
benefit of the generated patterns, other algorithms adopting
this paradigm can also be developed so that the patterns can
be reused more often in a logic synthesis flow.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 14

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis,” Proceedings of the IEEE, vol. 78, no. 2,
pp. 264–300, 1990.

[2] G. De Micheli, Synthesis and optimization of digital circuits. McGraw-
Hill Higher Education, 1994.

[3] H.-P. Lin, J.-H. R. Jiang, and R.-R. Lee, “To SAT or not to SAT:
Ashenhurst decomposition in a large scale,” in Proc. of ICCAD. IEEE,
2008, pp. 32–37.

[4] A. Mishchenko, R. K. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable
don’t-care-based logic optimization and resynthesis,” ACM Tran. on
Reconfigurable Technology and Systems, vol. 4, no. 4, pp. 1–23, 2011.

[5] H. Riener, W. Haaswijk, A. Mishchenko, G. De Micheli, and M. Soeken,
“On-the-fly and DAG-aware: Rewriting Boolean networks with exact
synthesis,” in Proc. of DATE. IEEE, 2019, pp. 1649–1654.

[6] S. B. Akers, “Binary decision diagrams,” IEEE Tran. on Computers,
no. 6, pp. 509–516, 1978.

[7] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Tran. on Computers, vol. 100, no. 8, pp. 677–691, 1986.

[8] C. A. Tovey, “A simplified NP-complete satisfiability problem,” Discrete
Applied Mathematics, vol. 8, no. 1, pp. 85–89, 1984.

[9] J. P. Marques-Silva and K. A. Sakallah, “Boolean satisfiability in
electronic design automation,” in Proc. of DAC, 2000, pp. 675–680.

[10] A. Mishchenko, J. S. Zhang, S. Sinha, J. R. Burch, R. K. Brayton, and
M. Chrzanowska-Jeske, “Using simulation and satisfiability to compute
flexibilities in Boolean networks,” IEEE Tran. on CAD, vol. 25, no. 5,
pp. 743–755, 2006.

[11] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using a
simple circuit structure,” in Proc. of IWLS, 2006.

[12] A. Mishchenko, S. Chatterjee, R. K. Brayton, and N. Een, “Improve-
ments to combinational equivalence checking,” in Proc. of ICCAD.
IEEE, 2006, pp. 836–843.

[13] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “FRAIGs:
A unifying representation for logic synthesis and verification,” ERL
Technical Report, Tech. Rep., 2005.

[14] H. Cox and J. Rajski, “Stuck-open and transition fault testing in CMOS
complex gates,” in Proc. of ITC. IEEE, 1988, pp. 688–694.

[15] M. Damiani and G. De Micheli, “Observability don’t care sets and
Boolean relations.” in Proc. of ICCAD, 1990, pp. 502–505.

[16] T. Jarratt, C. M. Eckert, N. H. Caldwell, and P. J. Clarkson, “Engineering
change: an overview and perspective on the literature,” Research in
Engineering Design, vol. 22, no. 2, pp. 103–124, 2011.

[17] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust Boolean
reasoning for equivalence checking and functional property verification,”
IEEE Tran. on CAD, vol. 21, no. 12, pp. 1377–1394, 2002.

[18] L. Amarú, P.-E. Gaillardon, and G. De Micheli, “Majority-inverter graph:
A novel data-structure and algorithms for efficient logic optimization,”
in Proc. of DAC. IEEE, 2014, pp. 1–6.

[19] I. Háleček, P. Fišer, and J. Schmidt, “Are XORs in logic synthesis really
necessary?” in Proc. of DDECS. IEEE, 2017, pp. 134–139.

[20] W. Haaswijk, M. Soeken, L. Amarú, P.-E. Gaillardon, and
G. De Micheli, “A novel basis for logic rewriting,” in Proc. of ASPDAC.
Ieee, 2017, pp. 151–156.

[21] A. Mishchenko, S. Chatterjee, and R. K. Brayton, “Improvements to
technology mapping for LUT-based FPGAs,” IEEE Tran. on CAD,
vol. 26, no. 2, pp. 240–253, 2007.

[22] G. S. Tseitin, “On the complexity of derivation in propositional calcu-
lus,” in Automation of reasoning. Springer, 1983, pp. 466–483.

[23] T. J. Schaefer, “The complexity of satisfiability problems,” in Proc. of
ACM Symposium on Theory of Computing, 1978, pp. 216–226.

[24] J. Cong and Y. Ding, “On area/depth trade-off in LUT-based FPGA
technology mapping,” IEEE Tran. on VLSI, vol. 2, no. 2, pp. 137–148,
1994.

[25] A. Mishchenko and R. K. Brayton, “SAT-based complete don’t-care
computation for network optimization,” in Proc. of DATE. IEEE, 2005,
pp. 412–417.

[26] H. Sato, Y. Yasue, Y. Matsunaga, and M. Fujita, “Boolean resubstitution
with permissible functions and binary decision diagrams,” in Proc. of
DAC, 1991, pp. 284–289.

[27] V. N. Kravets and K. A. Sakallah, “M32: A constructive multilevel logic
synthesis system,” in Proc. of DAC, 1998, pp. 336–341.

[28] V. N. Kravets and P. Kudva, “Implicit enumeration of structural changes
in circuit optimization,” in Proc. of DAC, 2004, pp. 438–441.

[29] W. Craig, “Linear reasoning: A new form of the Herbrand-Gentzen
theorem,” The Journal of Symbolic Logic, vol. 22, no. 3, pp. 250–268,
1957.

[30] H. Riener, E. Testa, L. Amaru, M. Soeken, and G. De Micheli, “Size
optimization of MIGs with an application to QCA and STMG technolo-
gies,” in Proc. of International Symposium on Nanoscale Architectures,
2018, pp. 157–162.

[31] L. Amarú, M. Soeken, P. Vuillod, J. Luo, A. Mishchenko, J. Olson, R. K.
Brayton, and G. De Micheli, “Improvements to Boolean resynthesis,” in
Proc. of DATE. IEEE, 2018, pp. 755–760.

[32] S. Chatterjee, A. Mishchenko, R. K. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” IEEE Tran. on CAD,
vol. 25, no. 12, pp. 2894–2903, 2006.

[33] J. P. Roth, “Diagnosis of automata failures: A calculus and a method,”
IBM Journal of Research and Development, vol. 10, no. 4, pp. 278–291,
1966.

[34] J. Cong and K. Minkovich, “LUT-based FPGA technology mapping for
reliability,” in Proc. of DAC, 2010, pp. 517–522.

[35] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-
guided abstraction refinement,” in International Conference on Com-
puter Aided Verification. Springer, 2000, pp. 154–169.

[36] B. Alizadeh and Y. Abadi, “Incremental SAT-based correction of gate
level circuits by reusing partially corrected circuits,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3063–
3067, 2020.

[37] S. Mitra and K. S. Kim, “XPAND: an efficient test stimulus compression
technique,” IEEE Tran. on Computers, vol. 55, no. 2, pp. 163–173, 2006.

[38] R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength
verification tool,” in Proc. of CAV. Springer, 2010, pp. 24–40.

[39] M. Soeken, H. Riener, W. Haaswijk, E. Testa, B. Schmitt, G. Meuli,
F. Mozafari, and G. De Micheli, “The EPFL logic synthesis libraries,”
arXiv preprint arXiv:1805.05121v2, 2019.

[40] V. N. Kravets, J.-H. R. Jiang, and H. Riener, “Learning to automate
the design updates from observed engineering changes in the chip
development cycle,” in Proc. of DATE. IEEE, 2020, pp. 738–743.

Siang-Yun Lee is a Ph.D. candidate at the Integrated
Systems Laboratory at EPFL, Switzerland led by
Prof. Giovanni De Micheli. She graduated from
the Department of Electrical Engineering of Na-
tional Taiwan University, Taipei, Taiwan, in 2019. In
NTU, she worked with Prof. Jie-Hong Roland Jiang
on threshold logic synthesis. Her research interests
include logic synthesis and design automation for
emerging technologies. She is currently a maintainer
of the EPFL logic synthesis library mockturtle.

Heinz Riener is a researcher at EPFL, Lausanne,
Switzerland. He holds a Ph.D. degree in Com-
puter Science from University of Bremen, Germany.
He received his B.Sc. and M.Sc. degree from the
Technical University Graz, Austria. From 2015 to
2017, he worked at the German Aerospace Cen-
ter, Bremen, Germany, in the group of Avionics
Systems. His research interests are logic synthesis,
formal methods, and computer-aided verification of
hardware and software systems.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2021.3108704, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. X, 2021 15

Alan Mishchenko received the M.S. degree from
the Moscow Institute of Physics and Technology,
Moscow, Russia, in 1993 and the Ph.D. degree from
the Glushkov Institute of Cybernetics, Kiev, Ukraine,
in 1997. In 2002, he joined the EECS Department,
University of California at Berkeley, Berkeley, CA,
USA, where he is currently a Full Researcher. His
current research interests include computationally
efficient logic synthesis and formal verification.

Robert K. Brayton received his Ph.D. degree in
mathematics from MIT in 1961. He was a member
of the Mathematical Sciences Department of the
IBM T. J. Watson Research Center until he joined
the EECS Department at Berkeley in 1987. He is a
Fellow of the IEEE and a member of the National
Academy of Engineering. Prof. Brayton held the
Buttner Chair and the Cadence Distinguished Pro-
fessorship of Electrical Engineering and is currently
a Professor in the Graduate School at Berkeley.

Giovanni De Micheli is Professor and Director of
the Integrated Systems Laboratory at EPFL, Lau-
sanne, Switzerland. Previously, he was Professor of
Electrical Engineering at Stanford University. Prof.
De Micheli is a Fellow of ACM and IEEE, a member
of the Academia Europaea and an International
Honorary member of the American Academy of Arts
and Sciences. His current research interests include
several aspects of design technologies for integrated
circuits and systems, such as synthesis for emerging
technologies.

