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Abstract—- Look-up Table (LUT) mapping and optimization is
an important step in Field Programmable Gate Arrays (FPGAs)
design. The effectiveness of LUT synthesis improved dramati-
cally in the last decades, thanks to optimization and mapping
innovations naturally tailored for FPGAs. In this paper, we
develop a new LUT-based optimization flow that is tailored for
the synthesis of Application-Specific Integrated Circuits (ASICs)
rather than FPGAs. We enhance LUT mapping to consider the
literal/AIG cost of LUT nodes. We extend traditional Boolean
methods to simplify and re-shape LUT-networks, targeting the
best AIG/mapped-network implementation, after decomposition.
Intuitively, literal-driven LUT packing behaves as a powerful
fanin-bound node elimination, unveiling higher-order Boolean
simplification opportunities. We embed our proposed LUT-based
optimization flow, area oriented, in a commercial synthesis tool.
Using our methodology, we improve 12 of the best area results in
the EPFL synthesis competition. Employed in a commercial EDA
flow for ASICs, our LUT optimization reduces area by 1.80%,
total negative slack by 0.39%, and switching power by 1.72%,
after physical implementation, at 5% runtime cost.

I. INTRODUCTION

Look-Up Table (LUT) synthesis is a key step in Field Pro-
grammable Gate Arrays (FPGAs) design. In the last decades,
innovations in mapping and minimization of LUT networks
has improved FPGA implementations significantly [1]–[3].
While naturally tailored for FPGAs, LUT synthesis often
provides intrinsic complexity reduction in the representation
of logic networks. In this paper, we exploit LUT-mapping
and LUT-minimization technologies applied to standard-cell
based Application-Specific Integrated Circuits (ASICs) design,
in addition to their traditional use in FPGA design.

The rationale behind this work is to strike a better balance
between functionality and structure in logic optimization for
ASICs. Functionality is dominant when large nodes are used,
while the structure takes over when the network is imple-
mented using small nodes. Large nodes reveal more don’t-
care-based optimizations, while small nodes provide more
cut points for network restructuring. It is an open problem
how to best harmonize functionality with structure. With our
innovations, we offer an automated and efficient solution to
this problem, tailored to ASIC design, pushing the boundaries
of the Quality of Results (QoR) achievable by logic synthesis.

This paper presents a novel, LUT-based, Boolean optimiza-
tion flow embedded in a commercial synthesis tool for ASICs.
We revisit and expand on several notions of LUT mapping and
adapt Boolean techniques to exploit the compression power
of LUT nodes. Our optimized LUT networks can be naturally

decomposed into smaller and faster AIGs or mapped networks.
More specifically, the contributions of this paper are:
• Enhanced LUT mapping, considering factored literals or

AIG cost of each LUT node.
• Specialized Boolean methods for simplifying LUT net-

works, targeting the best AIG or cell-mapped implemen-
tation, after decomposition.

• Complete ASIC synthesis embedding our new LUT op-
timization flow, including traditional Boolean resynthesis
and synthesis with structural choices [1].

We evaluate our techniques on both academic and industrial
benchmarks. By using the proposed LUT optimization flow
directly on the EPFL combinational benchmarks [4], we im-
prove 12 of the best area results. We embed the proposed LUT
optimization flow in a commercial EDA tool. After physical
implementation, our flow reduces the area by 1.80%, total
negative slack by 0.39%, and switching power by 1.72%, at
5% runtime cost.

The remainder of this paper is organized as follows. Sec-
tion II gives some background on LUT mapping and Boolean
optimization. Section III revisits LUT mapping algorithm,
with an ASIC implementation objective. Section IV proposes
effective Boolean optimizations that natively exploits LUT
compaction. Section V details our new LUT-opto synthesis
flow, stemming from the methodologies in Sections III and IV.
Section VI shows experimental results over industrial bench-
marks and compares the results to state-of-the-art solutions.
Section VII concludes the paper.

II. BACKGROUND

This section provides background on LUT mapping and
Boolean methods for synthesis.

A. LUT Mapping

In LUT mapping, a logic network is covered with k-
bounded lookup tables (k-LUTs) where each k-LUT can
represent any function of k variables. Several methods for LUT
mapping have been proposed in the last decades. The FlowMap
algorithm, proposed in [2], obtains a minimum depth k-LUT
cover. The previous work [5] partitions the initial graph into a
forest of trees, maps each tree individually, and combines the
mapping for each tree to find a cover for the initial network.
The methods in [3], [6], [7] instead collapse the network into
nodes with more than k variables and decompose them to
obtain a k-LUT mapping. In [8], a cut-merging technique
to enumerate k-cuts in the context of re-timing is presented,
serving as basis for future k-cut enumeration approaches.
In [9], runtime is improved by using only a small subset978-1-6654-3274-0/21/$31.00 c© 2021 IEEE



of good k-feasible cuts for each node, known as priority
cuts. Improvements including speed up of cut computation
and area recovery are presented in [1]. Several works aim at
reducing the structural bias of technology mapping, that is the
dependence of the mapped network on the initial structure [1],
[10]. Functionally Reduced AIGs (FRAIGs) use a combination
of simulation and combinational equivalence checking (SAT)
to find equivalent (up to complement) AND nodes [10]. These
AND nodes are merged into choice nodes. Intuitively, a choice
node can be seen as a vertex that encodes different implemen-
tations of a function (up to complementation). Alternatively, a
synthesis flow with structural choices, also called lossless syn-
thesis flow, generates choice nodes by storing nodes generated
in intermediate steps of the synthesis process [1]. In contrast,
a traditional technology mapper only sees the nodes in the
network resulting from the optimizations process. In [11], a
framework to combine logic transformations with technology
mapping is proposed. At each step the mapper evaluates the
impact of a logic transformation on the mapped circuit.
B. Boolean Methods

Approaches to logic network optimization are divided into
algebraic methods and Boolean methods [12]. Compared to
algebraic methods, Boolean methods are based on Boolean
transformations that consider the true nature of logic functions
and improve logic networks through the freedom provided by
don’t care conditions [13]. Observability don’t care (ODC) and
controllability don’t care (CDC) are widely used in synthesis
with don’t cares. In this work, we use the terms ODC/CDC and
permissible functions interchangeably to express the following:
if the function at node n can be changed into another function
without changing the behaviour of the primary outputs, the
new function is called a permissible function. The set of all
permissible functions for a node n is called its Maximum
Set of Permissible Functions (MSPF, [14]), and can be used
to enhance Boolean transformations such as resubstitution,
refactoring, rewriting, etc. Due to the use of don’t cares
and Boolean identities, Boolean methods achieve better QoR
but usually have higher computational cost. Consequently,
many recent works have been focused on improving their
scalability [15], [16]. As of today, different reasoning engines
can be used for detecting permissible functions and don’t care
conditions, and the right choice of such engine can improve the
scalability of the Boolean methods. Examples of such engines
– as used in Section IV – are truth tables, BDDs, and SAT.
Details on the reasoning engines and their use in Boolean
methods can be found in [15], [16] and [17], respectively.
We also refer the interested reader to [12], [18] for a more
exhaustive review of Boolean methods and transformations.

III. REVISITING LUT MAPPING

In this work, we are interested in area-oriented LUT map-
ping. We make LUT mapping operating as a basic restructur-
ing transform, such as a fanin-bounded eliminate, reshaping
a generic Boolean network N in a more convenient state for
ASIC synthesis. We present here our revisited LUT mapper,
depicted in Algorithm 1. Initially, the mapper runs a prepro-
cessing by sweeping the network N to (i) clean up single input
gates (buffers and inverters), (ii) perform constant propagation

Algorithm 1 Top-Level LUT Mapping Algorithm
Input: Network N , LUT size k, lut ratio r, backtrack b
Output: k-bounded network N ′ of LUTs

1: preprocess network(N );
2: /* enumerate cutsets and process choices if available */
3: C = find cutsets(N , k);
4: /* form the matches considering literal costing */
5: M = compute matches(N , C, r);
6: /* form and solve the binate covering problem */
7: S = binate cover(N , M , b);
8: /* re-form the network from the solution */
9: N ′ = collapse network(N , S); return N ′;

TABLE I
AREA-ORIENTED LUT MAPPING RESULTS COMPARED TO ABC &if .

ABC &if k=3 Proposed k=3, r=1.4
benchmark LUTs literals levels LUTs literals levels
adder 256 2,292 128 256 2,292 128
dec 298 620 3 304 612 3
i2c 745 2,339 12 754 2,261 12
max 1,290 4,682 158 1,248 4,408 189
mem ctrl 25,361 88,038 78 23,667 78,851 94
log2 27,816 93,711 398 25,447 88,473 374

and (iii) run a quick pass of a tree-mapping based on the
chortle algorithm in [5]. After the preprocessing, the k-cut
enumeration creates a set of cuts for each internal node using a
cut-merging technique based on [8]. If the network comprises
choices [1], the mapper can process them during the k-cut
enumeration step to increase the mapping opportunities.

Typically, a conventional LUT-based mapper does not con-
sider the literal/AIG count of the internal logic of a LUT.
However, since we apply the LUT mapper to re-shape the
network for ASIC synthesis, we need to estimate the internal
LUT area to distinguish the cost of selecting a smaller or a
larger cut during the mapping process. Therefore, the proposed
mapper computes possible matches of cuts into LUTs by
considering the implicit literal/AIG count of k-cuts into LUTs.
When using small LUTs, e.g., 3-LUTs, it is quite efficient to
use an lut ratio parameter to determine the ratio among the
area cost of different cut sizes. The intuition is that a 2-LUT
maps often to a single AIG node, unless it represents a XOR,
while a 3-LUT has higher complexity. Using a lut ratio of
1.4 for k = 31 gives better LUT mappings that translate
in smaller ASIC implementations. When considering instead
higher k values, it is necessary to estimate the real area of each
candidate LUT cone of logic. This is achieved by running
a quick cube and kernel extraction on a duplicated cone of
logic and by saving the resulting literal/AIG count as cost of
the LUT. While such accurate costing has runtime impact, the
proposed mapper reformulation reduces the number of LUTs
while selecting k-cuts/matches with better literal count.

The next mapping step (line 7 in Algorithm 1) is to select
a subset of all possible k-cuts/matches that cover the network,
while minimizing the overall area cost. This DAG-covering is
formulated as a binate covering problem by forming a single
matrix for all the matches and their associated covered nodes.
The binate covering is guided by the area cost of each match
and the solving process is bounded by a given backtracking
limit [19]. Branch-and-bound is a powerful tool for this kind

1In other words, lut ratio = 1.4 with k = 3 means that a 3-LUT has
1.4× the area cost of a 2-LUT.



of intractable problems since it can provide a high quality
solution within a given computational effort limit. Finally, the
mapper delivers a k-bounded network N ′ of LUTs by locally
collapsing nodes into their fanins up to reach the k-cuts in S,
selected during the covering process.

Table I presents a comparison between the proposed mapper
and the ABC mapper &if in an area-oriented scenario. We
ran the proposed mapper with k = 3, r = 1.4, and ABC
mapper as follows ”r circuit.blif; st; &get; &if -K 3 -a; &put;
w mapped.blif; q”. Our mapper has demonstrated strength for
reducing LUT and literal count, and also acceptable runtime
for a high-quality mapper, 1.6 seconds on average for Table I.
The blif files used as input to the mappers are available at [20].

IV. BOOLEAN METHODS FOR LUT SIMPLIFICATION

This section revisits Boolean methods with application to
LUT optimization flow targeting ASICs.
A. LUT Complexity Minimization

Reducing the intrinsic complexity of LUT nodes in a
LUT network is an important step for improving the ASIC
implementation cost, after AIG decomposition and standard
cell mapping. Reducing the LUT node complexity can be
seen as reducing the NAND2/AIG cost of the same node.
Effective ways to achieve this goal are to (i) reduce the
cardinality/support-size of an LUT node, (ii) run 2-level Sum
Of Products (SOP) minimization on the LUT node, including
don’t cares.

1) SOP simplify with don’t cares: SOP simplification em-
ploys traditional 2-level minimization algorithms [21], [22]. In
the context of LUT nodes, SOP simplification can be made
very powerful because a tight bound on the support size
is set by construction, thus higher effort minimizations can
be run without incurring in intractable runtime. In practice,
exact 2-level minimization methods [22] can be used with
3,4,5 fanin bound with quick runtime. However, just running
simplification on such small SOP nodes does not usually lead
to consistent reductions. To unlock more simplifications, we
consider don’t cares. More specifically, LUT networks offer
the unique opportunity to add don’t cares to SOP simplification
in a bounded way. The CDC of an LUT node can be added by
just considering one-level fanin of LUT nodes, and the ODC
by considering one-level fanout of LUT nodes, up to a maxi-
mum fanout value F . The CDC complexity is proportional to
k2, where k is the LUT size, while the ODC complexity is
proportional to F ·k. All these values are constants in practice,
decided beforehand. Other enhancements to SOP simplifica-
tion for LUTs regards the acceptance criterion. Rather than
accepting based on literal count decrease, we can improve the
cost to consider factored literals, by running quick extraction
on the simplified SOP. This cost has better correlation to a final
ASIC implementation. Lastly, both phases can be tried during
LUT node SOP simplification with don’t cares, and accept
the best polarity leading to the smallest factored literals cost,
including the output inverter if necessary.

2) Support reduction: When considering a final ASIC im-
plementation, it is desirable to reduce the support size of each
LUT node. For example, by reducing a 3-LUT into a 2-LUT,
if possible, before decomposing and mapping onto standard

cells. Indeed, LUT nodes could have redundant inputs when
considering the global network functionality. We reduce the
support of each LUT node by computing the functional support
using either BDD or SAT based methods [7], [16], [17]. The
functional support can be computed with respect to a frontier,
i.e., a set of internal variables in the network, or with respect to
the primary inputs of the network. When the functional support
size is smaller than the LUT size of the node, the old SOP is
replaced with a new ISOP computed based on the functional
support. Either BDD or SAT based methods can be used to
compute ISOPs efficiently in this context. SAT based methods
are preferable when the frontier employed for computation is
deep, i.e., going to the primary inputs.

B. LUT-Enhanced Boolean Resubstitution

Boolean resubstitution [15], [17] can be remarkably effec-
tive when run on an LUT network. Resubstituting and saving
one large LUT node, or replacing a k-LUT with a (k-j)-
LUT, reduces the complexity of the network more signifi-
cantly than just resubstituting one AIG node. Compressing
the network into LUTs increases the visibility of Boolean
resubstitution so that higher order opportunities can be found.
For LUT-optimization for ASICs purposes, it is important
to make Boolean resubstitution cost-accurate and capable of
the strongest resubstitution possible, in terms of globality
and n-arity2 In this work, we present a special Boolean
resubstitution algorithm tailored for maximum visibility. Note
that this Boolean optimization is high effort and capable of
grinding down area significantly. Also, several runtime bailouts
are in place to contain its runtime, as typically done for
the most powerful Boolean transformations. The algorithm
works as follows. First, the LUT nodes are ordered based
on maximum savings at each node. Here, the maximum
saving is the factored literal cost of the Maximum Fanout-Free
Cone (MFFC) of the node. Then, each LUT is processed to
find other nodes that are connectable, up to complementation,
to realize the function of the target LUT via an OR operator.
The function of the target LUT natively embeds MSPF flexi-
bilities by construction, to find the largest set of connectable
nodes. The MSPF and connectability computations are nat-
urally performed with BDD operations, when BDDs can be
built efficiently. SAT formulation and solving for the same
computations is preferable in the large scale scenario. In the
small case scenario (up to 15 inputs), truth tables can be used.

Once a set of connectable new fanins is found, a branch
and bound algorithm is employed to determine the minimum
irredundant subset of new fanins that, once connected via an
OR operator, with complementation as needed, can implement
the original LUT functionality under MSPF. Note that such
new solution may not always exist, in which case the minimum
irredundant subset would be empty. The value k from the LUT
mapping is useful to prune the search space of the branch and
bound problem. Complete functionality needs to be checked
during the branch and bound problem, so either BDD, SAT, or
truth table packages are called as needed. If a solution is found,
the fanin can be re-arranged to further improve the solution,

2Here, resubstitution n-arity refers to the maximum support size of the new
nodes introduced by resubstitution.



e.g., reduce number of factored literals. Once committing the
resubstitution operation and disconnecting the old fanins, it
is important to refresh any global function data structure as
MSPF information may need updating.

While this Boolean resubstitution methodology may ap-
pear runtime intensive, it scales well for many small and
medium size designs. For large designs, partitioning is the
preferred strategy to use this powerful resubstitution without
incurring an intractable runtime. Also, several deterministic
guards on runtime are in place to bailout when branch and
bound becomes longer than the intended maximum budget for
the resubstitution optimization. Altogether, this makes LUT-
enhanced Boolean resubstitution a very powerful, yet runtime
affordable, optimization technique.

C. Boolean Rewiring Revisited for LUTs

Boolean rewiring [23] is a popular synthesis technique. It
consists of a sequence of additions and removals of redundant
wires, with the goal of reducing the (factored) literal cost of the
network. Inserting a new redundant wire to an irredundant cir-
cuit can make two or more wires to be redundant, under certain
conditions, thus leading to new simplification opportunities.
Inserting a new redundant wire means introducing a new gate,
or swapping to a wider gate, capable of receiving the extra
connection. ATPG engines are historically quite efficient to
detect such redundancies [24]. Boolean rewiring is classically
a greedy technique, where single rewiring operations are
immediately accepted when positive gain is observed. Zero
gain moves are useful as well to escape local minima.

In our LUT optimization framework, Boolean rewiring is
extended to operate on LUTs and introduce 2-input LUT
nodes, i.e., AND/OR, for the new redundant wires. Boolean
rewiring is a multi-node optimization technique, for this reason
it provides diversity w.r.t. the previous methods.

D. From LUT to AIG and Mapped Networks

The last step in LUT optimization for ASICs consists of
decomposing the LUT nodes into a factorized form and, in
turn, decomposing the network into an AIG or a mapped net-
work. To obtain a factorized form of the SOP of each node, the
logic function is extracted from the LUT and decomposed into
primitive gates. The decomposition is achieved by recursively
applying kernel extraction. For each node f in the network,
the recursive kernel decomposition works as follows. If a non-
trivial divisor g is found, f is rewritten using divisor g as
literal, and the algorithm is recursively applied on both f and
g. If a divisor is not found, the procedure returns the node
itself. The output of the algorithm is an array of all nodes
involved in the factorized form of f , which can be used to
obtain an AIG or a mapped network. A final pass of light
AIG-engine [16] further improves QoR.

V. LUT OPTIMIZATION FLOW FOR ASICS

This section presents a new LUT optimization framework
targeting ASICs. It combines the new technologies detailed in
Sections III and IV in an intelligent gradient-based engine. For
the sake of brevity, this section will focus on AIG as target
output network. However, mapped networks are a natural
extension of this methodology.

Algorithm 2 LUT Engine Optimization Flow
Input: AIG N , LUT size k, effort E, small gain thr. T
Output: Optimized AIG N.

1: Ndup = N ; / * for lossless synthesis */
2: lut map(N , k); gain = 0;
3: while E > 0 do
4: update(gain);
5: if gain is flat for too many iterations then
6: break;
7: end if
8: if gain > T then
9: /* if gain > T , apply cheap optimization*/

10: lut reduction(N ); simplify dc(N );
11: lut map(N , k); reduce budget(E);
12: continue;
13: end if
14: det randomize(N );
15: /* apply stronger optimization 1 */
16: lut resub(N ); lut reduction(N );
17: simplify dc(N ); lut map(N , k);
18: reduce budget(E); update(gain);
19: if gain > T then
20: continue;
21: end if
22: /* apply stronger optimization 2 */
23: lut resub(N ); Boolean rewiring(N );
24: simplify dc(N ); lut map(N , k);
25: reduce budget(E); update(gain);
26: end while
27: Boolean decomp(N );
28: if N is better than Ndup then
29: return N ;
30: end if
31: return Ndup;

A. LUT Engine

We propose a LUT optimization engine (called LUT-
engine), capable of reducing the implementation complexity
in terms of NAND2/AIG count, with efficient runtime. Algo-
rithm 2 depicts the pseudocode. Note that some optimization
parameters are omitted for the sake of brevity.

The goal is to make LUT optimization adaptive. This is
achieved by using gradient computation of the NAND2/AIG
count gain: It allows us to decide dynamically the best next
attempted transformation. The LUT engine algorithm starts by
duplicating the current network: This is done in case the LUT
engine degrades the NAND2/AIG cost and needs reverting at
the end. Before starting the iterative loop, a first valid k-LUT
mapping of the network is obtained. The iterative loop is con-
trolled by a budget E, which is consumed by running various
LUT optimizations. The LUT optimizations are applied in a
waterfall model where the first successful move is picked. This
leads to better runtime as compared to parallel model, but
it may overlook optimization opportunities. In the proposed
LUT engine, the waterfall model is a good tradeoff between
runtime and QoR. We employ three main LUT optimization
moves in the waterfall model. The first move is the cheapest in
terms of runtime and consists of LUT reduction, simplification
with don’t cares, and remapping. Until the gain exceeds the
threshold T , the algorithm keeps applying this least runtime
expensive move. Intuitively, this means that we can reduce the
complexity of the network greatly with low effort optimization,
and until this is possible, computational-intensive transforms



are not needed. If the gain is less than the threshold T ,
LUT moves featuring stronger optimization are attempted.
Note that, before getting into the stronger moves, we apply
deterministic randomization of the LUT network (line 14 of
Algorithm 2). This is important to escape local minima and it
includes shuffling fanin/fanout order of the nodes and picking
different topological orderings. The first higher effort LUT
optimization move consists of Boolean resubstitution, LUT
reduction, simplify with don’t cares, and LUT remapping.
Here, Boolean resubstitution is the main workhorse consid-
erably reducing the network cost. The second, and last, higher
effort LUT optimization move comprises Boolean rewiring,
Boolean resubstitution, simplify with don’t cares, and LUT
remapping. Boolean rewiring is a powerful transform to escape
local minima as it can add/remove wires, reduce literal cost,
and highlight new LUT compaction opportunities. It is worth
mentioning that, if the gain remains flat for too long, the LUT
engine would automatically bails out to save runtime. At the
end of the iterative loop, we decompose the network into an
AIG via algebraic and Boolean decomposition, as detailed in
Section IV. Finally, if the cost of the network is better than
the initial cost, we commit the change, otherise we revert.

In our experiments, we obtained the best NAND2 cost over
industrial benchmarks by using E = 50 and k = 3, with
T = 1% and bailout when gain < 0.1% for 5 iterations or
more. We observed that back to back call of LUT-engine with
k = 3, 4, 5 can help QoR further at expenses of runtime:
size 4 and 5 can compact more advatangeously the logic
for some designs. Nevertheless, k = 3 remains the most
effective LUT size for our LUT-engine. Experimentally, we
also observed that using three-input nodes offers the best, and
most general, tradeoff between functionality and structure for
LUT-engine. An additional advantage of 3-input nodes is that
this is an average size of gates in typical standard-cell libraries,
thus optimizing this type of networks directly translates into
improving the quality of technology mapping.

B. I2c Case Study

To showcase the effectiveness of LUT-engine standalone,
we compare it to a similar methodology that only consid-
ers AIGs: AIG-engine [16]. Even though the AIG-engine
methodology provides superior results with respect to static
scripts, e.g., resyn2 in [25] and script.rugged in [26], it
still does not catch all optimization opportunities. Fig. 1
shows the comparison of AIG-engine vs. LUT-engine for the
i2c controller, which is a relevant benchmark of the EPFL
suite [4]. The setup of AIG-engine follows the one from [16],
but limited to 40 iterations. The setup of LUT-engine is k =
3, with T = 1% and fixed 40 iterations. We have found that
i2c academic benchmark has good correlation with the trend
observable in industrial designs. Considering AIG-engine, the
NAND2 count for i2c goes from 1342 to 1065. We observe
good improvements that saturate with increasing iteration
number. On the other hand, LUT-engine is immedialy able
to get i2c NAND2 count down to mid 800s, thanks to cheap
moves containing lut-mapping and simplify-dc. Even after
that, LUT-engine continues with steady gains and escape from
local minima. The saturation eventually arrives only around
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Fig. 1. Comparison of lut-engine and aig-engine on i2c benchmark.

iteration 30, when the flat gain would trigger the bailout
mechanism, which we disabled in this experiment for the sake
of comparison. The final NAND2 count for LUT-engine is
673, which translates to the smallest AIG currently known for
i2c benchmark, improving on top of the previous best AIG
result of size 710 reported in [16]. Please note that other best
AIG results have been improved by LUT-engine as compared
to [16]: They are not discussed here for the sake of brevity
but can be downloaded at [20].

VI. EXPERIMENTAL RESULTS

In this section, we present experimental results for our
LUT optimization flow: LUT-engine. First, we challenge LUT-
engine to improve the best results in the EPFL benchmark
suite [4]. Then, we integrate LUT-engine in an industrial EDA
flow, and show sensible QoR gains post place & route.
A. Methodology

We implemented our proposed methodology as part of a
commercial design automation solution. In the EDA flow,
LUT-engine runs after the initial Boolean optimization, which
mainly aims at reducing area. Therefore, LUT-engine targets
size reduction in the logic network. Tight control on the num-
ber of levels and the number of nets is enforced during LUT-
engine: this is known to correlate with delay and congestion
later on in the flow. To run tests on the EPFL benchmarks, we
also compiled LUT-engine as a standalone package.
B. EPFL Benchmarks

In this section, we show the results for the EPFL bench-
marks. In particular, we challenge the area (i.e., number of
LUTs) category within the EPFL benchmark suite project that
keeps track of the best 6-input LUT synthesis results. We used
LUT-engine with k = 6 and T = 1%. Additionally, we disabled
the final AIG decomposition in LUT-engine and added a final
mapping using k = 6, without literal costing, to make sure the
output network is a valid 6-LUT network. We let LUT-engine
run dynamically with a maximum budget corresponding to 3
hours, and early bailout if gain < 0.1% for more than 20
iterations. Note that most benchmarks run in minutes, with
exception of the large ones, such as log2 and hypotenuse.

We improved the previous best size (area) results3 for the
12 benchmarks reported in Table II. Even though the EPFL

3The EPFL best results are available at: https://github.com/lsils/benchmarks.
We compare our results to latest commit 7c9f16e



TABLE II
NEW BEST AREA RESULTS FOR THE EPFL SUITE

Benchmark I/O 6-input LUT count Level Count.
adder 256/129 191 184
arbiter 256/129 307 78
divisor 128/128 3250 1189
hypotenuse 256/128 39826 4492
log2 32/32 6513 132
mem ctrl 1204/1231 2019 21
mult 128/128 4898 93
priority 128/8 101 26
sin 24/25 1205 61
sqrt 128/64 3030 1093
square 64/128 3232 76
voter 1001/1 1281 19

TABLE III
POST PLACE&ROUTE RESULTS ON 36 INDUSTRIAL DESIGNS

Flow Area Sw. Power WNS TNS Runtime
Baseline 1 1 1 1 1
LUT engine -1.80% -1.72% -0.42% -0.39% +5%

benchmarks have been optimized several times in the last 5
years, for some of the benchmarks our improvement is larger
than 500 6-LUTs. Further, we obtained a new best result for
the adder benchmark, that was not improved since 2016. Our
circuit implementations can be downloaded at [20].
C. ASIC Results

We present here our experimental results on 36 industrial
ASIC benchmarks, obtained using a commercial EDA flow
empowered with our new LUT-engine. Since the ASIC designs
come from major electronic industries, we cannot disclose
their details. To show the efficacy of our method, we thus
present the average results w.r.t. a baseline flow without our
LUT-engine. The results, post place & route, are summarized
in Table III. All benchmarks are verified to be equivalent with
an industrial formal equivalence checking flow. Our complete
design flow, embedding the new LUT-engine, achieves sensible
combinational area & combinational switching power reduc-
tions, 1.80% and 1.72% respectively, on average, and also
WNS/TNS improvements, with moderate 5% runtime cost.

VII. CONCLUSIONS

In this paper, we developed a new LUT-based optimization
flow that is tailored for the synthesis of ASICs rather than
FPGAs. We enhanced LUT mapping to consider literal/AIG
cost of each LUT node. We extended traditional Boolean
methods to simplify and re-shape LUT-networks, targeting
the best AIG/mapped-network implementation, after decom-
position. Intuitively, literal-driven LUT packing behaves as
an effective fanin-bounded eliminate, unveiling higher-order
Boolean simplification opportunities. We embedded our pro-
posed LUT optimization flow, area oriented, in a commercial
synthesis tool. Using our methodology, we improved 12 of the
best area results in the EPFL synthesis competition. Employed
in a commercial EDA flow for ASICs, our LUT optimization
reduced area by 1.80%, total negative slack by 0.39%, and
switching power by 1.72%, after physical implementation, at
5% runtime cost.
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