Circuit-Based Intrinsic Methods to Detect Overfitting

Sat Chatterjee Alan Mishchenko
Google Al Department of EECS
Mountain View, CA University of California
schatter@google.com Berkeley, CA

alanmi@berkeley.edu

Abstract

The focus of this paper is on intrinsic methods to detect overfitting. These rely
only on the model and the training data, as opposed to traditional extrinsic methods
that rely on performance on a test set or on bounds from model complexity. We
propose a family of intrinsic methods called Counterfactual Simulation (CFS)
which analyze the flow of training examples through the model by identifying and
perturbing rare patterns. By applying CFS to logic circuits we get a method that
has no hyper-parameters and works uniformly across different types of models
such as neural networks, random forests and lookup tables. Experimentally, CFS
can separate models with different levels of overfit using only their logic circuit
representations without any access to the high level structure. By comparing lookup
tables, neural networks, and random forests using CFS, we get insight into why
neural networks generalize. In particular, we find that stochastic gradient descent in
neural nets does not lead to “brute force” memorization, but finds common patterns
(whether we train with actual or randomized labels), and neural networks are not
unlike forests in this regard. Finally, we identify a limitation with our proposal that
makes it unsuitable in an adversarial setting, but points the way to future work on
robust intrinsic methods.

1 Introduction

This paper considers methods to detect overfitting of a model based only on the model and the training
data. We call such methods intrinsic in contrast to extrinsic methods relying on additional knowledge,
such as, the performance of the model on examples held out from the training process, details of the
process used to find the model (e.g., multiple hypothesis testing with registration), or limitations of
the function family to which the model belongs (e.g., VC dimension, Rademacher complexity) or of
the size of the parameter space of the model (e.g. Akaike Information Criterion).

Intrinsic methods are of practical interest since with modern deep models, we find that extrinsic
estimates based on model complexity are typically vacuous since these models are powerful enough
to fit arbitrary data [Zhang et al.| [2017]. Consequently, practitioners resort to studying performance
on a held out dataset (or cross validation), but this is unsatisfactory for a couple of reasons. First, this
means that in a low data setting, we cannot use all the data for training, but have to keep significant
portions aside as held-out (e.g. see discussion in [Dietterich| [1998]]) Second, it may be difficult to
ensure a pristine hold out that is not touched during the research process particularly if the project is
long running. (Even with a few queries to the hold out during the research process, it is possible to
start fitting to the hold out [Dwork et al., 2015].)

Intrinsic methods are also interesting from a theoretical perspective. Imagine that we have sufficient
computing power to, say, enumerate all neural networks (and their weights) up to a certain size.
Among all the networks that fit the data well, intrinsic methods could distinguish between those
networks that generalize well from those that do not, and we could view the model as a certificate

Preprint. Under review.

Figure 1: Sketch of a circuit implementing a lookup table.

of generalizationm In addition, if the intrinsic method was efficient, it would mean that supervised
learning (and not just fitting) is in NP. Intrinsic methods can also help shed light on why neural
networks trained with stochastic gradient descent generalize in spite of their large capacity. Some
recent analyses based on normalized margin, curvature, etc. [Bartlett et al.| 2017, Rangamani et al.,
2019, |Arora et al., 2018, [Neyshabur et al.,|2018]] may be seen as intrinsic estimates for generalization
albeit specialized to neural networks.

It is useful to consider intrinsic methods in the context of a protocol involving two agents. Let S
be a public dataset drawn from a distribution D that generates samples infrequently (e.g. quarterly
financial statements and returns of public companies, or public health data on treatments and patient
outcomes). Suppose Arthur wants to build a model from & but instead of doing so himself, he
outsources it to Merlin, an untrusted adversary. Merlin comes back with a model M but does not
disclose any details of his modeling process. How can Arthur convince himself that M is not horribly
overfit? For example, M could simply be a lookup table built from S. Normally Arthur would
evaluate M on new samples from D, but in our setup, Arthur does not have any samples other than
those in S since all the existing data is public. Now, if Arthur only has access to M as a black box
and he can only evaluate M on elements of S, it appears there is little he can do to distinguish a good
model from a lookup table. But, and this is the central question of this paper, can Arthur do better if
he has access to the internal signals in the implementation of M?

We take a first step towards answering this question by studying a naturally-motivated family of
intrinsic methods called Counterfactual Simulation (CFS) and evaluating their efficacy experimentally
on a benchmark problem. The main idea behind CFS is to analyze the flow of the training examples in
S through the structure of M. This is only a first step since although CFS shows promise in practice,
it has significant limitations. In particular, our experiments show that even if we could prove bounds
based on CFS, they would not be tight enough in an adversarial setting. However, we hope that this
paper encourages research to overcome these limitations or to show that no such method can exist,
especially for learning tasks of practical interest.

2 Counterfactual Simulation (CFS)

The structure of M can be described at different levels of abstraction. For instance, if M is a fully
connected feed forward neural network, we can describe it as a sequence of layers. Going one
level lower, we can describe it as a directed acyclic graph (DAG) of (fixed or floating point) adders,
multipliers, and pointwise non-linearities. Finally, at the lowest level of abstraction, we can describe
the structure of M as a DAG of primitive logic gates such as 2-input And gates and inverters, i.e., as
a combinational logic circuit. In our setup, it is natural to work at this lowest level, i.e., logic gates
since it allows different kinds of models such as lookup tables, random forests, and neural networks
all to be mapped into the same format. Thus, Merlin need not disclose even what type of model he
has built, but simply provides Arthur with a combinational logic circuit for the model.

To make this concrete, consider the MNIST image classification problem which we will use as a
running example. D is the distribution of handwritten digits and their classes. S is a sample from D
of 60,000 images x; and their corresponding labels y; (thus, 0 < ¢ < 60000) i.e., the MNIST training
set. Each z; is 6,272 bits wide (corresponding to 28 x 28 pixels x 8§ bits per pixel), and each y; is 10

"Keeping a hold out set would not help us here—what would that even mean?

bits wide (for a 1-hot representation of the 10 possible classes). Therefore, a classifier to solve this
problem is a circuit with 6,272 Boolean inputs and 10 Boolean outputs.

Suppose Merlin’s model for the MNIST classifier is a simple lookup table. How would the circuit
for it look? Figure [I|sketches one possibility. The 6,272-bit input x is compared with each of the
examples x; in turn and if there is a match, the corresponding 10-bit output y; is selected. If no
example matches, then the model (arbitrarily) returns the 1-hot vector representing class ‘0’. Now, if
we simulate this circuit on examples in S, we notice that there are internal signals in the circuit that
are capable of identifying specific training examples. For example, the signal s (the output of the
x = zq block) is 1 (true) for the training example x(and O (false) for all others. In this case, we say
1 is a rare pattern for sg since sg rarely takes on the value 1 on the training set. Formally, if a signal
5 in M takes on the value v at most [times on the training set S, we call v a [-rare pattern for s.

This observation leads to the first of the two main ideas behind CFS: The presence of l-rare patterns
suggests overfitting, and, therefore, poor generalization since they open up the possibility that M
has special logic to detect and handle specific examples. A count of rare patterns, however, does
not directly translate into a metric for generalization (without building a predictive model of that!).
Furthermore, although a pattern may be rare it may also be an observability don’t care (ODC), i.e., it
may have no influence on the output of the circuit. For example, if the signal with the rare pattern
only feeds into an And gate whose other input is O when the rare pattern appears, then the value of
the rare pattern does not matter in deciding the output of the circuit.

We address both problems with the second main idea behind CFS: perturbed simulation of a training
example where we simulate an example through M as usual, but when we encounter a [-rare pattern,
instead of propagating it to the fanouts (i.e., gates that depend on this signal), we perturb the pattern
and simulate the fanouts with the perturbed pattern. A natural perturbation is to propagate the opposite
value instead of the rare pattern. In our running example, this corresponds to propagating a 0 instead
of 1 for signal s to the mux when simulating the training image x¢. In this manner, we prevent the
model from identifying zy and we see that the output for x is no longer necessarily .

We perform perturbed simulation for each training example in turn and measure the resulting average
accuracy over the training set. We call this quantity the training accuracy obtained through [-CFS. In
our running example of the lookup table, it is easy to see that the training accuracy obtained through
1-CFS is no better than random chance (since each training example is mapped to class ‘0’ under
1-CFS). Now, since random chance is what one would expect to be the generalization of the lookup
table (i.e. its accuracy on D), it is tempting to conjecture that 1-CFS training accuracy is a good
estimate of accuracy on D. Although that is not the case as we shall see empirically in Section[3] we
find that the difference in training accuracy between normal simulation and [-CFS is a good measure
of the degree of overfit of M.

Other Types of CFS. There are other variants of the procedure described above (which we call
Simple CFS or just CFS). Of particular interest is Composite CFS which is useful for circuits with
gates that have many inputs or are at higher levels of abstraction. In Composite CFS, we look at
rare patterns in combinations of signals feeding a gate and perturb when a rare combination is seen.
Another possibility is to randomize the perturbation. However, since in our experiments these variants
produced results very similar to Simple CFS, they are not considered further in this paper.

3 Experimental Results

CFS Implementation. Our implementation of I-CFS works on a directed acyclic graph G represent-
ing a combinational logic circuit where each node is either the constant 0, a primary input, a 2-input
And gate, or a 2-input Xor gate. An edge is either a direct connection or an inverter and represents
a Boolean function in terms of the primary inputs. This is a variant of an And-Inverter Graph, a
standard data structure in modern logic synthesis used to handle circuits with hundreds of millions of
nodes where we propagate constants but do not extract common subexpressions.

We make two passes through the nodes of G in topological order starting from primary inputs. In
the first pass, we simulate the training set through G to obtain the counts of different patterns in the
circuit. In the second pass, we use the counts from the first pass to perturb the [-rare patterns. In
Simple CFS, this boils down to replacing signals that take on a value of O on most examples with
the constant O signal and likewise for 1. CFS thus runs in linear time in the size of the graph and

the training data. For performance, the simulations are done in a bit parallel manner for all training
examples at the same time. To avoid running out of memory, we use reference counting to recycle
storage for intermediate simulated values when they are no longer needed. A typical run of [-CFS in
our experiments takes less than 10 minutes on a 3.7GHz Xeon CPU and less than 2GB of RAM.

Benchmark Problem. While the discussion from the previous section shows how CFS can discover
overfit when the model is a simple lookup table, it is not clear if CFS would be effective on neural
networks trained with stochastic gradient descent (SGD). To answer this question, we trained 3 neural
networks for MNIST in TF-Keras and compiled them down into combinational logic circuits. All
3 networks have the same architecture: an input layer of size 784 (i.e., 28 x 28), 3 fully connected
ReLU layers with 256 nodes each, and a final softmax layer with 10 outputs. (Thus, the total number
of trainable parameters is 335,114.) We also performed some experiments with Fashion MNIST and
the results are similar.

The first two networks (nn-real-2 and nn-real-100), were trained on the MNIST training set for
2 epochs and 100 epochs respectively. They get to training (top-1) accuracies of 97% and 99.90%
respectively. The third network (nn-random) was trained on a variant of MNIST where the output
labels in the training set are permuted pseudo-randomly and trained for 300 epochs to get to a training
accuracy of 91.27%E] (Through out we used ADAM with default parameters and batch size of 64.)
As expected, nn-real-2 is the least overfit and gets to a validation set accuracy of 97% (i.e., has a
negligible generalization gap), nn-real-100 is more overfit getting to a validation set accuracy of
98.24% (a gap of 1.66%), and finally, the validation accuracy of nn-random is 9.73% (i.e., close to
chance) confirming that it is horribly overfit.

Conversion to Logic Circuits. This is done by generating logic subcircuits composed of 2-input
And/Xor gates and inverters for each of the operations in the neural network. Weights and activations
are represented by signed 8-bit and 16-bit fixed point numbers respectively with 6 bits reserved for
the fractional part. (Weights from training are clamped to [—2.0,2.0) before conversion to fixed
point.) Each multiply-accumulate unit multiplies an 8-bit constant (the weight) with a 16-bit input
(the activation) and accumulates in 24 bits with saturation. The constant multiplications are done
by finding a minimal combination of bit-shifts (multiplications by powers of 2) and additions or
subtractions. For example, 5 X u is implemented as 4 X u +wand 11 X uwas 16 X u —4 X u — u.
ReLUs are implemented with a comparator and a multiplexer. The outputs of each network are the
10 signed 16-bit activations before the softmax. When evaluating accuracy (with CFS or without) we
pick the class corresponding to the largest of the 10 activations (top-1 accuracy). The resulting logic
circuits have 35 to 52 million And/Xor gates and 5500 to 6000 logic levels. (These sizes along with
the need to fit random data dictated the choice of architecture and benchmark.)

Expt. 1: Effect of Simple CFS. Figure [2al shows the training accuracies obtained through [-CFS
for each of the three networks as [varies from 1 to 1024 (which is about 1.7% of the number of
training examples). We call these plots CFS curves. As [increases, i.e., as more patterns become rare
and get perturbed, the accuracy falls eventually reaching chance. However, it is interesting that the
drop in accuracy is highest for nn-random (e.g. at [= 64, the drop is about 45%), somewhat less for
nn-real-100 (20%) and the least for nn-real-2 (1.4%). Thus the falloff in accuracy with [is an
indicator of the level of overfit of a network.

It is remarkable that even when a neural network is represented at a very low level as a logic circuit,
relative overfit can be detected using an intuitive algorithm with no hyperparameters to tune.

Expt. 2: Impact of Architecture. There are many different ways in which a neural network can be
compiled down into logic gates. In Expt. 1, we made certain architectural choices for the circuit,
but what if we had chosen differently? To evaluate that, here we replace the multipliers used in
Expt. 1 with array multipliers (i.e., multipliers based on the elementary algorithm for multiplication).
Figure[Z_B] shows the resultant CFS curves (with dashed lines) as well as the original curves (solid
lines) for reference. The curves do not coincide indicating that the result of CFS depends on the
structure of the circuit and not just on the function implemented by the circuit (since the function is
the same in both cases). However, for the same choice of architecture, we find that the falloff in CFS
curves are again indicative of the degree of overfit.

Expt. 3: Impact of Choice of Primitives. Even at the lowest level of abstraction, we can choose
what primitives to work with. To see how this choice impacts CFS curves, in this experiment we

>While evaluating random for training accuracy (with or without CFS), the permuted labels are used.

1.0

=
o

0.8

o
o

0.6

o
o

0.4

I
IS

nn-real-2 w/ array

nn-real-100

nn-real-100 w/ array

A—A nn-random

A A nn-random w/ array
T

2 4 6 8 10

0.2

o
N
)
Pl
<

@@ nn-real-2
V¥ nn-real-100
A—A nn-random

0.0 T L
0 2 4

training accuracy with I-CFS
training accuracy with I-CFS

o
o

o

1.0

60000 T T T T T
: : : : |®® nn-real-2

V¥ nn-real-100
‘|a—a nn-random

0.4 nn-real-2

training accuracy with I-CFS

= N w » %4
o o o o o
o o o o o
o i=3 (= o o
o o o o o
T
i

num. examples w/ no I-rare patterns

o-e
@ @ nn-real-2 w/o xors r 1
V-¥ nn-real-100
0.2 H¥ ¥V nn-real-100 W/0 XOrs [«««««---oerioenes v
A—A nn-random [1
|a- & nn-random w/o xors H
0.0 T T I 1 0 H H H R
0 2 4 6 8 10 0 1 2 3 4 5 6
log, (1) log, (1)
(©) (@)
1.0 1.0
B8 rf-random
; : : O rf-real
0.8 s 0.8 G boeeeennenns ; < ®-@ nnreal-2 H
: : V¥ nn-real-100
A—A nn-random

0.6

o
o
T

training accuracy with I-CFS
training accuracy with blanket noise

0.4 . 0.4 - ememmmebe s XA b
&< rf-real
m-@ rf-random
0.2 He—e nn-real-2 s 0.2 F b N AR
V-V nn-real-100
l|aa nn-random ["5 T T T T T T - o : : :
Oo I L L L L 00 1 1 1 1 1
0 2 4 6 8 10 12 -30 -25 -20 -15 -10 -5
log,(1) loga(p)
(e) ()
1.0 — T T o 1.0 - T T T T
i |@@ epochs = 1 43 . |®@ epochs =1
‘.f . |@@ epochs =2 c :|®-@ epochs =2
G 0.8 ..|e-® epochs=5 | E 0.8} i{®-e epochs =5 H
Z i |@-@ epochs = 10 % i|oe epochs = 10
F= @@ epochs = 20 S :|®@—@ epochs = 20
i 0.6 : :* o 7:—\N,,%w ©-© epochs =50 | 5 0.6 :{o-0 epochs =50 H
g 7777777777 0 @—e epochs = 100 |] ®—e epochs = 100
5 @@ epochs = 200 > :|®—@ epochs = 200
g 04f 1 ® 041 : =
© =1
2 g
£ ®
s 0.2 s o 0.2
S O S S . =S T P
©
0.0 i I 1 i i 500 1 1 1
0 2 4 6 8 10 12 -30 -28 -26 -24 -22 -20 -18
loga (1) loga(p)
(€9 (h)

Figure 2: The results of experiments in Section Plot (a) shows the CFS curves for 3 networks
with different amounts of overfitting; (b) and (c) show the impact of the choice of multipliers and of
primitive logic gates respectively on CFS curves; (d) shows how many examples are unaffected by
I-CFS since they do not have any [-rare patterns; (e) shows CFS curves for random forests; (f) shows
training accuracies when a signal is randomly flipped with probability p; and (g) and (h) show the

differences between CFS and random flips for 8 networks trained on a dataset with high label noise.
5

disallow Xor gates as primitives (thus requiring that only And gates and inverters be used). Figure
shows the resulting CFS curves (dashed) as well as the originals (solid). Once again, we see that the
curves do not coincide indicating that the choice of primitives matters but for the same choice of
primitives, the falloff in CFS curves are again indicative of the degree of overfit.

Expt. 4: Count of Rare Patterns. Figure [2d| shows for each value of /, how many examples have
no l-rare patterns, i.e., cannot be possibly affected by [-CFS. We observe in particular, that for
nn-random, there are 54,094 examples (about 90% of the training set) that have no 1-rare patterns.
This is in sharp contrast to a simple lookup table where every example would have a 1-rare pattern,
and in fact slightly more than nn-real-100. Comparing these curves of counts to the CFS curves in
Figure [2aindicates that perturbation is an important part of CFS and that rarity by itself is a cruder
measure of overfitting since it may not be observable.

Expt. 5: Random Forests. Since CFS works on the circuit level, it can check random forests for
overfit. Two random forests were trained using version 0.19.1 of Scikit-learn [[Pedregosa et al., 201 1]
Each forest has 10 trees and is trained using the default settings, except for bootstrapping (to avoid
non-uniform weights during inference). The first forest (rf-real) was trained on MNIST whereas
the second forest (rf-random) was trained on MNIST with the output labels pseudo-randomly
permuted (as before with nn-random). Both forests reach perfect training accuracy. rf-real gets
95.58% validation accuracy whereas as expected rf-random gets no better than chance. (rf-real
has about 14K nodes per tree whereas rf -random has about 70K nodes per tree.)

The forests are compiled down to circuits in a straightforward manner. Each tree is compiled
separately and produces 10 16-bit outputs (one per class). The corresponding outputs are added
across all 10 trees and the class output by the forest corresponds to the class with the maximum value.
Each internal node in a tree maps to a multiplexer controlled by a 8-bit comparator to implement the
threshold, and each leaf node corresponds to 10 16-bit constants representing the number of examples
that occupy each class in that leaf (thus most entries are zero). The circuit for rf-real has about
700K nodes whereas rf -random has 3M nodes. Both are less than 250 logic levels deep. (These are
much smaller than the circuits for the neural networks.)

Figure shows the CFS curves for the two random forests. Once again, we see that the overfit model
(rf-random) degrades faster than the model with better generalization (rf-real) confirming that
CFS is effective even for models that are fundamentally different from neural networks. However,
it is interesting to see that if we compare across model families i.e. between the neural networks
from Expt. 1 (repeated in Figure 2¢]for convenience) and the random forests, CFS is not effective
at distinguishing overfit. In particular, nn-real-2 which is not overfit degrades more rapidly that
rf-random which is highly overfit. We discuss this in greater detail in Section 4]

Expt. 6: Blanket Noise. CFS may be seen as adding a targeted noise. Here, instead, we add blanket
noise by simulating the training set while randomly flipping the node values with probability p.
As p varies from 270 to 277, the resulting noise curves (Figure 2f) are similar to the CFS curves
(Figure @ However, the more overfit nn-real-100 does not fall faster than nn-real-2. With
CFS, these curves are well separated, and the gap between neural nets and forests is much larger.

Expt. 7: Sensitivity. To better understand the sensitivity difference between CFS and blanket noise,
we trained 38 neural networks (with the same architecture as before but different max epochs) on
MNIST with exactly one half of labels randomized (so maximum accuracy possible is about 55%).
We show the CFS curves and the noise curves for 8 representative networks in Figures 2g|and 2h]
respectively. Note the crossover of the CES curves that indicates a larger falloff for overfit networks
compared to the more uniform degradation of the noise curves. It is fascinating that all the CFS
curves cross over at a single point with an accuracy of about 50%. This is discussed in Section 4]

4 Discussion

Structure Dependence. Expt. 2 and 3 show that the results of Simple CFS depend not just
on the function but on the structure of the circuit. (Other CFS variants we investigated show
this behavior as well.) A small example provides some insight. Consider the Boolean function
f(a,b,¢) = a evaluated on the training set comprising the full Boolean cube (i.e., all 8 combinations
of a,b, ¢ € {0,1}). In addition to the direct implementation, f can also be implemented (redundantly)
asa-b-c+a-—b-c+a-b-—c+a-—b-—c. Itis easy to see that under 1-CFS, the direct implementation

is unchanged (there are no 1-rare patterns) but the redundant implementation maps to constant O (the
output of each conjunction is 1 only once).

Although this is not a problem when the compilation process can be controlled, this is bad news
in the adversarial setup. A good model with a poor implementation may show steeper degradation
under CFS than a more overfit model with better implementation (e.g. c.f. nn-real-2 with array
v/s nn-real-100 without xors at [= 256). Ideally, we would like to find a variant of CFS that does
not depend on structure but only on the functionE] In the absence of that ideal, we view the structure
of the circuit as a certificate of how well the dataset is learnt, and make it Merlin’s responsibility
to find and present the most convincing structure. From this perspective, in the above example, the
direct implementation of f (which is not impacted by 1-CFS) is more convincing than the redundant
implementation of f (which is severely impacted).

Adversarial Attack on CFS. Based on the discussion above it is easy to design a way to arbitrarily
degrade the performance of a circuit under CFS. But is the opposite possible? Can Merlin fit an
arbitrary function on the inputs but compile it down to a circuit which does not degrade under CFS?
Expt. 5. offers a clue. The overfit model rf-random fitted on random labels falls off more slowly
than nn-real-2 which generalizes well. What is going on? The short answer is that although each
tree in rf-random is extremely overfit with most leaves containing only a single example, the circuit
nodes have few rare patterns due to the observability don’t cares introduced by the muxes.

Again a simple example is instructive. Let f be the parity function on n bits, i.e., f(x1, z2,...,Ty) =
T1 Py ... P x,. Consider an tree implementation of this function obtained using Shannon decom-
position which has a multiplexer at the top controlled by x; and with 1 ¢ 22 & x3... H x,, and
To ® x3... D x, asits data inputs. If the training set is the full Boolean cube, i.e., {0, 1}" it is easy
to see that there are no [-rare signals for | << n since each input to the multiplexer is balanced, i.e.,
has equal number of Os and 1s. Since Shannon decomposition is recursive, a similar argument holds
for the lower levels of the tree until we get to the leaves which are constant 0 and constant 1 which
though unbalanced have no rare patterns.

This example suggests a way to break CFS. Build a mux tree by recursively splitting on one variable
at a time, but ensuring that each branch has roughly equal number of examples of each class. Note
the contrast with usual decision tree construction heuristics which favor unbalanced splits. (The
unbalanced splits are likely why CFS works on random forests.)

Comparison with Blanket Noise. Based on Expt. 6 and 7, we believe that blanket noise is less
sensitive than CFS. Our results here add to the extensive literature on noise, generalization and
fault tolerance in neural networks (e.g., see [Bernier et al. [2001]] and the references therein) by
extending them to the circuit level (where distinctions between activation or weight noise, or additive
or multiplicative noise disappear) and to other model families such as random forests. Furthermore,
Expt. 6 presents a direct comparison of the fault-tolerance of neural nets and forests where forests
are seen to be about 1000x more fault-tolerant to bit flips. This is likely due to the redundancy from
ensembling. It also suggests that noise-based intrinsic methods could be easily fooled by an adversary
by adding redundancy.

Generalization in Deep Learning. Why do neural nets trained with SGD generalize when they have
sufficient (effective) capacity to memorize their training set? This is an open research question [Zhang
et al.,[2017} |Arpit et al.; 2017, Bartlett et al., 2017, |Arora et al., 2018} [Neyshabur et al., [2018]]. Expt
5. shows that this question is not limited to nets—the same could be asked for random forests as
well. One (informal) answer for forests is that decision tree construction procedures look for common
patterns between examples. When examples share commonality, they are combined into common
leaf nodes and the model generalizes, whereas when there is little commonality, each example is
its own leaf (so the training set is fit well) but the model fails to generalize. Could the same thing
be going on with SGD and networks? CFS on nn-random and Expt 4. provide direct evidence that
even on random data, nets do not “brute-force memorize" but identify common patterns in the data (a
question raised in|Zhang et al.|[2017] and discussed in |Arpit et al.| [2017])).

In this context, it is interesting to conjecture why the CFS curves for the different networks in Expt
7. intersect at a common point corresponding approximately to the achievable accuracy (additional

3In principle, one could canonize the circuit structure before applying CES (e.g. by building ROBDDs) but
that would be computationally prohibitive. Alternatively, one could lightly optimize the circuit before CFS but
that may not be enough.

experiments — see the supplement — indicate that this holds for other fixed ratios of randomly permuted
labels): Roughly half of the examples are easy since they have correct labels and are learnt in the first
few epochs. The remaining examples with corrupt labels are harder and learnt only in later epochs
by the models that are trained longer. With CFS, the accuracy of those models breaks down earlier
since the hard examples have more rare patterns than the easy examples, and the accuracy on the easy
examples thus forms a limiting curve for all models. If this conjecture is true, this would provide
more (and direct) evidence for the claim in|Arpit et al.|[2017, §1] that “SGD learns simpler patterns
first before memorizing." Furthermore, we could identify “simpler patterns" as examples that have
fewer rare patterns and “memorizing" as what is required for examples that have more rare patterns.
Thus, learning simpler patterns and memorization are not fundamentally different but lie at two ends
of a spectrum. We plan to investigate this for the final version of the paper and also look at differences
between different initializations v/s snapshots from the training trajectory.

Related Work. One may be tempted to view margin as an intrinsic measure to estimate the gen-
eralization of a model. However, when we have models with intermediate representations, the
notion of margin by itself is not adequate since an adversary can overfit to a favorable intermediate
representation that is easily linearly separated (but otherwise arbitrary). However, recent work in this
area (e.g. Bartlett et al|[2017])) has focussed on margins normalized by spectral complexity (i.e., a
measure related to the Lipschitz constant of the network) and in that case the above argument does
not obviously apply. We have not studied if normalized margin can be exploited by an adversary.
Similarly, most measures based on the shallowness of minima are not adequate since they are not
scale-invariant|Dinh et al.|[2017] and we have not investigated if more recent work on scale-invariant
measures [Rangamani et al.;|2019]] can be exploited. In comparison to these and other approaches for
neural networks [Arora et al., 2018 [Neyshabur et al., 2018, CFS is fundamentally more discrete,
which makes it applicable to a larger class of models. However, in contrast to the other approaches,
we do not have any theoretical bounds yet while our results indicate that without further refinements
to CFS itself, any generalization bounds from [-CFS would likely be vacuous in practice.

5 Conclusion and Future Work

Our main result is that CFS based on adding small amounts of targeted noise at the logic circuit level
can detect overfit. This is remarkable because at this level of representation we have lost most aspects
of the structure of the model, such as the distinction between weights and activations, or even whether
the model is a neural network, a random forest, or a lookup table. Furthermore, variations such as
perturbing only rare patterns in single signals or across the fanins of a gate lead to qualitatively similar
results and there are variants (such as Simple CFS) that are naturally free of hyper-parameters.

By studying rare patterns, we find that SGD does not lead to “brute force" memorization, but finds
common patterns (whether training is done with randomized labels or actual labels), and neural
networks are not unlike forests in this regard. By adding blanket noise, random forests are found to be
about 1000x more resilient to noise than neural networks which could be useful when implementing
machine learning systems with unreliable low level components.

There are several directions for future work. We analyze flat circuits, but with a clever implementation
that constructs the circuit on-the-fly from higher level specifications, the computations can scale to
larger models. We could also apply CFS at higher levels of abstraction (perhaps as part of the model
evaluation process in frameworks like Scikit Learn and Tensorflow Estimators) though at that level
there are more degrees of freedom in the implementation (e.g., what kind of noise to add).

Finally, based on insights from our analysis of Simple CFS, we would like to continue the search for
an intrinsic method that does not depend on the model structure and is adversarially robust, or to show
that such a method does not exist, even for learning tasks of practical interest. As a generalization of
this idea, it is interesting to contemplate learning algorithms that produce certificates of generalization,
much like a Boolean satisfiability solver can produce a certificate of satisfiability or of unsatisfiability.

Acknowledgments

The first author thanks Michele Covell, Ali Rahimi, Alex Alemi, Shumeet Baluja, Sergey loffe,
Tomas Izo, Shankar Krishnan, Rahul Sukthankar, and Jay Yagnik for helpful discussions.

References

Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. CoRR, abs/1802.05296, 2018. URL http://arxiv.org/
abs/1802.05296.

Devansh Arpit, Stanislaw K. Jastrzebski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxin-
der S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron C. Courville, Yoshua Bengio, and Simon
Lacoste-Julien. A closer look at memorization in deep networks. In Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August
2017, pages 233-242,2017. URL http://proceedings.mlr.press/v70/arpitl7a.html,

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,
and R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 6240-6249.
Curran Associates, Inc., 2017.

Jose Bernier, Julio Ortega, Eduardo Ros Vidal, Ignacio Rojas, and Alberto Prieto. A quantitative
study of fault tolerance, noise immunity, and generalization ability of mlps. Neural Computation,
12:2941-2964, 01 2001. doi: 10.1162/089976600300014782.

Thomas G. Dietterich. Approximate statistical tests for comparing supervised classification learning
algorithms. Neural Comput., 10(7):1895-1923, October 1998. ISSN 0899-7667. doi: 10.1162/
089976698300017197. URL http://dx.doi.org/10.1162/089976698300017197,

Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp minima can generalize for
deep nets. CoRR, abs/1703.04933, 2017. URL http://arxiv.org/abs/1703.04933,

Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Aaron Roth.
The reusable holdout: Preserving validity in adaptive data analysis. Science, 349(6248):636—638,
2015. ISSN 0036-8075. doi: 10.1126/science.aaa9375. URL https://science.sciencemag.
org/content/349/6248/636.

Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards
understanding the role of over-parametrization in generalization of neural networks. CoRR,
abs/1805.12076, 2018. URL http://arxiv.org/abs/1805.12076,

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

Akshay Rangamani, Nam H. Nguyen, Abhishek Kumar, Dzung Phan, Sang H. Chin, and Trac D.
Tran. A Scale Invariant Flatness Measure for Deep Network Minima. arXiv e-prints, art.
arXiv:1902.02434, Feb 2019.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. In Proceedings of the International Conference
on Learning Representations ICLR, 2017.

http://arxiv.org/abs/1802.05296
http://arxiv.org/abs/1802.05296
http://proceedings.mlr.press/v70/arpit17a.html
http://dx.doi.org/10.1162/089976698300017197
http://arxiv.org/abs/1703.04933
https://science.sciencemag.org/content/349/6248/636
https://science.sciencemag.org/content/349/6248/636
http://arxiv.org/abs/1805.12076

	Introduction
	Counterfactual Simulation (CFS)
	Experimental Results
	Discussion
	Conclusion and Future Work

