

A Simple BDD Package without Variable Reordering and Its Application to Logic

Optimization with Permissible Functions

Yukio Miyasaka1, Alan Mishchenko2, Masahiro Fujita1
1University of Tokyo

2 University of California, Berkeley

E-mail: miyasaka@cad.t.u-tokyo.ac.jp

Abstract
Binary Decision Diagrams (BDDs) are a canonical

representation of logic functions, which allows for efficient

computation in logic verification and optimization. Although

the BDD size is sensitive to the variable ordering, reasonably

good orderings can be found for many functions in hardware

design. For other functions, such as multipliers, the BDD size

is exponentially large for any ordering. On the other hand,

dynamic reordering can significantly reduce the BDD size,

but it is often time- and memory-consuming.

This paper proposes a new simple BDD package without

dynamic variable reordering, which is much faster than the

conventional BDD package with reordering. By avoiding the

reordering, a substantial amount of memory (40%) can be

saved. The proposed BDD package is used in logic

optimization with permissible functions and is applied to

benchmarks synthesized from PLA. The results show that the

AIG node count for some benchmarks is reduced by 40% at

most and 10% on average while conventional logic synthesis

tools, such as ABC, largely miss the optimization opportunity.

Keywords
BDDs, CSPF, Formal Verification, Combinational Circuit,

Circuit Minimization

1. Introduction
BDDs are a data structure, which represents a logic

function canonically if the order of the variables is given [1].

Because of the canonicity, we can prove the equivalence of

two circuits by building BDDs for their outputs. The circuits

are equivalent if and only if the BDDs for their outputs are

the same.

The disadvantage of BDDs is that if the appropriate order

of variables is not given, the number of nodes increases

exponentially. We can often obtain a good variable ordering,

but there are cases when the number of nodes is always

exponential, for example, in the case of multipliers [2].

Dynamic variable reordering has been proposed to reduce

the number of nodes. It dynamically changes the order of

variables while building a BDD. To handle computations of

the reordering, it requires much longer time and extra

memory to store pointers among the nodes.

In this paper, we implemented a simple BDD package

without dynamic reordering to save memory. Because the

bottleneck of building BDDs is memory, the reduction in

memory usage leads to faster computation.

We also implemented the transduction method [3] based

on permissible functions for logic optimization using the

simple BDD package. The permissible function represents

don’t-cares of a node in the network. By managing

permissible functions with BDDs, the memory requirements

are reduced, and the optimization is performed faster. The

transduction method removes unnecessary gates and wires

while transforming the circuit using the permissible functions.

In the experiment, we compared the performance of

CUDD [4] and the proposed simple BDD package by

building BDDs for integer multipliers and some benchmarks.

Next, we compared the performance of circuit minimization

using ABC [5] and using the proposed BDD-based

transduction method.

The paper is organized as follows. Section 2 introduces

the new simple BDD package. Section 3 reviews the

transduction method implemented using the package. Section

4 describes the experimental setup. Section 5 shows the

experimental results. Section 6 concludes the paper.

2. A simple BDD package

2.1. Basic components
It was proved [2] that the number of nodes in the BDD

representing an integer multiplier grows exponentially

regardless of a variable order. The dynamic reordering is not

needed for building BDDs of integer multipliers.

We implemented a simple BDD package without any

dynamic reordering. Because pointers connecting nodes

during dynamic reordering can be saved, the new BDD

package has less memory usage per node. The memory usage

per node is shown in Table 1. The specified number of nodes

are allocated before building BDDs in this package. Let

nAlloc be that number.

The variables of BDDs are the inputs of the circuits. They

are denoted as "PI-variables" in this section.

A BDD node is identified by a 31-bit BDD-variable and

has a PI-variable stored as an 8-bit char, literals of two

children (THEN and ELSE) stored as two 32-bit ints, and a

multi-purpose mark stored as a 8-bit char. Note the maximum

possible number of nodes is 231.

A literal is a 32-bit int, which is a BDD-variable with a

complemented attribute in the LSB. A literal with its LSB 1

represents the complement of the node. The node with BDD-

variable 0 is constant-0. The node of the first input of the

circuit has BDD-variable 1, its THEN is literal 1, and its

ELSE is literal 0. A literal for ELSE must not be

complemented to avoid duplication of literals. A node a is

equivalent to the complement of the node b whose PI-variable,

THEN, and ELSE are the same PI-variable, the complement

of the same THEN, and the complement of the same ELSE as

the node a respectively.

mailto:miyasaka@cad.t.u-tokyo.ac.jp

Table 1: Memory footprint of a node in the simple BDD

package

Purpose Type Size(Byte)

PI-Variable char 1

Children 2 × int 8

Unique Table 2 × int 8

Computed Table 3 × int 12

Mark char 1

Total 30

In order to guarantee the uniqueness of the node, we use a

hash table with linked lists. Each linked list stores BDD-

variables of the nodes found in the same bin. Before a new

node is created, a hash value is calculated using its PI-variable

and children. The linked list for the hash value is searched to

check whether there is a node whose PI-variable and children

are the same as the new node. If such a node is found, that

node is used as the new node without actually creating the

new node. Otherwise, a new node with a new BDD-variable

is created and the new BDD-variable is inserted at the head

of the linked list. In our implementation, the size of hash table

to store the heads of linked lists is set equal to nAlloc. The

size of the table to store the next elements in linked lists is

also set equal to nAlloc. In total, the unique table requires two

32-bit ints for each BDD node.

The new package has a computed table to speed up the

BDD construction. Let x, y, z, p, and q be literals. After

building z as AND of x and y (x < y), a hash value is calculated

using x and y. Three literals x, y, and z are stored at the address

of the hash value in the computed table. Before building a

BDD for AND of p and q (p < q), the computed table is

checked at the address of hash value calculated from p and q.

If there is an entry whose first and second values are equal to

p and q respectively, its third value is used as the result of

AND of p and q. We set the size of computed table equal to

nAlloc, while each entry requires three 32-bit ints.

2.2. Building BDDs and garbage collection
For equivalence checking, we build a BDD for each

output of the circuit. Because the outputs would have some

overlap among their fanin cones, BDDs for all outputs are

built at the same time. A BDD is built for each gate in a

topological order from inputs to outputs of the circuit. Note a

BDD for a gate means a BDD representing a logic function

realized at the output of the gate.

The BDD for a gate is no longer necessary after BDDs for

all gates in fanout of the gate are built, unless its fanout

includes the output of the circuit. It is called a dead BDD. A

node in a dead BDD can be removed if the node is not used

in any live (non-dead) BDD.

The new package uses the mark/sweep garbage collection

to remove the unnecessary nodes. When a BDD for a gate is

built, the root node of the BDD is marked. That root node is

unmarked after BDDs for all gates in fanout of the gate are

built, if the output of the circuit is not in its fanout. Thus, all

root nodes of live BDDs are always marked. When sweeping,

all descendants of marked nodes are kept, the other nodes are

removed.

The sweeping is called when the number of nodes reaches

nAlloc. The links in the linked lists of unique table are

reconnected to skip the removed nodes. The computed table

is initialized because updating all entries containing the

removed nodes is time consuming. The PI-variable of the

removed node is set to -1, and the minimum BDD-variable of

removed nodes is memorized while sweeping. The BDD-

variable of a new node is set to the minimum BDD-variable

of removed nodes after the sweeping. The next minimum

BDD-variable of removed nodes can be found by searching

the node with PI-variable -1.

If building a BDD for a gate runs out of nodes even after

the sweeping, the reallocation is performed with nAlloc

doubled (nAlloc:=2×nAlloc). If nAlloc becomes larger than

231, the BDD construction is terminated. The unique table

must be rehashed after the reallocation. The new hash value

for a node is whether the same or increased by half of nAlloc

as the previous one because the hash value is calculated in

modulo nAlloc. Each linked list is walked and the nodes with

the hash value increased are moved to the new linked list,

while the other nodes remain in the same linked list.

3. The transduction method using CSPF with BDD
We implemented a circuit minimization method called the

transduction method using the simple BDD package. In order

to make it easy to apply the transduction method, it is

assumed that all gates in the circuit are NAND gates.

Here we explain the terminology in this section. A

primary input/output (PI/PO) is an input/output of the circuit.

Let Fi be a logic function realized at the output of a gate i or

at a PI/PO i as shown in Figure 1. The inputs of a function are

PIs. A PI pattern is a pattern of PIs’ values. For a function X,

X(V) is a value of X for a PI pattern V. For example, the value

of Fi(V1) for a PI pattern V1={PI1=0, PI2=0, PI3=1} is

shown in Figure 2. ci,j is a connection from a gate or PI i to a

gate or PO j. FIi is a set of all gates and PIs in fanin of gate i

Figure 1: Logic functions in a circuit.

Figure 2: The values of logic functions in a circuit for a

PI pattern V1.

and FOi is a set of all gates and POs in fanout of gate i. In

other words, FIi is a complete set of gate or PI j where cj,i

exists and FOi is a complete set of gate or PO j where ci,j exists.

FICi/FOCi is a set of all gates in fanin/fanout cone of gate i.

3.1. The permissible function
The permissible function is a function which outputs 0, 1,

or * (don’t-care). A permissible function is calculated for

each gate and each connection in the circuit. Let Gi be a

permissible function at the output of a gate i and Gi,j be a

permissible function at a connection ci,j. Both Gi and Gi,j are

initially set equal to Fi for every gate i and every connection

ci,j. When we find a PI pattern V where the output of gate i or

ci,j is don’t-care, Gi(V) or Gi,j(V) is made to be *. Note

Gi(V)/Gi,j(V) is a value of Gi/Gi,j for a PI pattern V.

In the transduction method, the circuit is transformed in

the way that Fi is included in Gi for any gate i even after the

transformation. Here "Gi includes Fi" means that Fi(V) is

equal to Gi(V) for any PI pattern V where Gi(V) is not *.

There have been two sets of permissible functions

proposed [3]. One is the maximum set of permissible

functions (MSPF), the other is the compatible set of

permissible functions (CSPF).

MSPF represents a complete set of don’t cares. It is

calculated the following way. Note a logic operation between

functions is performed as a logic operation for every PI

pattern. For example, "a function Z is AND of functions X

and Y" means Z(V) is AND of X(V) and Y(V) for every PI

pattern V.

1. For each gate i in a topological order from POs to PIs,

do 2 and 3.

2. Calculate AND' (Table 2) of Gi,j for every gate or PO j

in FOi, and the result is assigned to Gi.

3. For each gate or PI j0 in FIi, do 4 and 5.

4. Calculate AND of Fj1 for every gate or PI j1 in FIi

except j0=j1. Let X be the result.

5. Calculate @ (Table 3) of Gi and X, and the result is

assigned to Gj0,i.

2 follows that the output of a gate is don't-care if all output

connections of the gate are don't-care. 4 and 5 follow that an

input connection of a gate is don't-care if the output of the

gate is don't-care or at least one of the other input connections

is 0. Otherwise, the input connection must be the complement

of the output of the gate. Note a gate is a NAND gate and the

value of Gi cannot be 0 if there is an input connection whose

value is 0 (X=0).

The defect of MSPF is that we must recalculate the

permissible functions after some transformations of the

circuit. Consider a gate i which has 2 input connections: cj0.i

and cj1,i. For a PI pattern V where both Fj0(V) and Fj1(V) are 0,

both Gj0,i(V) and Gj1,i(V) are made to be * in MSPF. If Fj0(V)

changes from 0 to 1 in a transformation of the circuit, we must

change Gj1(V) from * to 0 and recalculate permissible

functions according to that change.

In CSPF, we don't have to recalculate permissible

functions even after any transformation of the circuit within

the permissible functions, while some don't-cares are missed.

All gates and PIs in the circuit are ranked based on some

heuristics before calculation of CSPF. Let Ri be the rank for

a gate or PI i. For a PI pattern V where Gi(V) is 1, Gj(V) is kept

at 0 where a gate or PI j is in FIi, Fj(V) is 0, and Rj is larger

than Rj0 for any other gate or PI j0 in FIi where Fj0(V) is 0.

For example, Figure 3 shows MSPF and CSPF for the same

connections. All connections are made to be * in MSPF, on

the contrary the third connection is kept at 0 in CSPF.

CSPF is calculated in the following way. 1’ and 2’ are the

same as 1 and 2 in the calculation of MSPF, while 3’-6’

replace 3-5.

1'. For each gate i in a topological order from POs to PIs,

do 2’ and 3’.

2'. Calculate AND' (Table 2) of Gi,j for every gate or PO j

in FOi, and the result is assigned to Gi.

3'. For each gate or PI j0 in FIi, do 4'-6'.

4'. Calculate AND of Fj1 for every gate or PI j1 in FIi

where Rj1 is larger than Rj0. Let X be the result. (If

there is no such j1, X is constant 1).

5'. Calculate @ (Table 3) of Gi and X. Let Y be the result.

6'. Calculate # (Table 4) of Y and Fj0, and the result is

assigned to Gj0,i.

In 4', the range of j1 is restricted to the input connections

from gates or PIs with larger rank than the rank of the gate or

PI j0. Thus, the input connection whose source has the largest

rank in the sources of the input connections whose values are

Table 2: The truth table of AND'.

AND' 0 1 *

0 0 0 0

1 0 1 1

* 0 1 *

Table 3: The truth table of @.

@
X

0 1

Gi

0 INVALID 1

1 * 0

* * *

Table 4: The truth table of #

Fj0

0 1

Y

0 0 *

1 INVALID 1

* * *

Figure 3: The difference between MSPF and CSPF.

0 is not treated as don't-care. If the output of the gate is 1 and

an input connection is 1, the input connection is don't-care

because there must be another input connection whose value

is 0. 6' is based on this. Note the condition that the output is 0

and the input connection is 0 never happens.

3.2. Implementation of CSPF
The transduction method changes the structure of the

circuit within permissible functions in order to reduce the

number of gates and wires. Because functions for gates and

connections are changed many times and the recalculation of

MSPF is time-consuming, we decided to use CSPF.

A logic function in the circuit is represented by a BDD.

Different from equivalence checking, we need all logic

functions in the circuit not only logic functions at POs. These

BDDs are built before the calculation of CSPF.

While calculating CSPF, we build another BDD

representing * for each permissible function. Let G_DCi and

G_DCi,j be the BDDs representing * in Gi and Gi,j respectively.

For any PI pattern V where Gi(V) is *, G_DCi(V) is 1. For any

other PI pattern Vn, G_DCi(Vn) is 0. The same relation holds

between Gi,j and G_DCi,j.

Code 1 is a pseudo code of the calculation of CSPF.

CSPF() corresponds to 1’, CSPF-gate(gate i) corresponds to

2’, and CSPF-fanin(gate i) corresponds to 3’-6’ in the

calculation of CSPF explained in the previous section. The

operations AND’, @, and # are decomposed into normal logic

operations with G_DCi or G_DCi,j.

CSPF() removes redundant gates and wires while

calculating CSPF. A wire whose permissible function

consists of only 1 and * is redundant because if it is set to

always 1, it never affects the output of the gate. If all input

connections of a gate are removed, the output of the gate is

replaced by constant 0 and the gate is removed. The gates

without fanouts are also removed. At the end of CSPF(), logic

functions for all gates are updated to reflect the removal of

redundant gates and wires. Note the logic functions at the

PIs/POs don't change.

The rank is calculated before CSPF() and is not updated

during CSPF(). A connection from a gate or PI with smaller

rank has more chances to have * in its permissible function.

To reduce the number of gates, the rank of gate harder to be

removed is set larger as follows. These are written in the

descending order of priority.

1. The rank of a PI is larger than the rank of any gate.
2. The rank of a gate with larger number of fanout is

larger.
3. The rank of a gate whose output has a logic function

output 0 more frequently is larger.

4. The rank becomes larger in a topological order from

POs to PIs.

3.3. The transduction method
Just calculating CSPF can reduce the number of gates and

wires, but the transduction method transforms the circuit

within permissible functions to reduce more.

We implemented 2 methods that allow us to rewire the

network. The basic idea is to add the output of a gate or PI j

to the input of another gate i where the connectable condition

(1) is satisfied and to update permissible functions. The

connectable condition is that Fi is included in Gi even after

adding a new connection cj,i. For a PI pattern V where Fi(V) is

1, Fi(V) doesn't change by any new cj,i. For any other PI

pattern Vn, Fi(Vn) changes by a new cj,i only if Fj(Vn) is 0.

Therefore, a new cj,i can be created when the condition

NOR(Fi(V), Fj(V))→G_DCi(V) holds for any PI pattern V, and

this is formulated as (1).

OR(Fi, Fj, G_DCi) = constant 1 (1)

The rank is not always recalculated after the

transformation of the circuit to save the processing time. It is

updated only when we call Eager-CSPF, which updates the

rank for all gates and calls CSPF() iteratively until there is no

reduction in the number of gates and wires.

 As the flow of optimization, we build BDDs for all gates,

call Eager-CSPF, and apply the transduction method. Note

redundant gates and wires are removed while updating CSPF.

The pseudo code of our first transduction method "Weak-

reduce" is shown in Code 2. It tries all combinations of gates

i and j in an exhaustive way, while CSPF is updated for the

input connections of the gate i when the gate or PI j is added

to its input. If no wire is removed in updating CSPF, the added

input connection from the gate j is removed.

The second method "Eager-reduce" can be found in Code

3 with modification from Code 2 shown in red. When adding

a connection from gate or PI j to gate i, some wires in fanin

cone of gate i may become redundant and this method

removes them. Moreover, it calls Eager-CSPF after each

transformation of circuit.

CSPF-fanin(gate i) {

 for each gate or PI j0 in FIi {

 A:=constant 1;

 for each gate or PI j1 in FIi where Rj1 > Rj0

{ A:=AND(Fj1, A); }

B:=AND(Fi, NOT(A)); // @

C:=OR(G_DCi, B); // @

D:=AND(Fi, Fj0); // #

G_DCj0,i:=OR(C, D); // #

if OR(Fj0, G_DCj0,i) is constant 1 { Remove cj0,i; }

}

if FIi is empty { Replace gate i by constant 0; }

}

CSPF-gate(gate i) {

 if FOi is empty { Remove gate i; return; }

 A:=constant 1;

 for each gate or PO j in FOi

 { A:=AND(G_DCi,j, A); } // AND’

 G_DCi:=A;

}

CSPF() {

 For each gate i in a topological order from POs to

PIs { CSPF-gate(i); CSPF-fanin(i); }

For each gate i in a topological order from PIs to

POs { Update Fi; }

}

Code 1: A pseudo code of the calculation of CSPF.

When the method runs out of BDD nodes during its

procedure, it removes all BDDs, builds BDDs for the current

circuit, and calls CSPF(). This is called Refresh. If Refresh

fails to build the BDDs or calculate CSPF due to the shortage

of BDD nodes, more nodes are allocated, or the optimization

is terminated.

4. Experimental setup
We conducted 3 experiments. In the first and second

experiments, we compared the simple BDD package against

CUDD [4]. The memory and the runtime were measured. To

measure significant memory usage, we subtracted from the

measured value the memory required to store the BDD of

constant 0 function: 9 MB for the simple BDD package and

30 MB for CUDD.

The targets of first experiment were BDDs of

combinational array multipliers from 8×8 to 18×18 bits

generated by ABC. It is known that the number of BDD nodes

needed to represent an integer multiplier is the smallest when

the order of the variables is in the order of a4, b4, a3, b3, a2,

b2, a1, b1 on 4×4 bits multiplier for example. This order was

used in our experiments. Note that both our implementation

and CUDD cannot build BDD of the 20×20 bits multiplier

because the number of BDD nodes exceeds 231.

CUDD allows the user to disable dynamic variable

reordering, and we measured the performance of CUDD

without dynamic reordering in the first experiment. Our

program requires the initial number of allocated BDD nodes

as a power of 2 (nAlloc=2n) and we measured its performance

with 3 different values of n: the minimum n where 2n is more

than the number of PIs (the reallocation will be performed

when building BDD), the minimum n where the BDDs of

each multiplier are built without reallocation, and 31 (231

BDD nodes) which is the upper limit of the program.

The second experiment was a comparison against CUDD

with dynamic variable reordering. We experimented on

multi-level combinational circuits with 20-200 inputs and less

than 2000 gates in LGSynth91 benchmark [6]. We measured

how the number of BDD nodes affects memory usage and

runtime.

The third experiment was a performance comparison of

the network optimization methods. Our implementation was

compared with ABC [5]. We compared the following 4

method: an ordinary optimization by ABC, a script of ABC

optimization commands which uses don't-cares in terms of

PIs, the our first transduction method "Weak-reduce", and the

combination of "Weak-reduce" and the second one "Eager-

reduce".

The ordinary optimization by ABC uses commands "dc2",

"resyn", "resyn2", and "resyn3". We repeatedly applied these

commands in the following policy: 1. Apply “dc2” 10 times.

If the number of AIG nodes is reduced, do 1 again. 2. If the

number of AIG nodes is no longer reduced even if dc2 is

applied 10 times, apply "resyn", 10 times of "dc2", "resyn2"

10 times of "dc2", "resyn3", and 10 times of "dc2". If the

number of AIG nodes is reduced after those commands,

return to 1. Otherwise, finish the optimization.

Another ABC optimization uses a script "if -K 6 -m; mfs2

-W 1000000 -F 1000000 -D 1000000 -L 1000000 -C 1000000

-e; strash; compress2rs". We applied this script 300 times and

measured the minimum number of AIG nodes. Note that this

command doesn't cause monotonic decrease in the number of

nodes. We report only the runtime needed to reach the

network with the minimum number of AIG nodes.

Command "if" is a simple technology mapper, which

transforms AIG into a network of logic nodes. With option,

Weak-reduce() {

for each gate i in a topological order from POs to PIs

{

for each gate or PI j in a topological order from PIs

to POs {

if (j is i) or (j is in FIi) or (j is in FOCi)

 { continue; }

if OR(Fi, Fj, G_DCi) is constant 1 {

Create cj,i;

CSPF-fanin(i);

if the number of gates and wires is not reduced,

{ remove cj,i; }

 Update Fi;

}}

CSPF-fanin(i);

for each gate j in FICi in a topological order from

POs to PIs { CSPF-gate(j); CSPF-fanin(j); }

for each gate j in a topological order from PIs to

POs { Update Fj; }

}

Code 2: The first transduction method: Weak-reduce.

Eager-reduce() {

for each gate i in a topological order from POs to PIs

{

for each gate or PI j in a topological order from PIs

to POs {

if (j is i) or (j is in FIi) or (j is in FOCi)

 { continue; }

if OR(Fi, Fj, G_DCi) is constant 1 {

Create cj,i;

CSPF-fanin(i);

for each gate k in FICi in a topological order

from POs to PIs { CSPF-gate(k); CSPF-fanin(k); }

if the number of gates and wires is not reduced {

remove cj,i;

Update Fi; // necessary in case of Refresh

for each gate k in FOCi in a topological order

from PIs to POs { Update Fk; }

CSPF-fanin(i);

for each gate k in FICi in a topological order

from POs to PIs { CSPF-gate(k); CSPF-fanin(k); }

 } else {

 for each gate k in a topological order from PIs

to POs { Update Fk; }

Call Eager-CSPF;

 }

}}}

Code 3: The second transduction method : Eager-

reduce.

"-K 6" it maps AIG into 6-input LUT network while option "-

m" enables cut minimization by removing vacuous variables.

Command "mfs2" is the SAT-based optimization used with

options to make sure it works on a complete circuit (and not

just on a window). It is a good match with CSPF-based

optimization, which uses BDDs in terms of PIs. Option "-e"

enables high-effort resubstitution. Finally, "compress2rs" is

an old AIG optimization script, which performs rewriting,

refactoring, balancing, and truth-table-based resubstitution.

 The third method using "Weak-reduce" was executed as

follows: First, we calculate the functions in the whole circuit

and call Eager-CSPF. Next, we repeatedly apply "Weak-

reduce" until there is no improvement. Then we change the

structure of the circuit by "strash". Again, we read the circuit,

calculate the function, perform Eager-CSPF, and apply

"Weak-reduce" repeatedly. We did this iteratively until there

is no reduction. Our program allocated 221 BDD nodes

initially and reallocated 231 BDD nodes when it runs out of

BDD nodes during Refresh. The optimization was terminated

when it required more than 231 BDD nodes (out of memory)

or took more than 1 hour (out of time).

The last method, the combination of "Weak-reduce" and

"Eager-reduce", was performed by doing the procedure

explained above for "Weak-reduce" and the same for "Eager-

reduce". This was also repeated until there was no reduction.

The experiment was conducted on the circuits synthesized

from PLA (Programmable Logic Array) format [7]

benchmarks in LGSynth91. The synthesis from PLA was

Table 5: The memory usage and runtime to build BDDs of multipliers using the simple BDD package and CUDD without

dynamic variable reordering. Both package reallocated BDD nodes during the computation incrementally.

Multiplier The simple BDD CUDD

Bit AIG nodes BDD nodes Mem (MB) Runtime (sec) Mem (MB) Runtime (sec)

8×8 424 19,830 1 0.02 4 0.02

10×10 690 184,449 9 0.18 44 0.34

12×12 1,020 1,709,060 76 2.92 160 6.83

14×14 1,414 15,877,043 502 43.71 1426 84.64

16×16 1,872 147,590,995 7722 478.29 13266 1071.96

18×18 2,394 1,374,416,471 61441 4991.34 117346 13682.34

Ratio 0.40 0.55 1.00 1.00

Table 6: The memory usage and runtime to build BDDs of multipliers using the simple BDD package. The simple BDD

package initially allocates 215, 218, 221, 224, 228, and 231 BDD nodes for the minimum number of BDD nodes without

reallocation.

Multiplier The minimum number of BDD

nodes without reallocation

231 BDD nodes allocated initially

Bit Mem (MB) Runtime (sec) Mem (MB) Runtime (sec)

8×8 0 0.01 32749 7.92

10×10 7 0.13 32775 8.31

12×12 59 2.14 32860 10.23

14×14 479 35.57 33634 37.98

16×16 7679 303.27 41072 222.21

18×18 61430 3323.45 61430 3323.45

Ratio 0.32 0.36 1520.99 70.47

Figure 4: The ratio of memory and the number of BDD

nodes used in the simple BDD package over CUDD with

dynamic variable reordering.

Figure 5: The ratio of runtime and the number of BDD

nodes used in the simple BDD package over CUDD with

dynamic variable reordering.

performed by "fx", which is the traditional fast_extract

algorithm used to transform PLA into a multi-level circuit [8].

Ratio in the tables was calculated by dividing a value for

each benchmark and averaging the quotients in all

benchmarks.

All experiments were done by single thread in the

following environment:

- CPU: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz

- Memory: 512 GB

- OS: OpenSUSE Tumbleweed 20190327

5. Experimental results
The result of the first experiment is shown in Table 5 and

6. In Table 5, the simple BDD package initially allocated 25

BDD nodes for 8×8 to 14×14, and 26 BDD nodes for 16×16

and 18×18 bit multipliers and reallocated doubled number of

BDD nodes incrementally up to 215, 218, 221, 224, 228, and 231

BDD nodes for 8×8, 10×10, 12×12, 14×14, 16×16, and 18×18

bit multiplier respectively. On the other hand, in Table 6, the

simple BDD package allocated those numbers of BDD nodes

or 231 BDD nodes initially and finished building BDDs

without reallocation.

The simple BDD package was around 2 times faster than

CUDD and used only 60% memory compared to CUDD even

if it does the reallocation. The reallocation took around 30%

of time compared to the results of the simple BDD package

without reallocation. For 14×14 bits and larger multipliers, to

initially allocate 231 BDD nodes was the fastest in the results.

A good way to use the new package is to start from the small

number of BDD nodes with incremental reallocation and to

jump to 231 BDD nodes if it requires more than 221 BDD

nodes, while the numbers depend on the machine.

Figure 4 and 5 show the rate of memory and runtime

increased by the absence of dynamic variable reordering in

the second experiment in double logarithmic graph. Figure 5

shows only the points where both packages took more than 0

second. The ratio of memory was linearly increased on the

ratio of the number of BDD nodes, and CUDD with dynamic

reordering used smaller size of memory than the simple BDD

package when the ratio of BDD nodes was more than 10x.

The runtime also increased in the same way while CUDD

takes time for reordering.

 Table 7 is the results of the third experiment which is

comparing the results of optimization. Our method

(combination of "Weak-reduce" and "Eager-reduce") reduced

the number of AIG nodes 20% more than ordinary ABC

optimization and 10% more than the ABC script using "mfs2"

on average.

As is shown in [9], these methods using don't-care in terms

of PIs were very effective for alu4, where AIG node count is

around 20 times smaller than the original.

6. Conclusion
We implemented a simple BDD package without variable

reordering and used it in the optimization program based on

the transduction method.

When evaluating the BDD package alone, it was found

that memory is reduced by 40% and the runtime is 2x2 faster,

compared to CUDD without dynamic variable reordering if

the good variable ordering is given. We also found that

memory and runtime improvements are expected against

CUDD with dynamic reordering if the increase of BDD nodes

without dynamic reordering is less than 10x.

When experimenting on the optimization methods, our

implementation was possible to achieve substantial AIG node

reduction (about 10-20%) compared to ABC although it was

50x slower.

The program is available at [10].

Acknowledgements
This work was supported in part by SRC Contracts

2710.001 and 2867.001.

References
[1] R. E. Bryant, "Graph-based algorithms for Boolean

function manipulation," in IEEE Transactions on

Computers, vol. C-35(8), pp. 677-691, Aug. 1986.

[2] R. E. Bryant, “On the complexity of VLSI

implementations and graph representations of Boolean

functions with application to integer multiplication,”

IEEE Transactions on Computers, vol. 40(2), pp. 205-

213, Feb. 1991.

[3] S. Muroga, Y. Kambayashi, H. C. Lai and J. N. Culliney,

"The transduction method-design of logic networks

based on permissible functions," in IEEE Transactions

on Computers, vol. 38(10), pp. 1404-1424, Oct. 1989.

[4] F. Somenzi. CUDD Package,

http://vlsi.colorado.edu/~fabio/

[5] Berkeley Logic Synthesis and Verification Group,

ABC: A System for Sequential Synthesis and

Verification, https://github.com/berkeley-abc/abc

[6] S. Yang, "Logic Synthesis and Optimization

Benchmarks User Guide Version 3.0,” in Technical

Report 1991-IWLS-UG-Saeyang, MCNC.

[7] PLA Format, http://www.ecs.umass.edu/ece/labs/

vlsicad/ece667/links/espresso.5.html

[8] J. Rajski, J. Vasudevamurthy, “The test-preserving

concurrent decomposition and factorization of Boolean

expressions”, in IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 11 (6),

pp.778-793, June 1992.

[9] Y. Matsunaga and M. Fujita, "Multi-level logic

optimization using binary decision diagrams," in

Proceedings of International Conference on Computer

Aided Design, 1989.

[10] https://github.com/MyskYko/abc

 Table 7: The number of AIG nodes and runtime in a comparison of the optimization methods. ABC1 is the ordinary

optimization by ABC. ABC2 is the ABC optimization with a script using if, mfs2, and compress2rs. Weak uses the first our

implementation of transduction method "Weak-reduce". Combo uses both of our implementations "Weak-reduce" and

"Eager-reduce". MO or TO means out of memory or time respectively. Ratio is calculated excluding benchmarks where

MO or TO happened. The minimum number of AIG nodes is highlighted in red for each benchmark with reduction.

testcase AIG nodes Optimized AIG nodes Runtime (sec)

ABC1 ABC2 Weak Combo ABC1 ABC2 Weak Combo

xor5 12 12 12 12 12 0.09 0.00 0.00 0.00

con1 17 16 17 16 16 0.14 0.00 0.00 0.01

t481 25 25 25 25 25 0.15 0.00 0.00 0.01

rd53 36 30 26 29 24 0.14 0.04 0.00 0.03

misex1 50 48 45 34 34 0.19 0.05 0.02 0.06

squar5 56 41 44 50 49 0.34 0.05 0.02 0.08

cordic 65 53 51 54 54 0.27 0.03 0.04 0.68

vg2 73 73 70 70 68 0.19 0.11 0.19 1.75

b12 74 51 52 63 60 0.36 0.13 0.03 0.24

misex2 74 74 74 71 71 0.18 0.00 0.06 0.26

rd73 94 63 72 70 61 0.25 0.35 0.09 0.31

5xp1 98 72 62 74 58 0.44 0.22 0.03 0.28

inc 113 100 107 95 86 0.62 0.07 0.12 0.59

sao2 121 111 104 107 102 0.32 0.20 0.18 1.44

e64 127 127 127 127 127 0.20 0.00 0.27 5.18

o64 129 129 129 MO MO 0.24 0.00 - -

clip 137 110 59 85 75 0.55 0.38 0.14 0.56

bw 142 116 118 117 105 0.75 0.09 0.17 3.13

Z9sym 146 142 130 92 79 0.71 1.37 0.17 1.25

Z5xp1 154 82 54 105 88 0.73 0.25 0.14 1.21

rd84 159 126 120 88 63 0.92 0.91 0.22 0.49

9sym 202 185 158 152 124 0.82 3.93 0.98 13.00

duke2 283 256 257 240 225 0.94 2.81 2.38 36.36

apex2 289 183 145 128 91 1.44 1.12 217.08 993.16

ex4 407 337 378 343 326 1.15 0.10 88.36 201.52

misex3c 465 412 354 332 310 0.90 4.57 8.14 131.55

table5 558 489 530 476 447 3.26 7.07 15.04 394.09

apex5 665 618 601 TO TO 2.50 0.32 - -

spla 671 533 258 258 233 2.89 1.23 3.67 33.19

table3 696 611 651 584 532 7.75 48.69 23.87 985.63

ex5 769 351 227 273 199 4.30 1.90 5.57 94.33

misex3 841 607 474 325 288 7.72 5.57 27.20 242.39

cps 878 745 734 600 502 4.73 11.06 65.53 2234.62

apex1 886 795 840 TO TO 4.33 7.26 - -

alu4 1052 851 68 97 83 9.65 5.21 26.21 25.35

apex3 1114 1066 1114 MO MO 7.32 0.00 - -

pdc 1319 1107 278 267 234 17.79 1.63 6.80 44.72

seq 1378 1133 930 736 TO 11.99 119.49 3363.57 -

apex4 1743 1692 1743 1680 TO 18.69 0.00 549.87 -

ex1010 1747 1621 1747 1712 TO 37.67 0.00 986.74 -

Ratio 1.00 0.84 0.74 0.72 0.66 1.00 1.07 8.38 57.98

