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Abstract 
Binary Decision Diagrams (BDDs) are a canonical 

representation of logic functions, which allows for efficient 

computation in logic verification and optimization. Although 

the BDD size is sensitive to the variable ordering, reasonably 

good orderings can be found for many functions in hardware 

design. For other functions, such as multipliers, the BDD size 

is exponentially large for any ordering. On the other hand, 

dynamic reordering can significantly reduce the BDD size, 

but it is often time- and memory-consuming. 

This paper proposes a new simple BDD package without 

dynamic variable reordering, which is much faster than the 

conventional BDD package with reordering. By avoiding the 

reordering, a substantial amount of memory (40%) can be 

saved. The proposed BDD package is used in logic 

optimization with permissible functions and is applied to 

benchmarks synthesized from PLA. The results show that the 

AIG node count for some benchmarks is reduced by 40% at 

most and 10% on average while conventional logic synthesis 

tools, such as ABC, largely miss the optimization opportunity. 

Keywords 
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1. Introduction 
BDDs are a data structure, which represents a logic 

function canonically if the order of the variables is given [1]. 

Because of the canonicity, we can prove the equivalence of 

two circuits by building BDDs for their outputs. The circuits 

are equivalent if and only if the BDDs for their outputs are 

the same. 

The disadvantage of BDDs is that if the appropriate order 

of variables is not given, the number of nodes increases 

exponentially. We can often obtain a good variable ordering, 

but there are cases when the number of nodes is always 

exponential, for example, in the case of multipliers [2]. 

Dynamic variable reordering has been proposed to reduce 

the number of nodes. It dynamically changes the order of 

variables while building a BDD. To handle computations of 

the reordering, it requires much longer time and extra 

memory to store pointers among the nodes. 

In this paper, we implemented a simple BDD package 

without dynamic reordering to save memory. Because the 

bottleneck of building BDDs is memory, the reduction in 

memory usage leads to faster computation. 

We also implemented the transduction method [3] based 

on permissible functions for logic optimization using the 

simple BDD package. The permissible function represents 

don’t-cares of a node in the network. By managing 

permissible functions with BDDs, the memory requirements 

are reduced, and the optimization is performed faster. The 

transduction method removes unnecessary gates and wires 

while transforming the circuit using the permissible functions. 

In the experiment, we compared the performance of 

CUDD [4] and the proposed simple BDD package by 

building BDDs for integer multipliers and some benchmarks. 

Next, we compared the performance of circuit minimization 

using ABC [5] and using the proposed BDD-based 

transduction method. 

The paper is organized as follows. Section 2 introduces 

the new simple BDD package. Section 3 reviews the 

transduction method implemented using the package. Section 

4 describes the experimental setup. Section 5 shows the 

experimental results. Section 6 concludes the paper. 

2. A simple BDD package 

2.1. Basic components 
It was proved [2] that the number of nodes in the BDD 

representing an integer multiplier grows exponentially 

regardless of a variable order. The dynamic reordering is not 

needed for building BDDs of integer multipliers. 

We implemented a simple BDD package without any 

dynamic reordering. Because pointers connecting nodes 

during dynamic reordering can be saved, the new BDD 

package has less memory usage per node. The memory usage 

per node is shown in Table 1. The specified number of nodes 

are allocated before building BDDs in this package. Let 

nAlloc be that number. 

The variables of BDDs are the inputs of the circuits. They 

are denoted as "PI-variables" in this section. 

A BDD node is identified by a 31-bit BDD-variable and 

has a PI-variable stored as an 8-bit char, literals of two 

children (THEN and ELSE) stored as two 32-bit ints, and a 

multi-purpose mark stored as a 8-bit char. Note the maximum 

possible number of nodes is 231. 

A literal is a 32-bit int, which is a BDD-variable with a 

complemented attribute in the LSB. A literal with its LSB 1 

represents the complement of the node. The node with BDD-

variable 0 is constant-0. The node of the first input of the 

circuit has BDD-variable 1, its THEN is literal 1, and its 

ELSE is literal 0. A literal for ELSE must not be 

complemented to avoid duplication of literals. A node a is 

equivalent to the complement of the node b whose PI-variable, 

THEN, and ELSE are the same PI-variable, the complement 

of the same THEN, and the complement of the same ELSE as 

the node a respectively. 
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Table 1: Memory footprint of a node in the simple BDD 

package 

Purpose Type Size(Byte) 

PI-Variable char 1 

Children 2 × int 8 

Unique Table 2 × int 8 

Computed Table 3 × int 12 

Mark char 1 

Total  30 

 

In order to guarantee the uniqueness of the node, we use a 

hash table with linked lists. Each linked list stores BDD-

variables of the nodes found in the same bin. Before a new 

node is created, a hash value is calculated using its PI-variable 

and children. The linked list for the hash value is searched to 

check whether there is a node whose PI-variable and children 

are the same as the new node. If such a node is found, that 

node is used as the new node without actually creating the 

new node. Otherwise, a new node with a new BDD-variable 

is created and the new BDD-variable is inserted at the head 

of the linked list. In our implementation, the size of hash table 

to store the heads of linked lists is set equal to nAlloc. The 

size of the table to store the next elements in linked lists is 

also set equal to nAlloc. In total, the unique table requires two 

32-bit ints for each BDD node. 

The new package has a computed table to speed up the 

BDD construction. Let x, y, z, p, and q be literals. After 

building z as AND of x and y (x < y), a hash value is calculated 

using x and y. Three literals x, y, and z are stored at the address 

of the hash value in the computed table. Before building a 

BDD for AND of p and q (p < q), the computed table is 

checked at the address of hash value calculated from p and q. 

If there is an entry whose first and second values are equal to 

p and q respectively, its third value is used as the result of 

AND of p and q. We set the size of computed table equal to 

nAlloc, while each entry requires three 32-bit ints. 

2.2. Building BDDs and garbage collection 
For equivalence checking, we build a BDD for each 

output of the circuit. Because the outputs would have some 

overlap among their fanin cones, BDDs for all outputs are 

built at the same time. A BDD is built for each gate in a 

topological order from inputs to outputs of the circuit. Note a 

BDD for a gate means a BDD representing a logic function 

realized at the output of the gate. 

The BDD for a gate is no longer necessary after BDDs for 

all gates in fanout of the gate are built, unless its fanout 

includes the output of the circuit. It is called a dead BDD. A 

node in a dead BDD can be removed if the node is not used 

in any live (non-dead) BDD. 

The new package uses the mark/sweep garbage collection 

to remove the unnecessary nodes. When a BDD for a gate is 

built, the root node of the BDD is marked. That root node is 

unmarked after BDDs for all gates in fanout of the gate are 

built, if the output of the circuit is not in its fanout. Thus, all 

root nodes of live BDDs are always marked. When sweeping, 

all descendants of marked nodes are kept, the other nodes are 

removed. 

The sweeping is called when the number of nodes reaches 

nAlloc. The links in the linked lists of unique table are 

reconnected to skip the removed nodes. The computed table 

is initialized because updating all entries containing the 

removed nodes is time consuming. The PI-variable of the 

removed node is set to -1, and the minimum BDD-variable of 

removed nodes is memorized while sweeping. The BDD-

variable of a new node is set to the minimum BDD-variable 

of removed nodes after the sweeping. The next minimum 

BDD-variable of removed nodes can be found by searching 

the node with PI-variable -1. 

If building a BDD for a gate runs out of nodes even after 

the sweeping, the reallocation is performed with nAlloc 

doubled (nAlloc:=2×nAlloc). If nAlloc becomes larger than 

231, the BDD construction is terminated. The unique table 

must be rehashed after the reallocation. The new hash value 

for a node is whether the same or increased by half of nAlloc 

as the previous one because the hash value is calculated in 

modulo nAlloc. Each linked list is walked and the nodes with 

the hash value increased are moved to the new linked list, 

while the other nodes remain in the same linked list. 

3. The transduction method using CSPF with BDD 
We implemented a circuit minimization method called the 

transduction method using the simple BDD package. In order 

to make it easy to apply the transduction method, it is 

assumed that all gates in the circuit are NAND gates.  

Here we explain the terminology in this section. A 

primary input/output (PI/PO) is an input/output of the circuit. 

Let Fi be a logic function realized at the output of a gate i or 

at a PI/PO i as shown in Figure 1. The inputs of a function are 

PIs. A PI pattern is a pattern of PIs’ values. For a function X, 

X(V) is a value of X for a PI pattern V. For example, the value 

of Fi(V1) for a PI pattern V1={PI1=0, PI2=0, PI3=1} is 

shown in Figure 2. ci,j is a connection from a gate or PI i to a 

gate or PO j. FIi is a set of all gates and PIs in fanin of gate i 

   
Figure 1: Logic functions in a circuit. 

 

  
Figure 2: The values of logic functions in a circuit for a 

PI pattern V1. 

 



and FOi is a set of all gates and POs in fanout of gate i. In 

other words, FIi is a complete set of gate or PI  j where cj,i 

exists and FOi is a complete set of gate or PO j where ci,j exists. 

FICi/FOCi is a set of all gates in fanin/fanout cone of gate i. 

3.1. The permissible function 
The permissible function is a function which outputs 0, 1, 

or * (don’t-care). A permissible function is calculated for 

each gate and each connection in the circuit. Let Gi be a 

permissible function at the output of a gate i and Gi,j be a 

permissible function at a connection ci,j. Both Gi and Gi,j are 

initially set equal to Fi for every gate i and every connection 

ci,j. When we find a PI pattern V where the output of gate i or 

ci,j is don’t-care, Gi(V) or Gi,j(V) is made to be *. Note 

Gi(V)/Gi,j(V) is a value of Gi/Gi,j for a PI pattern V. 

In the transduction method, the circuit is transformed in 

the way that Fi is included in Gi for any gate i even after the 

transformation. Here "Gi includes Fi" means that Fi(V) is 

equal to Gi(V) for any PI pattern V where Gi(V) is not *. 

There have been two sets of permissible functions 

proposed [3]. One is the maximum set of permissible 

functions (MSPF), the other is the compatible set of 

permissible functions (CSPF). 

MSPF represents a complete set of don’t cares. It is 

calculated the following way. Note a logic operation between 

functions is performed as a logic operation for every PI 

pattern. For example, "a function Z is AND of functions X 

and Y" means Z(V) is AND of X(V) and Y(V) for every PI 

pattern V. 

1. For each gate i in a topological order from POs to PIs, 

do 2 and 3. 

2. Calculate AND' (Table 2) of Gi,j for every gate or PO j 

in FOi, and the result is assigned to Gi. 

3. For each gate or PI j0 in FIi, do 4 and 5. 

4. Calculate AND of Fj1 for every gate or PI j1 in FIi 

except j0=j1. Let X be the result. 

5. Calculate @ (Table 3) of Gi and X, and the result is 

assigned to Gj0,i. 
 

2 follows that the output of a gate is don't-care if all output 

connections of the gate are don't-care. 4 and 5 follow that an 

input connection of a gate is don't-care if the output of the 

gate is don't-care or at least one of the other input connections 

is 0. Otherwise, the input connection must be the complement 

of the output of the gate. Note a gate is a NAND gate and the 

value of Gi cannot be 0 if there is an input connection whose 

value is 0 (X=0). 

The defect of MSPF is that we must recalculate the 

permissible functions after some transformations of the 

circuit. Consider a gate i which has 2 input connections: cj0.i 

and cj1,i. For a PI pattern V where both Fj0(V) and Fj1(V) are 0, 

both Gj0,i(V) and Gj1,i(V) are made to be * in MSPF. If Fj0(V) 

changes from 0 to 1 in a transformation of the circuit, we must 

change Gj1(V) from * to 0 and recalculate permissible 

functions according to that change. 

In CSPF, we don't have to recalculate permissible 

functions even after any transformation of the circuit within 

the permissible functions, while some don't-cares are missed. 

All gates and PIs in the circuit are ranked based on some 

heuristics before calculation of CSPF. Let Ri be the rank for 

a gate or PI i. For a PI pattern V where Gi(V) is 1, Gj(V) is kept 

at 0 where a gate or PI j is in FIi, Fj(V) is 0, and Rj is larger 

than Rj0 for any other gate or PI j0 in FIi where Fj0(V) is 0.  

For example, Figure 3 shows MSPF and CSPF for the same 

connections. All connections are made to be * in MSPF, on 

the contrary the third connection is kept at 0 in CSPF. 

CSPF is calculated in the following way. 1’ and 2’ are the 

same as 1 and 2 in the calculation of MSPF, while 3’-6’ 

replace 3-5. 

1'. For each gate i in a topological order from POs to PIs, 

do 2’ and 3’. 

2'. Calculate AND' (Table 2) of Gi,j for every gate or PO j 

in FOi, and the result is assigned to Gi. 

3'. For each gate or PI j0 in FIi, do 4'-6'. 

4'. Calculate AND of Fj1 for every gate or PI j1 in FIi 

where Rj1 is larger than Rj0. Let X be the result. (If 

there is no such j1, X is constant 1). 

5'. Calculate @ (Table 3) of Gi and X. Let Y be the result. 

6'. Calculate # (Table 4) of Y and Fj0, and the result is 

assigned to Gj0,i. 

 

In 4', the range of j1 is restricted to the input connections 

from gates or PIs with larger rank than the rank of the gate or 

PI j0. Thus, the input connection whose source has the largest 

rank in the sources of the input connections whose values are 

Table 2: The truth table of AND'. 

AND' 0 1 * 

0 0 0 0 

1 0 1 1 

* 0 1 * 

 

Table 3: The truth table of @. 

@ 
X 

0 1 

Gi 

0 INVALID 1 

1 * 0 

* * * 

 

Table 4: The truth table of # 

# 
Fj0 

0 1 

Y 

0 0 * 

1 INVALID 1 

* * * 

 

 
Figure 3: The difference between MSPF and CSPF. 
 



0 is not treated as don't-care. If the output of the gate is 1 and 

an input connection is 1, the input connection is don't-care 

because there must be another input connection whose value 

is 0. 6' is based on this. Note the condition that the output is 0 

and the input connection is 0 never happens. 

3.2. Implementation of CSPF 
The transduction method changes the structure of the 

circuit within permissible functions in order to reduce the 

number of gates and wires. Because functions for gates and 

connections are changed many times and the recalculation of 

MSPF is time-consuming, we decided to use CSPF. 

A logic function in the circuit is represented by a BDD. 

Different from equivalence checking, we need all logic 

functions in the circuit not only logic functions at POs. These 

BDDs are built before the calculation of CSPF. 

While calculating CSPF, we build another BDD 

representing * for each permissible function. Let G_DCi and 

G_DCi,j be the BDDs representing * in Gi and Gi,j respectively. 

For any PI pattern V where Gi(V) is *, G_DCi(V) is 1. For any 

other PI pattern Vn, G_DCi(Vn) is 0. The same relation holds 

between Gi,j and G_DCi,j.  

Code 1 is a pseudo code of the calculation of CSPF. 

CSPF() corresponds to 1’, CSPF-gate( gate i ) corresponds to 

2’, and CSPF-fanin( gate i ) corresponds to 3’-6’ in the 

calculation of CSPF explained in the previous section. The 

operations AND’, @, and # are decomposed into normal logic 

operations with G_DCi or G_DCi,j. 

CSPF() removes redundant gates and wires while 

calculating CSPF. A wire whose permissible function 

consists of only 1 and * is redundant because if it is set to 

always 1, it never affects the output of the gate. If all input 

connections of a gate are removed, the output of the gate is 

replaced by constant 0 and the gate is removed. The gates 

without fanouts are also removed. At the end of CSPF(), logic 

functions for all gates are updated to reflect the removal of 

redundant gates and wires. Note the logic functions at the 

PIs/POs don't change. 

The rank is calculated before CSPF() and is not updated 

during CSPF(). A connection from a gate or PI with smaller 

rank has more chances to have * in its permissible function. 

To reduce the number of gates, the rank of gate harder to be 

removed is set larger as follows. These are written in the 

descending order of priority. 

1. The rank of a PI is larger than the rank of any gate. 
2. The rank of a gate with larger number of fanout is 

larger.  
3. The rank of a gate whose output has a logic function 

output 0 more frequently is larger. 

4. The rank becomes larger in a topological order from 

POs to PIs. 
 

3.3. The transduction method 
Just calculating CSPF can reduce the number of gates and 

wires, but the transduction method transforms the circuit 

within permissible functions to reduce more. 

We implemented 2 methods that allow us to rewire the 

network. The basic idea is to add the output of a gate or PI j 

to the input of another gate i where the connectable condition 

(1) is satisfied and to update permissible functions. The 

connectable condition is that Fi is included in Gi  even after 

adding a new connection cj,i. For a PI pattern V where Fi(V) is 

1, Fi(V) doesn't change by any new cj,i. For any other PI 

pattern Vn, Fi(Vn) changes by a new cj,i only if Fj(Vn) is 0. 

Therefore, a new cj,i can be created when the condition 

NOR(Fi(V), Fj(V))→G_DCi(V) holds for any PI pattern V, and 

this is formulated as (1). 

OR(Fi, Fj, G_DCi) = constant 1               (1) 

The rank is not always recalculated after the 

transformation of the circuit to save the processing time. It is 

updated only when we call Eager-CSPF, which updates the 

rank for all gates and calls CSPF() iteratively until there is no 

reduction in the number of gates and wires. 

 As the flow of optimization, we build BDDs for all gates, 

call Eager-CSPF, and apply the transduction method. Note 

redundant gates and wires are removed while updating CSPF. 

The pseudo code of our first transduction method "Weak-

reduce" is shown in Code 2. It tries all combinations of gates 

i and j in an exhaustive way, while CSPF is updated for the 

input connections of the gate i when the gate or PI j is added 

to its input. If no wire is removed in updating CSPF, the added 

input connection from the gate j is removed. 

The second method "Eager-reduce" can be found in Code 

3 with modification from Code 2 shown in red. When adding 

a connection from gate or PI j to gate i, some wires in fanin 

cone of gate i may become redundant and this method 

removes them. Moreover, it calls Eager-CSPF after each 

transformation of circuit. 

CSPF-fanin( gate i ) { 

  for each gate or PI j0 in FIi { 

    A:=constant 1; 

    for each gate or PI j1 in FIi where Rj1 > Rj0 

{ A:=AND(Fj1, A); } 

B:=AND(Fi, NOT(A)); // @ 

C:=OR(G_DCi, B); // @ 

D:=AND(Fi, Fj0); // # 

G_DCj0,i:=OR(C, D); // # 

if OR(Fj0, G_DCj0,i) is constant 1 { Remove cj0,i; } 

} 

if FIi is empty { Replace gate i by constant 0; } 

} 

CSPF-gate( gate i ) { 

  if FOi is empty { Remove gate i; return; } 

  A:=constant 1; 

  for each gate or PO j in FOi  

    { A:=AND(G_DCi,j, A); } // AND’ 

  G_DCi:=A; 

} 

CSPF() { 

  For each gate i in a topological order from POs to 

PIs { CSPF-gate( i ); CSPF-fanin( i ); } 

For each gate i in a topological order from PIs to 

POs { Update Fi; } 

} 

Code 1: A pseudo code of the calculation of CSPF. 

 



When the method runs out of BDD nodes during its 

procedure, it removes all BDDs, builds BDDs for the current 

circuit, and calls CSPF(). This is called Refresh. If Refresh 

fails to build the BDDs or calculate CSPF due to the shortage 

of BDD nodes, more nodes are allocated, or the optimization 

is terminated. 

4. Experimental setup 
We conducted 3 experiments. In the first and second 

experiments, we compared the simple BDD package against 

CUDD [4]. The memory and the runtime were measured. To 

measure significant memory usage, we subtracted from the 

measured value the memory required to store the BDD of 

constant 0 function: 9 MB for the simple BDD package and 

30 MB for CUDD. 

The targets of first experiment were BDDs of 

combinational array multipliers from 8×8 to 18×18 bits 

generated by ABC. It is known that the number of BDD nodes 

needed to represent an integer multiplier is the smallest when 

the order of the variables is in the order of a4, b4, a3, b3, a2, 

b2, a1, b1 on 4×4 bits multiplier for example. This order was 

used in our experiments. Note that both our implementation 

and CUDD cannot build BDD of the 20×20 bits multiplier 

because the number of BDD nodes exceeds 231. 

CUDD allows the user to disable dynamic variable 

reordering, and we measured the performance of CUDD 

without dynamic reordering in the first experiment. Our 

program requires the initial number of allocated BDD nodes 

as a power of 2 (nAlloc=2n) and we measured its performance 

with 3 different values of n: the minimum n where 2n is more 

than the number of PIs (the reallocation will be performed 

when building BDD), the minimum n where the BDDs of 

each multiplier are built without reallocation, and 31 (231 

BDD nodes) which is the upper limit of the program. 

The second experiment was a comparison against CUDD 

with dynamic variable reordering. We experimented on 

multi-level combinational circuits with 20-200 inputs and less 

than 2000 gates in LGSynth91 benchmark [6]. We measured 

how the number of BDD nodes affects memory usage and 

runtime. 

The third experiment was a performance comparison of 

the network optimization methods. Our implementation was 

compared with ABC [5]. We compared the following 4 

method: an ordinary optimization by ABC, a script of ABC 

optimization commands which uses don't-cares in terms of 

PIs, the our first transduction method "Weak-reduce", and the 

combination of "Weak-reduce" and the second one "Eager-

reduce". 

The ordinary optimization by ABC uses commands "dc2", 

"resyn", "resyn2", and "resyn3". We repeatedly applied these 

commands in the following policy: 1. Apply “dc2” 10 times. 

If the number of AIG nodes is reduced, do 1 again. 2. If the 

number of AIG nodes is no longer reduced even if dc2 is 

applied 10 times,  apply "resyn", 10 times of "dc2", "resyn2" 

10 times of "dc2", "resyn3", and 10 times of "dc2". If the 

number of AIG nodes is reduced after those commands, 

return to 1. Otherwise, finish the optimization. 

Another ABC optimization uses a script "if -K 6 -m; mfs2 

-W 1000000 -F 1000000 -D 1000000 -L 1000000 -C 1000000 

-e; strash; compress2rs". We applied this script 300 times and 

measured the minimum number of AIG nodes. Note that this 

command doesn't cause monotonic decrease in the number of 

nodes. We report only the runtime needed to reach the 

network with the minimum number of AIG nodes. 

Command "if" is a simple technology mapper, which 

transforms AIG into a network of logic nodes. With option, 

Weak-reduce() { 

for each gate i in a topological order from POs to PIs 

{ 

for each gate or PI j in a topological order from PIs 

to POs { 

if (j is i) or (j is in FIi) or (j is in FOCi) 

  { continue; } 

if OR(Fi, Fj, G_DCi) is constant 1 { 

Create cj,i; 

CSPF-fanin( i ); 

if the number of gates and wires is not reduced, 

{ remove cj,i; } 

        Update Fi; 

}} 

CSPF-fanin( i ); 

for each gate j in FICi in a topological order from 

POs to PIs { CSPF-gate( j ); CSPF-fanin( j ); } 

for each gate j in a topological order from PIs to 

POs { Update Fj; } 

} 

Code 2: The first transduction method: Weak-reduce. 

 

Eager-reduce() { 

for each gate i in a topological order from POs to PIs 

{ 

for each gate or PI j in a topological order from PIs 

to POs { 

if (j is i) or (j is in FIi) or (j is in FOCi) 

  { continue; } 

if OR(Fi, Fj, G_DCi) is constant 1 { 

Create cj,i; 

CSPF-fanin( i ); 

for each gate k in FICi in a topological order 

from POs to PIs { CSPF-gate( k ); CSPF-fanin( k ); } 

if the number of gates and wires is not reduced { 

remove cj,i; 

Update Fi; // necessary in case of Refresh 

for each gate k in FOCi in a topological order 

from PIs to POs { Update Fk; } 

CSPF-fanin( i ); 

for each gate k in FICi in a topological order 

from POs to PIs { CSPF-gate( k ); CSPF-fanin( k ); } 

        } else { 

          for each gate k in a topological order from PIs 

to POs { Update Fk; } 

Call Eager-CSPF; 

        } 

}}} 

Code 3: The second transduction method : Eager-

reduce. 

 



"-K 6" it maps AIG into 6-input LUT network while option "-

m" enables cut minimization by removing vacuous variables. 

Command "mfs2" is the SAT-based optimization used with 

options to make sure it works on a complete circuit (and not 

just on a window). It is a good match with CSPF-based 

optimization, which uses BDDs in terms of PIs. Option "-e" 

enables high-effort resubstitution. Finally, "compress2rs" is 

an old AIG optimization script, which performs rewriting, 

refactoring, balancing, and truth-table-based resubstitution. 

 The third method using "Weak-reduce" was executed as 

follows: First, we calculate the functions in the whole circuit 

and call Eager-CSPF. Next, we repeatedly apply "Weak-

reduce" until there is no improvement. Then we change the 

structure of the circuit by "strash". Again, we read the circuit, 

calculate the function, perform Eager-CSPF, and apply 

"Weak-reduce" repeatedly. We did this iteratively until there 

is no reduction. Our program allocated 221 BDD nodes 

initially and reallocated 231 BDD nodes when it runs out of 

BDD nodes during Refresh. The optimization was terminated 

when it required more than 231 BDD nodes (out of memory) 

or took more than 1 hour (out of time). 

The last method, the combination of "Weak-reduce" and 

"Eager-reduce", was performed by doing the procedure 

explained above for "Weak-reduce" and the same for "Eager-

reduce". This was also repeated until there was no reduction. 

The experiment was conducted on the circuits synthesized 

from PLA (Programmable Logic Array) format [7] 

benchmarks in LGSynth91. The synthesis from PLA was 

Table 5: The memory usage and runtime to build BDDs of multipliers using the simple BDD package and CUDD without 

dynamic variable reordering. Both package reallocated BDD nodes during the computation incrementally. 

Multiplier The simple BDD CUDD 

Bit AIG nodes BDD nodes Mem (MB) Runtime (sec) Mem (MB) Runtime (sec) 

8×8 424 19,830 1 0.02 4 0.02 

10×10 690 184,449 9 0.18 44 0.34 

12×12 1,020 1,709,060 76 2.92 160 6.83 

14×14 1,414 15,877,043 502 43.71 1426 84.64 

16×16 1,872 147,590,995 7722 478.29 13266 1071.96 

18×18 2,394 1,374,416,471 61441 4991.34 117346 13682.34 

Ratio 0.40 0.55 1.00 1.00 

 

Table 6: The memory usage and runtime to build BDDs of multipliers using the simple BDD package. The simple BDD 

package initially allocates 215, 218, 221, 224, 228, and  231 BDD nodes for the minimum number of BDD nodes without 

reallocation. 

Multiplier The minimum number of BDD 

nodes without reallocation 

231 BDD nodes allocated initially 

Bit Mem (MB) Runtime (sec) Mem (MB) Runtime (sec) 

8×8 0 0.01 32749 7.92 

10×10 7 0.13 32775 8.31 

12×12 59 2.14 32860 10.23 

14×14 479 35.57 33634 37.98 

16×16 7679 303.27 41072 222.21 

18×18 61430 3323.45 61430 3323.45 

Ratio 0.32 0.36 1520.99 70.47 

 

 
Figure 4: The ratio of memory and the number of BDD 

nodes used in the simple BDD package over CUDD with 

dynamic variable reordering. 

 
Figure 5: The ratio of runtime and the number of BDD 

nodes used in the simple BDD package over CUDD with 

dynamic variable reordering. 

 



performed by "fx", which is the traditional fast_extract 

algorithm used to transform PLA into a multi-level circuit [8]. 

Ratio in the tables was calculated by dividing a value for 

each benchmark and averaging the quotients in all 

benchmarks. 

All experiments were done by single thread in the 

following environment: 

- CPU: Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz 

- Memory: 512 GB 

- OS: OpenSUSE Tumbleweed 20190327 

5. Experimental results 
The result of the first experiment is shown in Table 5 and 

6. In Table 5, the simple BDD package initially allocated 25 

BDD nodes for 8×8 to 14×14, and 26 BDD nodes for 16×16 

and 18×18 bit multipliers and reallocated doubled number of 

BDD nodes incrementally up to 215, 218, 221, 224, 228, and  231 

BDD nodes for 8×8, 10×10, 12×12, 14×14, 16×16, and 18×18 

bit multiplier respectively. On the other hand, in Table 6, the 

simple BDD package allocated those numbers of BDD nodes 

or 231 BDD nodes initially and finished building BDDs 

without reallocation.  

The simple BDD package was around 2 times faster than 

CUDD and used only 60% memory compared to CUDD even 

if it does the reallocation. The reallocation took around 30% 

of time compared to the results of the simple BDD package 

without reallocation. For 14×14 bits and larger multipliers, to 

initially allocate 231 BDD nodes was the fastest in the results. 

A good way to use the new package is to start from the small 

number of BDD nodes with incremental reallocation and to 

jump to 231 BDD nodes if it requires more than 221 BDD 

nodes, while the numbers depend on the machine. 

Figure 4 and 5 show the rate of memory and runtime 

increased by the absence of dynamic variable reordering in 

the second experiment in double logarithmic graph. Figure 5 

shows only the points where both packages took more than 0 

second. The ratio of memory was linearly increased on the 

ratio of the number of BDD nodes, and CUDD with dynamic 

reordering used smaller size of memory than the simple BDD 

package when the ratio of BDD nodes was more than 10x. 

The runtime also increased in the same way while CUDD 

takes time for reordering. 

 Table 7 is the results of the third experiment which is 

comparing the results of optimization. Our method 

(combination of "Weak-reduce" and "Eager-reduce") reduced 

the number of AIG nodes 20% more than ordinary ABC 

optimization and 10% more than the ABC script using "mfs2" 

on average. 

As is shown in [9], these methods using don't-care in terms 

of PIs were very effective for alu4, where AIG node count is 

around 20 times smaller than the original.  

6. Conclusion 
We implemented a simple BDD package without variable 

reordering and used it in the optimization program based on 

the transduction method. 

When evaluating the BDD package alone, it was found 

that memory is reduced by 40% and the runtime is 2x2 faster, 

compared to CUDD without dynamic variable reordering if 

the good variable ordering is given. We also found that 

memory and runtime improvements are expected against 

CUDD with dynamic reordering if the increase of BDD nodes 

without dynamic reordering is less than 10x. 

When experimenting on the optimization methods, our 

implementation was possible to achieve substantial AIG node 

reduction (about 10-20%) compared to ABC although it was 

50x slower.  

The program is available at [10]. 
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 Table 7: The number of AIG nodes and runtime in a comparison of the optimization methods. ABC1 is the ordinary 

optimization by ABC. ABC2 is the ABC optimization with a script using if, mfs2, and compress2rs. Weak uses the first our 

implementation of transduction method "Weak-reduce". Combo uses both of our implementations "Weak-reduce" and 

"Eager-reduce". MO or TO means out of memory or time respectively. Ratio is calculated excluding benchmarks where 

MO or TO happened. The minimum number of AIG nodes is highlighted in red for each benchmark with reduction. 

testcase AIG nodes Optimized AIG nodes Runtime (sec) 

ABC1 ABC2 Weak Combo ABC1 ABC2 Weak Combo 

xor5 12 12 12 12 12 0.09 0.00 0.00 0.00 

con1 17 16 17 16 16 0.14 0.00 0.00 0.01 

t481 25 25 25 25 25 0.15 0.00 0.00 0.01 

rd53 36 30 26 29 24 0.14 0.04 0.00 0.03 

misex1 50 48 45 34 34 0.19 0.05 0.02 0.06 

squar5 56 41 44 50 49 0.34 0.05 0.02 0.08 

cordic 65 53 51 54 54 0.27 0.03 0.04 0.68 

vg2 73 73 70 70 68 0.19 0.11 0.19 1.75 

b12 74 51 52 63 60 0.36 0.13 0.03 0.24 

misex2 74 74 74 71 71 0.18 0.00 0.06 0.26 

rd73 94 63 72 70 61 0.25 0.35 0.09 0.31 

5xp1 98 72 62 74 58 0.44 0.22 0.03 0.28 

inc 113 100 107 95 86 0.62 0.07 0.12 0.59 

sao2 121 111 104 107 102 0.32 0.20 0.18 1.44 

e64 127 127 127 127 127 0.20 0.00 0.27 5.18 

o64 129 129 129 MO MO 0.24 0.00 - - 

clip 137 110 59 85 75 0.55 0.38 0.14 0.56 

bw 142 116 118 117 105 0.75 0.09 0.17 3.13 

Z9sym 146 142 130 92 79 0.71 1.37 0.17 1.25 

Z5xp1 154 82 54 105 88 0.73 0.25 0.14 1.21 

rd84 159 126 120 88 63 0.92 0.91 0.22 0.49 

9sym 202 185 158 152 124 0.82 3.93 0.98 13.00 

duke2 283 256 257 240 225 0.94 2.81 2.38 36.36 

apex2 289 183 145 128 91 1.44 1.12 217.08 993.16 

ex4 407 337 378 343 326 1.15 0.10 88.36 201.52 

misex3c 465 412 354 332 310 0.90 4.57 8.14 131.55 

table5 558 489 530 476 447 3.26 7.07 15.04 394.09 

apex5 665 618 601 TO TO 2.50 0.32 - - 

spla 671 533 258 258 233 2.89 1.23 3.67 33.19 

table3 696 611 651 584 532 7.75 48.69 23.87 985.63 

ex5 769 351 227 273 199 4.30 1.90 5.57 94.33 

misex3 841 607 474 325 288 7.72 5.57 27.20 242.39 

cps 878 745 734 600 502 4.73 11.06 65.53 2234.62 

apex1 886 795 840 TO TO 4.33 7.26 - - 

alu4 1052 851 68 97 83 9.65 5.21 26.21 25.35 

apex3 1114 1066 1114 MO MO 7.32 0.00 - - 

pdc 1319 1107 278 267 234 17.79 1.63 6.80 44.72 

seq 1378 1133 930 736 TO 11.99 119.49 3363.57 - 

apex4 1743 1692 1743 1680 TO 18.69 0.00 549.87 - 

ex1010 1747 1621 1747 1712 TO 37.67 0.00 986.74 - 

Ratio 1.00 0.84 0.74 0.72 0.66 1.00 1.07 8.38 57.98 

 


