IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

1907

Fast Algebraic Rewriting Based on And-Inverter Graphs

Cunxi Yu

, Student Member, IEEE, Maciej Ciesielski, Senior Member, IEEE,

and Alan Mishchenko, Senior Member, IEEE

Abstract—Constructing algebraic polynomials using computer algebra
techniques is believed to be state-of-the-art in analyzing gate-level arith-
metic circuits. However, the existing approach applies algebraic rewriting
directly to the gate-level netlist, which has potential memory explosion
problem. This paper introduces an algebraic rewriting technique based on
the and-inverter graph (AIG) representation of gate-level designs. Using
AIG-based cut-enumeration and truth table computation, an efficient
order of algebraic rewriting is identified, resulting in dramatic simpli-
fications of the polynomial under construction. An automatic approach,
which further reduces the complexity of algebraic rewriting by handling
redundant polynomials, is also proposed.

Index Terms—And-invert graphs (AIGs), computer algebra, computer
arithmetic, formal verification.

I. INTRODUCTION

Importance of arithmetic verification problem grows with an
increased use of arithmetic modules in embedded systems to perform
computation-intensive tasks in multimedia, signal processing, and
cryptography applications. One of the remaining challenges in for-
mal verification is formal verification of gate-level integer arithmetic
circuits, such as multipliers, used extensively in those applications.
Despite a considerable progress in verification of random and con-
trol logic, advances in formal verification of arithmetic designs have
been slow. This can be attributed to the difficulty in the efficient
modeling of arithmetic circuits and datapaths without resorting to
computationally expensive Boolean methods, such as binary decision
diagram (BDD), satisfiability, satisfiability modulo theories (SMT),
etc., that require “bit blasting,” i.e., flattening the design to a bit-
level netlist. However, recently, formal techniques based on computer
algebra have been successfully applied to the verification problems
of gate-level arithmetic circuits.

Computer algebra techniques, which construct the polynomial rep-
resentation of a gate-level arithmetic circuit, are believed to offer
best solution for analyzing arithmetic circuits [1]-[5]. These works
address the verification problems of Galois field arithmetic [2] and
integer arithmetic implementations, including abstractions and reverse
engineering [1], [3]-[5]. The verification problem is typically formu-
lated as a proof that the implementation satisfies the specification,
which is solved by polynomial division or algebraic rewriting. The
results show that the computer algebra techniques provide sev-
eral orders of magnitude in performance improvement. The main

Manuscript received February 18, 2017; revised June 2, 2017 and October
2, 2017; accepted November 1, 2017. Date of publication November 13,
2017; date of current version August 20, 2018. This work was supported
by the National Science Foundation under Grant CCF-1319496 and Grant
CCF-1617708. The work of A. Mishchenko was supported by NSA grant
Enhanced Equivalence Checking in Crypto-Analytic Applications. This paper
was recommended by Associate Editor J. Cortadella. (Corresponding author:
Cunxi Yu.)

C. Yu and M. Ciesielski are with the Department of Electrical and Computer
Engineering, University of Massachusetts, Amherst, MA 01003 USA (e-mail:
ycunxi@umass.edu; xiangyuzhang @umass.edu; ciesiel @ecs.umass.edu).

A. Mishchenko is with EECS Department, University of California at
Berkeley, Berkeley, CA 94720 USA (e-mail: alanmi@berkeley.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2772854

advantage of computer algebra method in verifying arithmetic cir-
cuits is that it provides a large number of polynomial reductions
by eliminating nonlinear terms. However, the size of those terms
could explode exponentially by rewriting its variables if they were
not eliminated at the right time (order).

The order of rewriting or, equivalently, performing polynomial
divisions has a significant impact on the performance of the com-
puter algebra techniques [5], [6]. However, these techniques may fail
to find efficient rewriting order if they are applied directly to the
gate-level netlist. Yu et al. [6] compared the performance of algebraic
methods of combinational gate-level multipliers when different topo-
logical orders are used. It showed that an efficient topological order
may not exist in the post-synthesized gate-level netlist. Even if such
an order exists, it may be difficult to be identified because of the poly-
nomial reductions hidden in the complex standard cells. In addition,
redundant polynomials detected from combinational and sequential
arithmetic circuits can provide significant polynomial reductions [7].
However, detecting such polynomials is limited by manual operations
and depends on the structure of the circuits.

The approach presented in this paper aims at improving the effi-
ciency of algebraic rewriting in the context of arithmetic verification.
It addresses the problem by using a compact and uniform representa-
tion of the Boolean network called the and-inverter graph (AIG) [8].
Instead of directly applying algebraic rewriting to the gate-level
netlist, it is applied to an AIG. In addition, this approach allows one
to automatically generate redundant polynomials, which significantly
reduce the complexity of algebraic rewriting.

II. BACKGROUND
A. Formal Verification of Arithmetic Circuits

Verification of arithmetic circuits is performed using a varia-
tion of combinational equivalence checking (CEC) referred to as
arithmetic CEC (ACEC) [5]. Several approaches have been applied
to equivalence check an arithmetic circuit against its functional spec-
ification, including canonical diagrams, satisfiability (SAT) theories,
theorem proving, etc. Different variants of canonical, graph-based
representations have been proposed, including BDDs, binary moment
diagrams [9], Taylor expansion diagrams [10], and other hybrid dia-
grams. While BDDs have been used extensively in logic synthesis,
their application to verification of arithmetic circuits is limited by the
prohibitively high memory requirements for complex arithmetic cir-
cuits, such as multipliers. Boolean SAT and SMT solvers have also
been applied to solve ACEC problems [11]. Recently, several state-
of-the-art SAT and SMT solvers have been applied to those problems,
including MiniSAT [12], Lingeling [13], Boolector [14], Z3 [15], etc.
However, the complexity of checking equivalence of large arithmetic
circuits is extremely high [6], [16]. Alternatively, the problem can
be modeled as checking equivalence against the arithmetic function,
e.g., checking whether the binary encoded output function is equiva-
lent to the expected arithmetic function using bit-vector formulation
of SMT. However, the complexity of this method is the same as the
CEC method [6].

0278-0070 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8840-1540

1908

B. Computer Algebra Approaches

In computer algebra approach, the verification problem is typically
formulated as a proof that the implementation satisfies the speci-
fication [1]-[5]. This task is accomplished by performing a series
of divisions of the specification polynomial by a set of polynomi-
als, representing components that implement the circuit. Techniques
based on Grobner Basis demonstrate that this approach can effi-
ciently transform the verification problem into membership testing
of the specification polynomial in the ideals [2], [4]. All of these
works impose a lex term order on the implementation polynomials
by performing reverse topological traversal of the circuit, which auto-
matically renders the set of implementation polynomials a Groebner
basis. Some of Lv et al. [2] and Farahmandi and Alizadeh [4] used
Gaussian elimination, rather than explicit polynomial division, to
speed up the reduction process. To reduce the number of polynomi-
als, [4] precomputes polynomials corresponding to fanout-free logic
cones. A different approach to arithmetic verification of gate-level
circuits has been proposed using the algebraic rewriting technique,
which transforms the polynomial at the primary outputs to a polyno-
mial in terms of primary inputs (PIs) [1], called function extraction.
This approach has successfully been applied to 512-bit multipliers,
due to a large number of polynomial reductions gained by rewriting
a binary encoded polynomial of the outputs [6]. A similar approach
has been applied to arithmetic CEC [5], with a novel approach of
detecting and eliminating vanishing monomials, i.e., products of vari-
ables which evaluate to zero due to reconvergent fanout. Although
those works showed good performance in solving arithmetic verifica-
tion problems, they still suffer from potential polynomial (memory)
explosion problem since they are applied to the original gate-level
netlist.

C. Boolean Network

Boolean network is a directed acyclic graph with nodes repre-
senting logic gates and directed edges representing wires connecting
the gates. AIG is a combinational Boolean network composed of
two-input AND-gates and inverters [8]. In an AIG, each node has
at most two incoming edges. A node with no incoming edges is
a PI. Primary outputs are represented using special output nodes.
Each internal node in the AIG represents a two-input AND function.
Based on DeMorgan’s rule, the combinational logic of an arbitrary
Boolean network can be transformed into an AIG [17], with the prop-
erly labeled edges to indicate the inversion of the signals. AIGs have
been extensively used in logic synthesis, technology mapping [17]
and formal verification [18].

AIGs have been used to detect unobserved Boolean functions such
as multiplexer function in an arbitrary gate-level circuits. This method
is based on computing a Cut in the AIG. A cut C of node n is a set
of nodes of the network called leaves, such that each path from Pls
to n passes through the leaf nodes. Node n is the root of a Cut. A
Cut is K-feasible if the number of leaves does not exceed K. The cut
function is the function of node n in terms of the cut leaves. An AIG
node n in an AIG structure that represents a Boolean function F, is
called an F-node. Each node is an AND function and the edges indi-
cate the inversions of Boolean signals.1 An example of identifying
XOR functions embedded in the AIG is shown in Fig. 1. The AIG
shown in Fig. 1(b) represents a sub-circuit described in Fig. 1(a). It
includes a three-feasible Cut of node 9 and a two-feasible Cut of
node 6, among other possible three-feasible cuts. Let the function
of the AIG node with index x be iy. The function of node 6 is i{
@ ip, and the function of node 9 is iy @ i» @ i3. Hence, node 6

'In Fig. 1, the dash edges are inversion signals, e.g., is = i] 2, i5 = iji2.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

ig

invl g0(.a(i3),.O(n5));

nand2 g1(.a(i2),.b(i1),.0(n6));

invi g2(a(i1),.0(n7));

invl g3(a(i2),.0(n8));

nand2 g4(.a(n8),.b(n7),.0(n9));
nand2 g5(.a(n9),.b(n6),.0(n10));
aoi21 g6(.a(n9),.b(né),.c(i3),.O(n12));
nor3 g7(.a(ns),.b(n11),.c(n12).0(i9));

iy iy i3

(a) (b) (c)

Fig. 1. XOR3 design. (a) Post-synthesized gate-level netlist. (b) AIG of the
synthesized netlist. (c) Extracted two XOR2 functions (nodes 6 and 9) and
one XOR3 function (node 9).

TABLE I
BOOLEAN AND ALGEBRAIC MODELS OF INYV,
AND, XOR, AND MAJORITY FUNCTIONS

Operation Boolean Model Algebraic Model
INV(a) a 1-a
AND(a,b) aAb ab
XOR(a,b,c) adbdc a+b+c-2ab-2ac-2bc+4abc
Majority(a,b,c) | (aVb) A (aV c) | ab+act+bc-2abc

is an XOR2-node, and node 9 is an XOR3-node. This means that an
embedded XOR3 function consisting of two XOR2s exists and can be
detected in the sub-circuit shown in Fig. 1(a). Similarly, an AIG can
be applied to identify embedded majority functions.

D. Computer Algebraic Model

In this approach, the circuit is modeled as an AIG containing
the following gates: INV, AND, embedded MAJ3, and embedded
XOR3. This is in contrast to using a standard-cell network model
after synthesis and technology mapping [1]. The following algebraic
equations, Table I describe the algebraic model used in this paper.

Similarly to [1], the algebraic rewriting for a circuit is based on
two polynomials, referred to as output signature and input signa-
ture. The input signature, Sig;,, is a polynomial in terms of PI
variables that uniquely represents the integer function computed
by the circuit, i.e., its specification. For example, an n-bit binary
adder with inputs {ao, .. ,b,—1}, is described by
Sigy, = Z?:_O] 2la; + :’:_01 2ip;. In our approach, the input spec-
ification need not be known; it will be derived from the circuit
implementation as part of the verification process. The output sig-
nature, Sigq,, of the circuit is a polynomial in terms of the primary
output variables. Such a polynomial is uniquely determined by the
n-bit encoding of the output, provided by the designer. This means
that the binary encoding of the primary output variables is assumed
to be known.

ssau—1,bg, ...

E. Simplified Polynomial Construction

According to [6], efficiency of algebraic rewriting of Sigg, is
determined by the amount of simplifications during polynomial
construction. This is because there is a large number of nonlin-
ear terms generated by carry-out (MAJ) and sum(XOR) functions,
since multiplication is affected by a series of additions. Finding the
maximum polynomial cancellations has been previously addressed
by improving the topological order of the gates [6]. For exam-
ple, let a sub-polynomial expression be x; 4+ 2xp + ..., where
X] = XOR3(a, b, ¢), xp = MAJ3(a, b, c), where a, b, ¢ are the inputs
of XOR3 and MAIJ3 functions. According to equations in Table I,

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

mo

(a)

Fig. 2.
AIG nodes.

Algorithm 1 Algebraic Rewriting in AIG

Input: Gate-level netlist, output signature Sigour

Output: Pseudo-Boolean expression extracted by rewriting

. Structural hashing the gate-level netlist into AIG, denoted G(V, E).

: Detect all XOR3 and MAJ3 nodes in G(V, E).

. Pair the XOR3 and MAIJ3 if they have identical signals, denoted as P.
. Topological sort G(V,E) considering each element in P as one node.
i=0; Fi = Sigou

. while there are no elements remained in reverse topological order do
Rewrite: F;;| = F; by substituting the variables with algebraic equations;
i=i+1

. return F = F; (to be compared with Sig;,,)

LN UE W=

when rewriting x| and xp together, four nonlinear terms are elimi-
nated, namely 2ab, 2bc, 2ac, and 4abc, generated by the algebraic
models of XOR3 and MAJ3. However, if rewriting is applied directly
to the gate-level netlist, its efficiency is lost when the MAJ3 and
XOR3 functions are mapped into other standard cells by logic synthe-
sis and technology mapping. For example, the XOR3 function mapped
using standard cells is shown in Fig. 1(a). In this case, there is no
ordering that provides the required polynomial reductions.

III. APPROACH

This section presents the algebraic rewriting approach based on
AIGs. Similarly to [1], the algebraic rewriting process rewrites the
output signature for all AIG nodes in a reverse topological order.
As discussed in Section II-E, the rewriting order that provides a
large number of polynomial reductions, has significant impact on
the rewriting performance. However, there are many reverse topo-
logical orders available in an AIG, since many nodes can have
the same topological depth. This approach automatically detects a
reverse topological order for algebraic rewriting that provides max-
imum polynomial reduction. This is achieved by detecting pairs of
MAIJ3 and XOR3 nodes using AIG-based cut enumeration.

A. Outline of the Approach

The proposed flow is outlined in Algorithm 1. The inputs to the
algorithm are: the gate-level netlist and the output signature Sig.
The flow includes three basic steps: 1) converting the gate-level
implementation into AIG; 2) detecting all pairs of XOR3 and MAJ3
functions with identical inputs in the AIG; topological sorting the
AIG nodes while considering the detected pairs as one element;
and 3) applying algebraic rewriting from POs to PIs following the
reverse topological order determined in step 2). Note that XOR2
and MAJ2(AND2) are the special cases of XOR3 and MAJ3, where
one of the inputs is constant zero. The second step is performed as
follows.

1) Computing all three-feasible (three-input) cuts of all AIG

nodes.

1909

ml m2 m3 Mo m4 m2 m3

=T |

ag bg ay by

(b) (©)

Two-bit multiplier. (a) Post-synthesized gate-level netlist. (b) AIG of the multiplier. (¢) Detected unobserved functions and their relationship to the

2) Computing truth tables of all cuts.

3) Storing cuts in the hash table by their ordered input set.

4) Detecting pairs of three-input cuts with identical inputs belong-
ing to different nodes, such that the Boolean functions of the
two cuts with the shared inputs belong to the NPN classes of
XOR3 and MAIJ3, respectively.

Note that, in this approach, matching the XOR3 and MAJ3 nodes
does not require the inputs and outputs polarity to be the same.
Instead, all the cut-points are matched without considering their com-
plemented attributes. For example, instead of being an exact XOR3,
the function of a three-feasible cut can be either XOR3 or XNOR3.
Similarly, instead of being exactly MAJ3, the function can be one of
the eight functions forming an NPN class of MAJ3 [19]. To compute
the cuts, the three-input cut enumeration is performed in a topological
order as described in [20]. The truth tables of the cuts are obtained as
a by-product of the cut enumeration. When two fanin cuts merged
during the cut computation result in a three-feasible cut, their truth
tables are combined according to the logic function of the result-
ing cut. For the case of three-input cuts, a dedicated precomputation
reduces the runtime of truth table computation to a small fraction of
that of cut enumeration.

As soon as the XOR3 and MAIJ3 pairs are detected, algebraic
rewriting is applied to the AIG network in a constrained reverse topo-
logical order, in which each XOR3 and MAJ3 pair is considered as
one element. This means that at one topological depth, whenever
either XOR3 or MAIJ3 node of a pair (or its complement) is rewrit-
ten, the subsequent rewritten node is of the other type. The AIG
nodes with the same topological depth that do not belong to any pair
are ordered in the decreasing order of their integer IDs. The alge-
braic rewriting ends when all elements in AIG network have been
rewritten. The algorithm returns the extracted input signature.

Example 1 (2-Bit CSA-Multiplier): The mapped gate-level netlist
of a 2-bit CSA-multiplier is shown in Fig. 2(a). First, the gate-
level netlist is converted to an AIG representation, Fig. 2(b). Then,
a set of XOR3 nodes X, and a set of MAJ3 nodes M are detected:
X = {14, 18}, M = {12, 16}. Node 14 is XOR3(10, 11, 0) and node 12
is MAJ3(10, 11, 0), where nodes 10 and 11 and constant zero O are
the inputs; node 18 is XOR3(12, 15, 0) and node 16 is MAJ3(12,
15, 0). Hence, two pairs of XOR3 and MAJ3 are generated, namely,
(14, 12) and (18, 16). The order of rewriting is determined as fol-
lows: 1) node 18 is the node with highest depth; it is detected as
XOR3 and paired with a MAJ3 node 16; hence, the first rewriting
starts from nodes 18 and 16, and ends at nodes 12 and 15; 2) sim-
ilarly to the first rewriting, the second rewriting starts from nodes
14 and 12, and ends at nodes 11 and 10; and 3) the remaining AIG
nodes are ordered by their index value in decreasing order. The logic
network after detecting all XOR3 and MAJ3 functions are shown
in Fig. 2(c).

1910

Full adder

Half adder

Fig. 3. Detecting MAJ3-XOR3 of a 3-bit post-synthesized CSA-multiplier
with MSB z5 deleted.

B. Detecting Redundant Polynomials

Significant simplification of polynomial construction can be
achieved not only by performing algebraic rewriting using a reverse
topological order, as discussed above but also by detecting redundant
polynomials, such as don’t-care polynomials and vanishing polyno-
mials [5], [7], [21]. Vanishing polynomials are those that always
evaluate to zero; vanishing monomials used in the work of [5] are
examples of such polynomials. Don’t care polynomials can be iden-
tified in circuits (such as multipliers) with truncated outputs, where
arithmetic operators are truncated to reduce power consumption or
delay of the critical path. The removed signals in those circuits con-
tain algebraic information needed to cancel algebraic terms of the
remaining output bits. The polynomial associated with the most sig-
nificant bit (MSB) of an adder or a multiplier is an example of such a
polynomial. Note that the logic obtained by removing such output bits
is either a carry-out or a sum function of a full adder, implemented by
MAIJ3 and XOR3 functions. Hence, using the approach of detecting
pairs of XOR3 and MAJ3 (Section III-A), the XOR3/MAIJ3 nodes that
do not belong to any such pairs can also be identified. For example,
in a CSA-multiplier with a MSB removed, MAJ3 with same inputs
as an unpaired XOR3 is missing. Since one pair of XOR3 and MAJ3
forms a full adder, removing the carry bit (and the MAJ3) makes the
function an addition modulo 2. In this case, the algebraic model of
XOR3 reduces to a+b+c—2ab—2ac —2bc +4abc mod 2 (Table I).
The monomials are redundant if their coefficients modulo 2 reduce
to 0. In other words, the algebraic model of ¢ @ b @ c in this case
becomes a+b+c. Here, the removed terms, —2ab—2ac—2bc+4abc,
are the required redundant polynomials.

Example 2 (3-Bit CSA-Multiplier With MSB z5 Deleted): The AIG
after detecting XOR3 and MAJ3 pairs of a 3-bit synthesized CSA-
multiplier with MSB deleted is shown in Fig. 3. The detected XOR3
and MAJ3 pairs are represented using the ID of the root node of
the XOR3 and MAJ3 nodes. We can see that there is one XOR3
(composed of two XOR2 nodes, 41 and 44) with inputs i36 37, i27 29,
and i3g, that cannot be paired with any MAJ3. This is simply because
the synthesis process removed the redundant logic (last carry out)
when the MSB has been removed. In this case, the algebraic model
of that XOR3 reduces to z4(ig9) = (i36_37 + i27 29 + i38).

IV. RESULTS

The technique described in this paper was implemented in the ABC
environment [17]. It applies algebraic rewriting to the AIG and gen-
erates the polynomial signature. The experiments were conducted on

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018

TABLE 11
EXPERIMENTAL RESULTS COMPARED TO TECHNIQUES OF [1], [5]. *#(s)
IS THE RUNTIME IN SECONDS. *mem IS THE MEMORY USAGE IN MB.
B = BOOTH MULTIPLIER. WT = WALLACE-TREE. CLA = CARRY
LOOK-AHEAD. RC = RIPPLE CARRY. TO = TIME OUT (24 h)

Pre-Syntheized Post-Synthesized

operand bits [1] This approach [1] 5] This approach

t(s) mem t(s) mem t(s) t(s) t(s) mem

64 1.9 74 | 0.08 34 | 550 | 593 | 0.11 34

128 8.1 288 | 0.78 117 | 39.6 TO 0.91 120

128WT-RC - - - - MO TO 0.91 120

128WT-CLA - - - - MO TO - MO

256 | 32.6 1157 | 7.80 441 285 TO 8.23 439

256B - MO | 337 423 MO TO 39.5 431

256B-CLA - MO - MO - - - MO

512 130 | 4427 | 31.7 1695 - - - MO
TABLE IIT

RESULTS OF APPLYING AIG-BASED ALGEBRAIC REWRITING TO
POST-SYNTHESIZED COMPLEX ARITHMETIC CIRCUITS COMPARED
TO Functional Extraction [1]. MO = MEMORY OUT (8 GB)

Benchmarks [1] This approach
(256-bit) runtime(s) mem(MB) runtime(s) mem(MB)
F=AXB+C 179.1 1182 5.1 447
F=Ax(B+C) 2093 1120 5.1 451
F=AXBxC - MO 37.5 2871
F=1+A+ A%+ A® - MO 47.1 3331

a PC with Intel Xeon CPU E5-2420 v2 2.20 GHz x12 with 32 GB
memory. The experiments include gate-level multipliers of different
types, up to 512 bits. The results are compared with two leading
techniques, functional extraction [1] and the Groebner Basis based
approach with vanishing monomials [5], on synthesized circuits. The
results show that the proposed technique is more efficient than these
techniques.

Our AlG-based algebraic rewriting method was evaluated using
original (presynthesized) and post-synthesized multipliers, shown in
Table II; and on post-synthesized arithmetic datapath circuits, shown
in Table III. Booth multipliers are generated by ABC [17] using
9oblast-b command. Wallace-tree multipliers are obtained from [5].
The CSA and CLA multipliers are taken from [1]. The CPU run-
time reported in the tables includes the entire verification process,
i.e., adder-tree extraction and rewriting. The bit-width of the circuits
varies between 64 and 512 bits.2 We can see that the runtime of the
proposed approach outperforms functional extraction of [1] for the
post-synthesized multipliers for any bit-width. The memory usage has
been reduced on average 60%, compared to [1]. However, the poly-
nomial signatures of CLA-based multipliers failed to be extracted
because of the polynomial explosion. This is because there are many
AIG nodes that cannot be identified as pairs of XOR/MAIJ functions
in CLA-based multipliers. We should emphasize that the run-time
complexity of our method for post-synthesized circuits is compara-
ble to that of the original, presynthesized circuits. This is in contrast
to [1], which suffered from a “fat belly” effect on heavily synthe-
sized circuits. As an example, extracting functional specification of
the post-synthesized 256-bit multiplier requires 9x shorter runtime
and less memory than the functional extraction of [1]. Finally, we
observed that the rewriting process of this approach takes about 10%
of the entire process time, the majority of computation being spent
on AIG manipulation and XOR3/Maj3 function extraction.

V. CONCLUSION

This paper presented a method to improve the efficiency of alge-
braic rewriting used in arithmetic verification. The method is based on
AIG representation of the Boolean network. This approach allows for

2512-bit post-synthesized multipliers are not reported in [1].

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 9, SEPTEMBER 2018 1911

formal verification of practical multipliers that are heavily optimized
and mapped using 14nm technology library. Another contribution
of this paper is a technique that automatically detects redundant
polynomials to reduce the complexity of algebraic rewriting. In its
current version, the technique is applicable to those arithmetic circuits
where detection of adder-tree is possible. Verification of CLA-based
multipliers, where such a detection is incomplete, is more challenging
and is part of the ongoing work.

ACKNOWLEDGMENT

The authors would like to thank Dr. A. Sayed-Ahmed, for
providing comparison results, and Prof. A. Biere for providing
benchmarks.

REFERENCES

[1]1 M. Ciesielski, C. Yu, W. Brown, D. Liu, and A. Rossi, “Verification
of gate-level arithmetic circuits by function extraction,” in Proc. 52nd
DAC, San Francisco, CA, USA, 2015, pp. 52-57.

[2] J. Lv, P. Kalla, and F. Enescu, “Efficient Grobner basis reduc-

tions for formal verification of Galois field arithmetic circuits,” IEEE

Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 32, no. 9,

pp. 1409-1420, Sep. 2013.

E. Pavlenko et al., “STABLE: A new QF-BV SMT solver for hard veri-

fication problems combining Boolean reasoning with computer algebra,”

in Proc. DATE, Grenoble, France, 2011, pp. 155-160.

[4] F. Farahmandi and B. Alizadeh, “Groebner basis based formal ver-

ification of large arithmetic circuits using Gaussian elimination and

cone-based polynomial extraction,” Microprocess. Microsyst., vol. 39,

no. 2, pp. 83-96, 2015.

A. Sayed-Ahmed, D. GroBle, U. Kiihne, M. Soeken, and R. Drechsler,

“Formal verification of integer multipliers by combining Grobner

basis with logic reduction,” in Proc. DATE, Dresden, Germany, 2016,

pp. 1-6.

[6] C. Yu, W. Brown, D. Liu, A. Rossi, and M. J. Ciesielski, “Formal
verification of arithmetic circuits by function extraction,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 12,
pp. 21312142, Dec. 2016.

[3

[t

[5

[t}

[7]1 C. Yu and M. Ciesielski, “Formal verification using don’t-care and van-
ishing polynomials,” in Proc. IEEE Comput. Soc. Annu. Symp. VLSI
(ISVLSI), Pittsburgh, PA, USA, 2016, pp. 284-289.

[8] A. Mishchenko, S. Chatterjee, and R. Brayton, “DAG-aware AIG rewrit-
ing: A fresh look at combinational logic synthesis,” in Proc. 43rd DAC,
San Francisco, CA, USA, 2006, pp. 532-535.

[9] R. E. Bryant and Y.-A. Chen, “Verification of arithmetic circuits with
binary moment diagrams,” in Proc. DAC, San Francisco, CA, USA,
1995, pp. 535-541.

[10] M. Ciesielski, P. Kalla, and S. Askar, “Taylor expansion diagrams: A
canonical representation for verification of data flow designs,” IEEE
Trans. Comput., vol. 55, no. 9, pp. 1188-1201, Sep. 2006.

[11] E.I Goldberg, M. R. Prasad, and R. K. Brayton, “Using SAT for combi-
national equivalence checking,” in Proc. DATE, Munich, Germany, 2001,
pp. 114-121.

[12] N. Sorensson and N. Een, “MiniSAT v1. 13—A sat solver with conflict-
clause minimization,” in Proc. SAT, 2005, p. 53.

[13] A. Biere, “Lingeling, plingeling and treengeling entering the sat com-
petition 2013, in Proc. SAT Competition, 2013, pp. 51-52.

[14] A. Niemetz, M. Preiner, and A. Biere, “Boolector 2.0,” J. Satisfiability
Boolean Model. Comput., vol. 9, pp. 53-58, 2015.

[15] L. De Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Proc.
TACAS, Budapest, Hungary, Mar./Apr. 2008, pp. 337-340.

[16] T. Pruss, P. Kalla, and F. Enescu, “Efficient symbolic computation for
word-level abstraction from combinational circuits for verification over
finite fields,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 35, no. 7, pp. 1206-1218, Jul. 2016.

[17] A. Mishchenko er al. (2007). ABC: A System for Sequential Synthesis
and Verification. [Online]. Available: http://www.eecs.berkeley.edu/~
alanmi/abc

[18] A. Mishchenko, S. Chatterjee, R. Jiang, and R. K. Brayton, “FRAIGs:
A unifying representation for logic synthesis and verification,” EECS
Dept., Univ. California at Berkeley, Berkeley, CA, USA, ERL Tech.
Rep., 2005.

[19] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko, “Fast Boolean
matching based on NPN classification,” in Proc. Int. Conf. Field
Program. Technol. (FPT), Kyoto, Japan, 2013, pp. 310-313.

[20] P. Pan and C.-C. Lin, “A new retiming-based technology mapping algo-
rithm for LUT-based FPGAs,” in Proc. FPGA, Monterey, CA, USA,
1998, pp. 35-42.

[21] D. Ritirc, A. Biere, and M. Kauers, “Column-wise verification of multi-
pliers using computer algebra,” in Proc. FMCAD, Vienna, Austria, 2017,
pp. 23-30.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

