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Abstract

The paper describes a practical software tool for the verification of integer arithmetic
circuits. It covers different types of integer multipliers, fused add-multiply circuits, and
constant dividers - in general, circuits whose computation can be represented as a poly-
nomial. The verification uses an algebraic model of the circuit and is accomplished by
rewriting the polynomial of the binary encoding of the primary outputs (output signa-
ture), using the polynomial models of the logic gates, into a polynomial over the primary
inputs (input signature). The resulting polynomial represents arithmetic function imple-
mented by the circuit and hence can be used to extract functional specification from its
gate-level implementation. The rewriting uses an efficient And-Inverter Graph (AIG) rep-
resentation to enable extraction of the essential arithmetic components of the circuit. The
tool is integrated with the popular ABC system. Its efficiency is illustrated with impressive
results for integer multipliers, fused add-multiply circuits, and divide-by-constant circuits.
The entire verification system is offered in an open source ABC environment together with
an extensive set of benchmarks.

1 Introduction

Verification of arithmetic circuits can be viewed as a special case of combinational equivalence
checking, in which the function implemented by the circuit is checked against its functional
specification. Boolean methods, such as various canonical decision diagrams and SAT, that have
been used extensively in logic synthesis and optimization, are computationally too expensive
for arithmetic functions as they require “bit blasting”, i.e., flattening the design to a bit-level
netlist. The SAT and SMT competition results confirm that the verification of even small
multipliers pose a real challenge to such solvers [15]. Similarly, the commercial tools cannot
fully automatically handle full-size multipliers [17]. In general, the complexity of checking
equivalence of large arithmetic circuits is too high for these methods [13][20].

The techniques that offer best solution in arithmetic circuits verification are formal meth-
ods based on computer algebra [20][10][12][17]. In this approach, the circuit specification and
its implementation are represented as polynomials in binary signal variables. The verification
problem is formulated as a proof that the implementation satisfies the specification. It is accom-
plished by reducing the specification modulo the implementation polynomials using theory of
Gröbner Basis, which transform the verification problem into an ideal membership testing of the
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specification polynomial in the ideals [12][10][17][15]. Some of the authors [10][5] use Gaussian
elimination, rather than explicit polynomial division, to speed up the reduction process.

An alternative, and more effective approach to accomplish the verification proof for gate-
level arithmetic circuits is based on algebraic rewriting [20][21]. It transforms the polynomial
at the primary outputs (called the output signature) into a polynomial in terms of primary
inputs (the input signature) [20]. The resulting signature provides the functional specification
of the circuit that can be compared with the expected specification; hence the method can
also serve as function extraction. Although this approach has been successfully applied to
large-scale multipliers and other arithmetic circuits, it still suffers from a potential memory
explosion problem during rewriting due to the growing size of the intermediate polynomials.
In particular, the method is very sensitive to the order in which rewriting is done, strongly
affecting the verification performance.

The verification method and the tool presented in this paper offer an important step in
finding and efficient solution to the arithmetic verification problem. The method is based on
representing the circuit in a functional, rather than structural, gate-level domain, called the
And-Inverter Graph (AIG) [11], in which the algebraic rewriting is done on the AIG represen-
tation of the circuit.

2 Algebraic Rewriting

Arithmetic circuit considered in this work is a circuit that computes polynomial expressed in
the input variables. The circuit is modeled as a network of interconnected bit-level components
(logic gates), each with a finite set of binary inputs and a single binary output. Each gate is
modeled as a unique polynomial fi[X] with binary variables X = {x1, ..., xn} and coefficients
in Z2. Such a polynomial is also referred to as a pseudo-Boolean polynomial. Table 1 presents
algebraic models of some of the basic Boolean operators [20].

Table 1: Boolean and algebraic models of basic logic functions.

Operation Boolean model Algebraic model
INV (a) ¬a 1− a

AND(a,b) a ∧ b ab
OR(a,b) a ∨ b a + b− ab
XOR(a,b) a⊕ b a + b− 2ab

XOR3(a,b,c) a⊕ b⊕ c a + b + c− 2ab− 2ac− 2bc + 4abc
MAJ3(a,b,c) a ∧ (b ∨ c) ∨ b ∧ c ab + ac + bc− 2abc

By construction, each expression evaluates to a binary value (0,1) and correctly models the
logic function of a Boolean logic gate. Models for more complex AOI (And-Or-Invert) gates,
used in standard cell technology, are readily obtained from these basic logic expressions. For
example, algebraic model for logic gate g = a ∨ (b ∧ c) can be derived as g = a + bc− abc, etc.

Algebraic rewriting relies on relating two pseudo-Boolean polynomials, called an out-
put signature and an input signature. The output signature, Sigout, is the the polyno-
mial that represents the result stored as the binary encoding of the primary outputs. For
example, an output signature of a signed 2’s complement arithmetic circuit with n bits,
Sigout = −2n−1zn−1 +

∑n−2
i=0 2izi. By construction, such a polynomial is unique. Similarly, the

input signature, Sigin, is the polynomial over the primary input variables that represents the
arithmetic function performed by the circuit, i.e., its functional specification. For example, for
an n-bit binary adder with inputs {a0, · · · , an−1, b0, · · · , bn−1}, Sigin =

∑n−1
i=0 2iai+

∑n−1
i=0 2ibi.

In our approach, the input specification need not to be known; it will be derived from the circuit
implementation by algebraic rewriting.
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Algebraic rewriting is the process of transforming Sigout into Sigin using algebraic models
of the internal components (logic gates) of the circuit, such as those specified by Table 1. By
definition, it is done in the reverse topological order: from the primary outputs (PO) to the
primary inputs (PI); for this reason it is also referred to as a backward rewriting [20]. Interme-
diate expression obtained during rewriting is also represented as a polynomial, referred to as as
signature, over the variables representing the internal signals of the circuit. By construction,
each variable in a given signature polynomial (starting with Sigout) represents an output of
some logic gate. The rewriting transformation simply replaces that variable with the algebraic
expression of the corresponding logic gate.

It has been shown that such a backward rewriting produces a unique input signature poly-
nomial [20]. However, the rewriting performance strongly depends on the order in which the
individual variables are rewritten. Two basic rules are used in determining the rewriting order:
(1) Rewriting follows the reverse topological order; and (2) Signals that depend on common
signals (fanins) are rewritten together (i.e., one immediately after the other). The first rule is
obvious because of the direction in which the signature is propagated. Once a given variable
(output of a gate) is rewritten, i.e., substituted by an algebraic expression of the gate inputs, it
will be eliminated from the current expression and will never appear in the signature again. As
a result, the final signature will be expressed in the primary inputs (PI) only. The second rule
is dictated by the fact that rewriting the nodes with common fanins together maximizes the
chance for potential term cancellation, hence minimizing the size of intermediate polynomials.

To illustrate the rewriting process consider the following example of a gate-level arithmetic
circuit with inputs a, b, c0, shown in Figure 1(a). The output signature of the circuit is Sigin =
2C + S, determined by the weights of the two output signals dictated by the binary encoding.
The goal is to determine the arithmetic function implemented by this circuit (or, equivalently
to verify if it is a full adder) by rewriting Sigout into an input signature (specification), Sigin.
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Figure 1: Gate-level arithmetic circuit (FA): a) circuit diagram; b) AIG representation

According to the rewriting algorithm [20] the optimum rewriting order is {(S,C), (p2, g2),
(S1, C1), (p1, g1)}. The signals shown in brackets are the ones that depend on common inputs;
they are to be rewritten together, i.e., one immediately after the other.

The following is a series of the rewriting steps, applied in the reverse topological order, for
the gate-level circuit shown in Figure 1(a), using the algebraic models of the gates in Table
1. The terms shown in bold face are reduced to 0 during simplification. For brevity, the
substitution is shown for each pair of variables at once. For example: (C,S) means rewriting

658



Rewriting Environment for Arithmetic Circuit Verification Yu, Yasin, Su, Mishchenko and Ciesielski

using C and S variables.

Sigout = 2C + S

1. (S, C ) : = 2(C1 + g2 − C1g2) + (1− (p2 + g2 − p2g2))

= 2C1 + g2 − 2C1g2 − p2 + p2g2 + 1

2.(p2, g2) : = 2C1 + S1c0 − 2S1C1c0 − (1− (S1 + c0 − S1c0)) + (1− (S1 + c0 − S1c0))S1c0 + 1

= 2C1 + S1c0 − 2S1C1c0 + S1 + c0 − S1c0 + S1c0 − S2
1c0 − S1c

2
0 + S2

1c
2
0

= 2C1 − 2S1C1 + S1 + c0

3.(S1, C1) : = 2(1− g1)− 2(1− g1)(p1g1)c0 + p1g1 + c0

= 2− 2g1 − 2(p1g1 − p1g
2
1) + p1g1 + c0

= 2− 2g1 + p1g1 + c0

4.(p1, g1) : = 2− 2(1− ab) + (a + b− ab)(1− ab) + c0

= 2ab + a + b− ab− a2b− ab2 + a2b2 = a + b + c0

(1)

The resulting input signature is Sigin = a + b + c0, indicating that this is a full adder. During
the rewriting two types of simplifications can be observed:

• Simplification of terms with same monomials; for example, 2g2 − g2 = g2, in Step 1.

• Lowering the term xk with degree k > 1 to x, since the signal variables are binary,
i.e., xk = x. This can be seen in Step 3 of the rewriting, shown there in bold face:
(p1g1 − p1g

2
1) = p1g1 − p1g1 = 0. Similar simplifications appear also in steps 2 and 4.

Two modes of rewriting are possible: 1) Verification against the known specification, and 2)
extracting the specification from the circuit structure. If the specification of the circuit is
known, one needs to compare the computed input signature with this specification. While this
can be done using canonical polynomial representations, such as TED or BMD, this comparison
can be avoided altogether by rewriting the difference between the output and input signature,
Sigout − Sigin instead of Sigout. The result of such a rewriting should be zero for a correct
circuit. A non-zero result is an indication of a bug. In the case when the specification is not
known, the computed input signature provides the function of the circuit (buggy or not).

In the case of a buggy circuit, the size of intermediate polynomials during rewriting may
become prohibitively large, sometimes even preventing the computation from completing. This
by itself can be used as a warning that the circuit is probably faulty. In general, concluding
the the circuit is incorrect and identifying a bug is a challenging problem. Several attempts
have been made to identify the bug(s), either by comparing the result of backward and forward
rewriting [7] or by analyzing the difference between the computed input signature and the given
specification [6]. With a notable exception of finite field (GF) arithmetic circuits [19] [8][14],
the debugging remains an open problem.

3 AIG Rewriting

In contrast to the algebraic rewriting applied directly to a gate level circuit, as in Figure 1(a), the
rewriting employed in our tool operates on the functional AIG representation of the circuit [21].
AIG (And-Inverter Graph) is a combinational Boolean network composed of two-input AND
gates and inverters [1]. Each internal node of the AIG represents a two-input AND function;
the graph edges are labeled to indicate a possible inversion of the signal. We use the cut-
enumeration approach of ABC to detect XOR and Majority (MAJ) functions with a common
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set of variables. Those nodes are essential in identifying half-adders (HA) and full-adders (FA),
the basic components of an arithmetic circuit [21]. AIG rewriting then skips over the large
portions of the circuitry, from the inputs to the outputs of the adders, significantly speeding up
the rewriting process, as shown in Figure 1(b). The algorithm is outlined in Algorithm 1 [21].

Algorithm 1 Algebraic Rewriting in AIG
Input: Gate-level netlist N ; Output signature Sigout

Output: Pseudo-Boolean expression extracted by rewriting

1: G(V, E) ← structural hashing of N into AIG.
2: Detect all XOR3 and MAJ3 nodes in G(V, E).
3: P ← pair(XOR3, MAJ3) nodes with common signals.
4: Topological sort G(V,E) considering each element in P as one node.
5: i = 0; Fi = Sigout

6: while there remain elements in V do
7: Rewrite: Fi+1 ← Fi by variable substitution;
8: i = i + 1
9: end while

10: return F = Fi (to be compared with Sigin)

The inputs to the algorithm are the gate-level netlist N and the output signature Sigout and
includes four basic steps: 1) converting the gate-level implementation into AIG; 2) detecting all
pairs of (XOR3, MAJ3) functions with common AIG inputs1; 3) performing topological sorting
of AIG nodes while treating the detected XOR and MAJ functions as a single element; and
4) applying algebraic rewriting from POs to PIs following the reverse topological order. As
soon as the matching (XOR3, MAJ3) pairs are detected, a hybrid graph G is constructed, in
which each XOR3 and MAJ3 function is considered as a single node. In the absence of XOR3,
MAJ3 nodes, the two-input XOR2 and MAJ2(AND) functions are similarly detected. Algebraic
rewriting is then applied to the modified graph G in a reverse topological order. The algorithm
returns the extracted input signature Sigin.

In the example of Figure 1(b), the groups of nodes (6,7,8) and (9,11,12) are identified as
XOR2, and nodes 6 and 9 as the matching MAJ2 (AND) functions. Subsequently, the functions
at node 12 (S) and node 10 (C) are identified as XOR3 and MAJ3, respectively, sharing the
same inputs, a, b, c0. At this point the entire graph G reduces to just two nodes, representing
XOR3(a, b, c) and MAJ3(a, b, c). The rewriting of Sigout = 2C+S over the two nodes is trivial,
with the nonlinear monomials cancelled as follows (refer to Table 1):

2C + S = 2(ab + ac0 + bc0 − 2abc0) + (a + b + co − 2ab− 2ac0 − 2bc0 + 4abc0) = a + b + co

As illustrated with this example, the AIG rewriting requires considerably fewer terms than
the standard algebraic rewriting.

4 Results

The algebraic rewriting environment was implemented in C and integrated with the ABC tool
[1], where it is available under command &polyn. Here we present an open source framework
of Algebraic RewriTing (ARTi) system for verifying arithmetic circuits using the most recent
version of ABC2. The results include some challenging nonlinear arithmetic circuits: large mul-
tipliers and divide-by-constant circuits. Comparisons are made w.r.t. the state-of-the art tools

1XOR2 and MAJ2(AND2) are special cases of XOR3 and MAJ3, with one of the inputs being constant zero.
2https://github.com/ycunxi/abc. This repository includes modifications in addition to original ABC

https://github.com/berkeley-abc/abc.
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in this domain, [15][16] and [17], which are all computer algebra based systems. The comparison
with SAT, SMT, and commercial systems are not provided here since the computer algebraic
approach has already been proved to be orders of magnitude faster than those techniques, as
discussed in [20]. Other sources also report inadequate quality of these tools for arithmetic
verification [17][15].

4.1 Multipliers

The experiments were conducted on benchmarks released in [15][16]3. For fair comparison, we
recompiled their C code on our platform along the state-of-the-art computer algebra system,
Singular v4.1.1 [4], used by those systems. The experiments were conducted on a PC with
Intel(R) Xeon CPU E5-2420 2.20 GHz x24 with 1 TB memory. The memory out (MO) limit
is 100 GB and timeout (TO) limit is 3600 seconds. Singular reports error state (ES) if the
circuit contains more than 32,767 ring variables (limit imposed by Singular). The verification
results for pre-synthesized multipliers are included in Table 2. The results in column ARTi are
generated using three sets of commands, for btor, sp-ar-rc, and abc multipliers, as follows:

• read btorXX.aig; &get; &polyn -o -v; for the btor -XX multipliers;

• read sp-ar-rcXX.aig; &get; &atree; &polyn -o -v; for the sp-ar-rc-XX multipliers;

• gen -N XXX -m abcXXX.blif; &get; &polyn -o; for the abc-XXX multipliers.

The command &polyn includes various algebraic rewriting options, with -o flag indicating the
use of the older version of the rewriting algorithm [20]. Command &atree invokes extraction
of adder trees in the circuit.

Table 2: Verification time (sec) for pre-synthesized multipliers. ES = error reported by Singular.
TO=Time out of 7200 sec. ∗Command &aspec are applied to Booth multipliers.

Designs ARTi [15] [16] Designs ARTi [15] [16]
btor-16 0.01 0.5 0.01 sp-ar-rc16 0.01 1.1 0.01
btor-32 0.02 11.7 0.3 sp-ar-rc32 0.1 35.5 0.3
btor-64 0.1 725 4.0 sp-ar-rc64 0.4 1312 4.6
btor-128 0.5 ES ES sp-ar-rc128 1.6 ES ES
abc-256 1.0 ES ES abc-512 4.5 ES ES
abc-Booth-64∗ 1.0 TO TO abc-Booth-256∗ 1.0 ES ES

Table 3 shows the results for for multipliers mapped onto standard cells with three different
libraries, including industrial libraries of 14 nm and 7 nm technology nodes. The results of
verifying the same set of benchmarks using the open source tools available from [15][16], are
included. The results of the first seven designs in the Table are generated using command-a
in Table 2. For the last two circuits, mapped onto industrial libraries, we executed several
iterations of dch and strash commands before ARTi to eliminate extra logic introduced for the
purpose of meeting the timing constraints.

To apply ARTi to Booth-encoded multipliers, such as radix-4 Booth multiplier, the design
needs to be first preprocessed by extracting the adder trees using the XOR-MAJ extraction
approach, described in Section 3, using a command &atree. In addition, a semi-canonical
spectral approach that represents the arithmetic functions in an algebraic spectrum form can
be used to further improve the ARTi for Booth multipliers [22]. The examples of such circuits,
verified with this method, are included in our repository4.

3http://fmv.jku.at/algeq/
4https://github.com/ycunxi/abc/blob/master/README.md
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Table 3: Verification time (sec) of synthesized, technology mapped multipliers using different
libraries. #GT = Number of gate types used. FI ≥5 = Number of gates with fanin ≥5.

Designs ARTi #GT FI≥5 [15] [16]
btor64-resyn3 0.1 - - 711 4.2
abc64-resyn3 0.1 - - 801 4.0
btor128-resyn3 0.3 - - ES ES
abc128-resyn3 0.1 - - ES ES
btor64-resyn3-map-simple 0.3 7 0 1073 418
abc64-resyn3-map-simple 0.1 7 0 1071 415
abc64-resyn3-map-14nm 35 15 17 TO TO
abc64-resyn3-map-7nm MO 24 9,791 TO TO
abc128-resyn3-map-simple 1.8 7 0 ES ES
abc128-resyn3-map-14nm 406 15 1,008 ES ES
abc128-resyn3-map-7nm MO 23 26,600 ES ES

4.2 Complex Arithmetic Circuits

Table 4 shows the results of extracting word-level specifications from gate-level complex arith-
metic circuits, constructed with multiplication and addition operations, and a three-operand
multiplier. The multiplications in these datapaths are implemented using ABC-generated mul-
tipliers. Our approach can efficiently identify the word-level operations in the gate-level dat-
apaths. In contrast, the approach of [18] could not detect the presence of multiplication or
addition in these circuits; and our approach is much faster than [20].

Table 4: Results of extracting word-level specification from complex arithmetic circuits. TO
= TIME OUT (3600 s). Error = Unable to determine type of arithmetic operations. TO* :
finished in 23,760 s.

256-bit [18] [20] Ours
F=A×B+C Error TO* 1×mult;1×add 44.7 s
F=A×(B+C) Error TO 2×mult 45.1 s
F=A×B×C Error TO 1×mult3 68.5 s

4.3 Dividers (Divide by Constant)

This section presents the results for a special class of dividers, namely divide-by-constant cir-
cuits. The input to the circuit are the dividend X and the divisor constant D; the outputs are
the quotient Q and the remainder R, concatenated to form an output word, Z = [R.Q]. In our
experiment, the primary inputs and outputs are n-bit wide. Functional specification of such
dividers can be expressed as X = Q ·D + R, where the divisor D is a constant.

Restoring Divider: First, we consider an architecture based on a standard restoring divider
[9], in which the divisor D has been hardwired to a particular constant. The restoring divider
has been implemented and synthesized using ABC [1]. During synthesis, the constant bits of
the divider D have been propagated through the circuit and used to optimize the circuit.

Given a divider circuit to be verified, first step in the verification process is to create an
output signature, Sigout = Q ·D +R, determined by the number of output bits of Q,R and by
the value of the constant divisor D. In the case of the divide-by-3 circuit, with X,D,Q,R all
being three-bit words, the output signature is

Sigout = 3(4Q2 + 2Q1 + Q0) + 4R2 + 2R1 + R0
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or, alternatively, when expressed in terms of the output bits Z

Sigout = 12Z2 + 6Z1 + 3Z0 + 4Z5 + 2Z4 + Z3

In our experiment, the initial divider circuit and the output signature were obtainted by the
program written in python as follows:

python verify_constant_divider_abc.py -f gen-div.blif -divisor 011 -divexp 1+0

Here, the gen-div.blif file is the generic divider to be converted to a divide-by-constant
circuit; -f indicates the required output format type; -divisor is the value of the divisor in binary
format; and -divexp is the value of exponent in the required sum form (for example, constant 3
= 011 = 21 +20, is written as 1+0). This program produces a divide-by-3 circuit const-div.blif
and the output signature file, S.out = 3∗o0+4∗o1+5∗o2−1∗o0−2∗o1−3∗o2+0∗o3+1∗o4+2∗o5.
The following ABC command is then used to compute Sigin:

read const-div.blif; sweep; strash; dch; &get;

&polyn -v -w -S 3*o0+4*o1+5*o2-1*o0-2*o1-3*o2+0*o3+1*o4+2*o5;

with the output signature provided with a -S switch. The resulting input signature for this
circuit obtained by ABC is x0 + 2x1 + 4x2 (internally encoded in the exponent form as 0 ∗
i0 + 1 ∗ i1 + 2 ∗ i2). This result matches the primary input, dividend X, which confirms that
the circuit correctly implements the division. Table 5 shows the verification CPU runtimes for
different divisors for a 16-bit dividend X.

Table 5: Results of verifying the divide-by-constant restoring divider circuit for a 16-bit
dividend X. Time-out of 20 minutes, Memory-out 24GB.

Divisor
# Rem.

bits
Time (s)
(No bug)

Divisor
# Rem.

bits
Time (s)
(No bug)

11 4 2.42 157 8 16.5
17 5 4.13 191 8 MO
31 5 10.7 223 8 317
43 6 9.22 241 8 125
53 6 3.83 251 8 2.20
61 6 9.22 257 9 16.9
73 7 5.96 263 9 223
89 7 11.0 277 9 30.7
101 7 2.14 283 9 22.3
131 8 15.1 311 9 326

Modular Divider: We also present an alternative, modular divider architecture, in which
the divider is partitioned into a number of identical blocks, instantiated the required number of
times, connected in series; each block has a fixed number of bits for the dividend X and quotient
Q. A carry-in C into each block comes from the remainder R of the previous block. The number
of bits of C and R is fixed and determined by the number of bits of the divisor D. The circuits
were generated using an open-source hardware generator, FloPoCo [3], and synthesized using
ABC tool [1] onto standard cell, gate-level circuits. For the reason of format incompatibility,
these experiments applied the functional verification technique based on standard gate-level
rewriting of [20], rather than AIG rewriting. The gate-level synthesized designs from ABC were
converted into an algebraic equation format to perform block by block verification.

The program was coded in Python and C++ and the experiments were conducted on a
64-bit Intel Core i5-3470 CPU, 3.20GHz × 2, Ivy-Bridge with 15.6 GB of memory. Each basic
block for a given divisor D is implemented as a lookup table (LUT).
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Table 6: Verification results of divide-by-constant divider circuits for a one-bit block archi-
tecture and a 32-bit dividend X. Time-out of 20 minutes.

Divisor
# Rem.

bits
# Gates

Time (s)
(No bugs)

# Bugs
Time (s)

(With bugs)
17 5 1763 0.81 3 0.75
61 6 3715 3.50 8 3.56
113 7 3652 6.68 7 7.21
241 8 4891 21.7 7 30.42
251 8 6410 110.4 5 113.5
263 9 8114 29.3 8 39.1
277 9 8238 T/O - -
283 9 8951 643.8 9 638.4

The experiments include both correct (bug-free) and faulty circuits. The faults were em-
ulated by randomly injecting multiple faults in the truth table into the valid portion of the
LUT. Table 6 includes the verification time for the divide-by-constant, one-bit (of X) block
architecture. The results are shown for a 32-bit dividend X, divisors D value up to 283, and
a 9-bit remainder R. The non-monotonic behavior of the verification time as a function of
the divisor size can be explained by examining the content (on-set) of the truth table for the
corresponding division and its dependence on the value of the divisor.

4.4 Interactive Examples

The following example shows the script and the results of verifying, i.e., deriving the specifica-
tion of a 64-bit multiplier, using the ABC system with &polyn command.

abc 01> gen -N 64 -m mult-abc-64.blif; strash; &get; &ps; &polyn -w > mult64.log

The results are shown below in two formats: (option 1) implicitly, by listing the number of
coefficients appeared in the computed polynomial; and (option 2) explicitly, by listing all the
monomials; only a small subset is listed here for brevity.

abc 01> gen -N 64 -m mult64-abc.blif;st;strash;ps

Hierarchy reader flattened 8256 instances of logic boxes and left 0 black boxes.

Multi64 : i/o = 128/ 128 lat = 0 and = 32064 lev =501

abc 04> &get;&ps;

Multi64 : i/o = 128/ 128 and = 32064 lev = 501 (312.05) mem = 0.37 MB

Verbose option 1

abc 04> &polyn -w

Polynomial with 4096 monomials:

| +2^0 * i0 * i64

| +2^1 * i0 * i65

+2^1 * i1 * i64

...

Verbose option 2

abc 04> &polyn -v

Input signature with 4096 monomials:

+2^0 appears 1 times

+2^1 appears 2 times

+2^2 appears 3 times

...

The following log shows the usage of the tool by explicitly providing the output signature Sigout
in terms of the weights of the output bits, for a 2-bit unsigned integer multiplier. Sigout =
1z0+2z1+4z2+8z3 is coded showing only exponents of the coefficients: 0*o0+1*o1+2*o2+3*o3,
with symbol ok referring to the kth output bit with coefficient 2k.

abc 01> gen -N 2 -m mult-abc-2.blif; strash; &get; &polyn -w -S 0*o0+1*o1+2*o2+3*o3
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Hierarchy reader flattened 10 instances of logic boxes and left 0 black boxes.

HashC = 7. HashM = 25. Total = 40. Left = 4. Used = 4. Time = 0.00 sec

Input signature with 4 monomials:

+2^0 appears 1 times

+2^1 appears 2 times

+2^2 appears 1 times

Polynomial with 4 monomials:

| +2^0 * i0 * i2

| +2^1 * i0 * i3

+2^1 * i1 * i2

| +2^2 * i1 * i3

The computed input signature is: Sigin = 1i0i2 + 2i0i3 + 2i1i2 + 4i1i3, which matches the
specification of the two-bit unsigned multiplier, (i0 + 2i1)(i2 + 2i3).

An example of the gate-level rewriting is demonstrated with an earlier (non-AIG based)
version of our tool, petBoss [2]5. This tool takes an equation file (an example given in the
source directory) and produces the input signature polynomial. The Sigout must be appended
as the last line of the netlist equation file.

:~/abc/petBoss/petBoss-source: ./petBoss -b < ../mult4-syn.eqn

>>>>>>>>>>> a0*b0+2*a0*b1+2*a1*b0+4*a0*b2+...+32*a2*b3+32*a3*b2+64*a3*b3

5 Conclusions

The paper describes a practical tool for functional verification of integer arithmetic circuits.
It uses algebraic representation of the circuit and performs an algebraic backward rewriting
either structurally, on a gate-level netlist, or functionally, on its AIG representation. The alge-
braic model explicitly considers finite bit-width words, and as such naturally handles modular,
integer modulo 2n, signed and unsigned arithmetic circuits. Experimental results show the ef-
fectiveness of the tool in proving functional verification of add/subtract and fused add-muliply
circuits, multipliers, including some Booth-encoded circuits, and a special case of dividers,
namely divide-by-constant. Extensions to other arithmetic circuits, including restoring and
non-restoring array dividers is currently under work.
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