1. Introduction

In this paper, we are considering Boolean functions over the domain of truth values \{0, 1\}. We are concerning ourselves with the decomposition of the majority-\(n\) function
\[
\langle x_1 \ldots x_n \rangle = [x_1 + \cdots + x_n > \frac{n-1}{2}], \quad (n \text{ odd}) \tag{1}
\]
in terms of majority-3 operations without inversions, called majority networks. This is an important task in majority-based logic synthesis [1–4]. Ultimately, we are driven by the question of how many majority-3 operations are sufficient to realize the majority-\(n\) function. We will refer to the minimum number of operations as \(C_n\) in the remainder, and call majority networks optimum if they realize the majority-\(n\) function using \(C_n\) majority operations. Until today, it is only known that \(C_3 = 1, C_5 = 4, \) and \(C_7 = 7\) [5,6]. The asymptotic complexity of \(C_n\) is linear, since finding the median element in an unsorted set has linear complexity [7]. This has led to the following conjecture.

Conjecture 1. \(C_n = \frac{3(n-3)}{2} + 1, \) for odd \(n \geq 3.\)

In particular, \(C_9 = 10,\) however, neither a witness nor a proof excluding the existence of a network with 10 majority operations has been found. Optimum majority networks for \(n = 3, 5, \) and 7 are for example:

\begin{equation}
\begin{array}{c}
\text{1} & \text{2} & \text{3} \\
\text{1} & \text{2} & \text{3} & 5 \\
\text{1} & \text{2} & \text{3} & 5 & 6
\end{array}
\end{equation}

Each circle corresponds to a majority node and a primary input \(x_i\) is represented by a leaf \(i.\) The structure of these known optimum majority networks has led to another conjecture, which does not predict the number of minimum operations, but predicts a common structure.
Conjecture 2. There always exists an optimum network in which (i) each node is connected to at least one primary input and (ii) the root node is the only node that is connected to x_n.

For example, variables x_3, x_5, and x_7 only appear at the root nodes of the optimum majority networks for $n = 3$, 5, and 7 in (2) In order to derive further knowledge from the optimum majority networks for $n = 3$, 5, and 7, and motivated by Conjecture 2, in this paper, we investigate decompositions of the majority-n function $(x_1 \ldots x_n)$ into the majority-3 expression $(x_n f_1 f_2)$, such that f_1 and f_2 are Boolean functions over $n - 1$ variables that do not depend on x_n.

The main result of this paper is the following.

Theorem 1. For $k \geq 1$, let $n = 2k + 1$, and f_1 and f_2 two $(n - 1)$-variable Boolean functions. Then

$$(x_1 \ldots x_n) = (x_n f_1 f_2),$$

if, and only if

(a) $f_1(x_1, \ldots, x_{2k}) = f_2(x_1, \ldots, x_{2k}) = 1$, if $x_1 + \cdots + x_{2k} > k$,

(b) $f_1(x_1, \ldots, x_{2k}) = f_2(x_1, \ldots, x_{2k}) = 1$, if $x_1 + \cdots + x_{2k} = k$,

(c) $f_1(x_1, \ldots, x_{2k}) = f_2(x_1, \ldots, x_{2k}) = 0$, if $x_1 + \cdots + x_{2k} < k$.

In other words, if the number of ones in the input pattern is less than k, then both functions must evaluate to 0, and if the number of ones is larger than k, then both functions must evaluate to 1. Only in the case where the number of ones equals k, one has the freedom to select the output of one function to be 1, if the other function outputs 0.

We made use of our findings in an exhaustive search algorithm and were able to find experimentally that Conjecture 1 and Conjecture 2 cannot both be true. More precisely, there cannot be a majority network for majority-9 with 10 majority functions (as predicted by Conjecture 1) adhering to a structure as described by Conjecture 2.

The next section will give the proof for Theorem 1. After introducing threshold functions in Section 3, Sections 4 and 5 review two results from the literature as special case of Theorem 1. The latter can be used as an explanation for the optimum majority networks for $n = 3$, and $n = 5$. Section 6 introduces a new decomposition, which is also a special case of Theorem 1 and can be used as an explanation for the optimum majority network for $n = 7$. Section 7 discusses consequences of the observations for finding optimum majority networks for $n \geq 9$. Section 8 concludes the paper.

2. Proof of the main theorem

Proof of Theorem 1. We prove by case distinction on x_n. If $x_n = 0$, then the result of the majority-n must be true only if more than k of the arguments x_1, \ldots, x_{2k} are true. Case (a) yields $\langle 011 \rangle = 1$; case (b) yields $\langle 001 \rangle = (111) = 1$; case (b) yields $\langle 101 \rangle = (110) = 1$; case (c) yields $\langle 100 \rangle = 0$. □

3. Threshold functions

We introduce some important symmetric Boolean functions called threshold functions, which are a generalization of majority functions. Let

$$S_{2k}(x_1, \ldots, x_n) = \{x_1 + \cdots + x_n > k\}$$

be the function that is true, if more than k of the input arguments are true. Also, for $k > 0$

$$S_{nk}(x_1, \ldots, x_n) = S_{k-1}(x_1, \ldots, x_n) \land S_{nk}(x_1, \ldots, x_n)$$

be the function that is true, if exactly k of the input arguments are true.

Let $n = 2k + 1$ for some $k \geq 1$. Then the majority-n function can also be written as

$$(x_1 \ldots x_n) = S_{2k}(x_1, \ldots, x_n).$$

4. Co-factor decomposition

We start with a simple decomposition in which f_1 and f_2 are the positive and negative co-factor of the majority-n function, respectively. One obtains the positive or negative co-factor of a function f with respect to a variable x_i, by fixing x_i to 1 or 0, respectively:

$$f^k_i = f(x_1, \ldots, x_{i-1}1, x_{i+1} \ldots, x_n)$$

Akers discovered this decomposition in the early 1960s [8].

Theorem 2. For $k \geq 1$ and $n = 2k + 1$, the functions $f^k_1 = (x_1 \ldots x_{n-1}0)$ and $f^k_2 = (x_1 \ldots x_{n-1}1)$ are a pair of majority-decomposing functions.

Proof. It follows easily from noting that $f^k_1 = S_{2k}(x_1, \ldots, x_{2k})$ and $f^k_2 = S_{2k}(x_1, \ldots, x_{2k})$. □

Example 1. We use the co-factor decomposition to derive an expression for majority-3. In this case, we get $n = 3$. $f^1_1 = (x_1 x_2 0) = x_1 \land x_2$, and $f^1_2 = (x_1 x_3 1) = x_1 \lor x_2$. Hence, the decomposition leads to the expression $(x_3(x_1 \land x_2)(x_1 \lor x_2))$ with 3 majority-3 operations to express a single majority-3 operation.

5. Majority-reducing decomposition

In this section, we review a decomposition from Amarel, Cooke, and Winder [5] that sets $f^k_i = (x_1 \ldots x_{2k-1})$. In other words, the majority-n function is decomposed in terms of the smaller majority-$(n - 2)$ function.
Example 2. We use Theorem 3 to find a decomposition for majority-3. Then, $f^1_1 = S_{>0}(x_1) = x_1$ and $f^1_2 = S_{=1}(x_1) \lor x_2 S_{>1}(x_1) = x_2$. Hence $(x_1 x_2 x_3) = (x_3 x_1 x_2)$.

The optimum network for majority-5 can be directly derived from this decomposition as illustrated by the following example.

Example 3. For $k = 2$, we have $f^1_2 = (x_1x_2x_3)$, corresponding to the subnetwork on the left-hand side in (2), and

$$f^2_2 = S_{>2}(x_1, x_2, x_3) \lor x_4 S_{>0}(x_1, x_2, x_3) = x_1 x_2 x_3 \lor x_4 (x_1 \lor x_2 \lor x_3).$$

One can readily verify that $f^2_2 = (x_1x_4(x_2x_4x_3))$, which corresponds to the subnetwork on the right-hand side in the optimum network for majority-5.

It is worth noting that in [5], the authors also show how to describe f^k_2 in terms of k majority-3 operations and $k + 1$ majority-5 operations.

6. Parity-splitting decomposition

In this section, we introduce a new decomposition, which we will use to explain the optimum majority network for majority-7. Let $n = 2k + 1$, as in the previous sections. The decomposition is not applicable to all odd n, but only when k is odd, e.g., $n = 3, 7, 11$, and so on. We first define a function

$$g_k(x_1, \ldots, x_k, x_{k+1}, \ldots, x_{2k}) = S_{>k}(x_1, \ldots, x_{2k}) \lor S_{=k}(x_1, \ldots, x_{2k}) (x_1 \lor \cdots \lor x_k),$$

which is true, if (i) either more than k arguments are true, or if (ii) exactly k arguments are true while an odd number of these k arguments must be from the first arguments x_1, \ldots, x_k. We can use this function to describe a pair of majority-decomposing functions.

Theorem 4. Let $k \geq 1$, and k be odd. Then $f^k_1 = g_k(x_1, \ldots, x_k, x_{k+1}, \ldots, x_{2k})$ and $f^k_2 = g_k(x_k+1, \ldots, x_{2k}, x_1, \ldots, x_k)$ are a pair of majority-decomposing functions.

Proof. It is easy to see that case (a) and (c) of Theorem 1 are true from the definition of g_k.

In the case of (b), the functions simplify to $f^k_1 = x_1 \lor \cdots \lor x_k$ and $f^k_2 = x_{k+1} \lor \cdots \lor x_{2k}$. Since k is odd, we have $f^k_1 \lor f^k_2 = x_1 \lor \cdots \lor x_{2k} = 1$. □

Example 4. Let $k = 3$, i.e., $n = 7$. Then one can verify that

$$f^3_1 = S_{>3}(x_1, x_2, x_3, x_4, x_5, x_6) \lor (x_1 \lor x_2 \lor x_3) S_{=3}(x_1, x_2, x_3, x_4, x_5, x_6)$$

which corresponds to the subnetwork on the right-hand side in the optimum network for majority-7 in (2). Similarly, f^3_2 corresponds to the subnetwork on the left-hand side, as it is obtained by simply swapping x_1, x_2, x_3 with x_4, x_5, x_6. In fact, it is quite surprising that in the optimum network for majority-7, there is no sharing between the networks for f^1_1 and f^1_2, although their expressions are very similar.

Also the optimum network for $k = 1$, i.e., majority-3, can be derived from the parity-splitting decomposition.

Example 5. Let $k = 1$. Then we have

$$f^1_1 = S_{>1}(x_1, x_2) \lor x_1 S_{=1}(x_1, x_2) = x_1 x_2 \lor x_1 (x_1 \lor x_2) = x_1.$$

Analogously, we find $f^1_2 = x_2$.

7. Application to finding optimum majority networks

Having found that the reviewed and proposed decompositions can in fact explain the optimum results for $n \leq 7$, we investigate whether they help to find optimum networks for larger n.

Theorem 1 describes a large set of pairs of majority-decomposing functions. Case (a) and (c) fix the output for f^k_1 and f^k_2 for all input patterns with less or more than k ones. But for the 2^k_k input patterns that have exactly k ones, one can decide whether to assign f^k_1 to 1 or 0. This leads to $2^{2^k_k}$ different pairs of decomposing functions. Concretely, these are 4, 64, 2, 70, and 2252 for $k = 1, 2, 3, 4, 5$.

We first show that Conjecture 1 and Conjecture 2 cannot both hold for $n = 9$, i.e., $k = 4$. In other words, there exists no majority network for majority-9 with 10 gates in which each gate points to a primary input and only the top-most gate points to x_9. Instead of finding a majority network for majority-9, we tried to find a majority network for a pair of functions (f^k_1, f^k_2) with 8 inputs and 9 gates. We leave f^k_1 and f^k_2 unspecified, but only constrain them to adhere to the conditions from Theorem 1. This allows to explore the full space of all $2^{2^7_7} = 2^{70}$ possible decompositions. We expressed this problem using a SAT solver similar to the encoding proposed in [9,10]. On a MacBook computer using a 2.7 GHz Intel Core i5 processor with 8 GB memory, we are able to show that the problem is unsatisfiable within about 5 minutes. Since no network with 9 gates exists to compute any pair (f^k_1, f^k_2), there cannot be a majority network to compute majority-9 with 10 gates that follows the structure described in Conjecture 2. However, there still may exist a majority network for majority-9 with 10 gates, but if so, it cannot have a decomposition structure similar to those found for $n = 3, 5$ and 7. Or, the optimum network requires more than 10 gates but can still have a structure as described by Conjecture 2.
(x_1 \oplus \cdots \oplus x_5)S_{5}\langle x_1, \ldots, x_{10} \rangle$ from the parity-splitting decomposition using 6 gates. We can show with exhaustive search that this is not possible. This implies that the structure for majority-7 in (2) cannot trivially be extended for majority-11, with two disjoint subnetworks for f_1^3 and f_2^5. However, this result does not imply that there is no 13-operation majority network for majority-11 that used the parity-splitting decomposition, since there may be shared nodes for f_1^3 and f_2^5.

8. Conclusions

We have derived the necessary properties for two functions $f_1(x_1, \ldots, x_{n-1})$ and $f_2(x_1, \ldots, x_{n-1})$, called pair of majority-decomposing functions, such that $f = \langle x_n f_1 f_2 \rangle$, where $n = 2k + 1$. Our result generalizes previously proposed decompositions. We derive a new decomposition for the special case in which k is odd. The interest in such decompositions is motivated by the problem of finding optimum majority-3 networks that realize majority-n. This problem was first posed more than 50 years ago [5]. Yet, until today the optimum solution for $n = 9$ is still unknown. Optimum solutions for $n = 3, 5$ and 7 can be explained using pairs of majority-decomposing functions. Consequently, the study of pairs of majority-decomposing functions can help in the surprisingly daunting task of finding optimum majority networks for $n = 9$ and beyond.

Acknowledgement

The authors wish to thank Luca Amarù for insightful discussions. This research was supported by the Swiss National Science Foundation (200021-169084 MAjesty) and by the European Research Council in the project H2020-ERC-2014-ADG 669354 CyberCare.

References
