
Enhancing PDR/IC3 with Localization Abstraction
 

Yen-Sheng Ho        Alan Mishchenko         Robert Brayton Niklas Een* 

Department of EECS, UC Berkeley Google Inc. 

{ysho, alanmi, brayton}@berkeley.edu niklas@een.se 

 

Abstract 
Property Directed Reachability (aka PDR/IC3) is the 

strongest engine presently used in formal verification tools. 

Localization abstraction is a way to reduce the complexity 

of a verification problem by cutting away irrelevant logic.  

Both methods are effective when used independently or 

when an abstracted model is passed to PDR. This paper 

proposes a new method of combining them by minimally 

changing the PDR engine. The method differs from 

previous work, which requires a larger implementation 

effort.  Experiments show that the integrated engine is, on 

average, stronger than the baseline and produces inductive 

invariants that are smaller and depend on fewer variables, 

making them more useful in design analysis and debugging. 

1. Introduction 
Property Directed Reachability (PDR) is an elegant and 

powerful engine pioneered in 2010 by Aaron Bradley under 

the name of IC3 [3][5] and improved by ongoing research 

[1][7][8][9][11][13][18]. The engine continues to receive 

attention because of its ability to solve hard model 

checking problems, both satisfiable and unsatisfiable. The 

inductive invariants computed as a by-product of solving 

unclassifiable verification instances with PDR, are useful as 

certificates of correctness and as a means for design 

analysis. For example, the support of an invariant indicates 

what parts of the design are needed to prove the property. 

Localization abstraction [20][6][15][16] is a method 

aimed at reducing the complexity of a verification instance 

by removing some logic. The remaining part of the instance 

is called an abstraction. An abstraction typically contains 

the property output of the original instance along with logic 

nodes and flip-flops deemed necessary to prove the 

property. The connections to the removed logic are called 

pseudo primary inputs (PPIs) and treated as free variables, 

which increases the behavior. As a result, if the abstraction 

is proved, the verification problem is solved. If a counter-

example (CEX) is discovered, abstraction refinement adds 

new logic to rule it out, before a new proof is attempted. A 

taxonomy of abstraction methods can be found in [15]. 

The contribution of this paper is integrating PDR with an 

adaptive localization abstraction. As a result, the PDR 

engine is minimally modified to perform on-the-fly 

abstraction while solving a verification instance.  The 

modified engine is capable of solving more problem 

instances than the baseline engine. Moreover, inductive 

invariants computed by the modified PDR are on average 

about 20% smaller than those computed by the original 

PDR. A smaller invariant is more representative of the 

verification problem and more suitable for design analysis. 

The paper is organized as follows. Section 2 contains 

relevant background. Section 3 contains an overview of the 

original PDR algorithm. Section 4 describes modifications 

to the original algorithm needed to integrate it with 

abstraction. Section 5 compares the approach presented in 

this paper with previous work. Section 6 shows 

experimental results. Section 7 concludes the paper. 

2. Background 
We assume that the reader is familiar with the tenets of 

safety model checking and the implementation of PDR/IC3 

[3][5][7]. Below we review PDR/IC3 as presented in [7] 

before discussing minimal changes to the baseline engine 

needed to enable on-the-fly abstraction. 

It is assumed that the verification problem is presented to 

a model-checking engine as a sequential logic circuit with 

an all-0 initial state having a single property output. If the 

property holds, the output of the logic circuit evaluates to 0 

for any state reachable from the initial state. If the property 

fails, the engine returns a CEX, which is a sequence of 

inputs taking the design from the initial state into a state 

where the output evaluates to 1. If the initial state is not 

constant-0, the sequential circuit can be equivalently 

transformed to ensure that the initial state is 0. Similarly, if 

there are more outputs than one, the problem can be 

transformed by ORing individual outputs together. 

3. Overview of PDR 
A simplified block diagram of PDR is shown in Figure 1. 

The PDR engine performs an incremental computation of 

sets of CNF clauses over-approximating reachable states in 

each timeframe. A new frame is opened and bad states (the 

states where the property fails under some input) of this 

timeframe are enumerated. For each bad state, PDR checks 

whether it overlaps with the initial state, and if so, the 

verification problem is satisfiable and PDR terminates. If a 

bad state does not overlap with the initial state, ternary 

simulation is performed to expand a state minterm into a 

state cube, such that for all minterms belonging to this cube 

(including the original minterm), the property fails. 

The expanded cube composed of bad states is called a 

proof obligation (POB) because, to prove the property, we 

need to show that none of the states contained in this cube 

are reachable from the initial state. The POBs are ordered 

in each time frame by the time they are generated . 

* This work was done by the author while he was employed by UC Berkeley. 



 
 

 

Figure 1. Overview of the PDR/IC3 algorithm. 

 

The PDR engine retrieves POBs from the queue, one at a 

time, and checks if they can be blocked. A POB is blocked 

if all the previous states that reach the POB are ruled out by 

the reachable-state over-approximation computed so far. If 

the POB is not blocked, then there is a previous state, from 

which at least one state in the POB can be reached. This 

state is checked for being an initial state and, if not, a new 

POB is generated and queued. 

If, on the other hand, the POB is blocked, it is generalized 

into a clause, which is added to the reachable state over-

approximation under construction. When PDR has finished 

blocking all bad states in a given timeframe, and the queue 

of proof-obligations is empty, PDR attempts to move the 

clauses forward, that is, to prove that the clauses holding in 

a given timeframe, also hold in the next timeframe. If, in 

any timeframe, all the computed clauses are moved, these 

clauses form a property-directed inductive invariant.  

The invariant is a Boolean function defined over the flip-

flop output variables, which is characterized as follows: 

(a) it contains the initial state; (b) it does not contain bad 

states; and (c) for each state contained in the invariant, the 

next states reachable from it are contained in the invariant. 

When such an inductive invariant is found, the property is 

proved because there does not exist a sequence of reachable 

states, originating in an initial state, leading to a bad state. 

4. Proposed algorithm 
The performance of PDR is hampered when it takes a 

long time to converge on an inductive invariant. There can 

be several reasons for this: (1) the reachable state space 

may be irregular making it hard to separate reachable states 

from bad states by using a two-level representation such as 

a set of clauses; (2) it may be possible to express the 

inductive invariant in the two-level form but PDR fails to 

find it because the state space exploration is unfocused. 

It may be hard to mitigate the first limitation of PDR 

without developing a brand-new engine, which computes 

an over-approximation in a non-clausal form. In this paper, 

we address the second limitation by making state-space 

exploration more focused. To this end, localization 

abstraction is added to the PDR engine, making the set of 

flop variables participating in the clauses grow in a more 

predicable manner, compared to the original engine. As a 

result, the state-space exploration becomes more focused 

and more likely to converge to an inductive invariant. The 

modified engine is PDR with Abstraction (PDRA). 

The modifications needed to go from PDR to PDRA are 

shown in the block diagram in Figure 1 as boxes inside the 

dashed rectangle. The changes comprise counter-example 

(CEX) analysis and CEX-based abstraction refinement, 

affecting the PDR engine components as described below. 

PDRA maintains an additional data-structure called flop 

map, remembering what flip-flops are used in the 

abstraction. A flip-flop is used in the abstraction if there is 

a clause containing a literal of the corresponding flop 

variable in any timeframe. Otherwise, a flop is not used. 

The flop map is empty at the beginning. It is incrementally 

updated by the abstraction refinement while enumerating 

bad states. The set of flops included in the flop map does 

not grow monotonically from frame to frame because the 

clauses containing certain flop variables may be subsumed 

later by stronger clauses, not containing these variables. As 

a result, some flop variables present in the flop map at an 

earlier time frame may disappear in the later time frames. 

PDRA uses the flop map during ternary simulation. In 

PDR, ternary simulation converts a bad-state minterm into 

a bad-state cube while removing as many flop variables as 

possible in a given order. If a flop variable cannot be 

removed, it is added to the POB and may later appear in the 

generalized clause when the POB is blocked. As a result, 

even if a flop variable is not used in any of the clauses so 

far, the original PDR adds it whenever needed. In contrast, 

PDRA treats flops not used in the abstraction as pseudo-

primary inputs (PPIs). This allows the derived clauses to 

continue depending only on the flops used in the 

abstraction at the risk of running into a spurious CEX.  

This is why, when a CEX is detected by PDRA, a 

dedicated CEX analysis is performed, as described in [16] 

(Section 3.3 “Priority based abstraction refinement”). The 

analysis results in a set of PPIs needed for making the CEX 

fail the property output. These PPIs correspond to flops 

absent in the current abstraction. The next-state functions 

of these flops are added to the abstraction to rule out the 

given spurious CEX. Other spurious CEXes may be 

generated and ruled out in a similar manner.  

At some point (when enough next-state logic functions 

have been added to the current abstraction) PDRA finishes 

Found 
inductive 
invariant? 

 

Overlap 

with init. 

state? 
 

Is CEX 
real? 

 

Find bad 

state 

 

Open new 

timeframe 

 

CEX 
analysis 

 

Abstraction 
refinement 

 

Queue       

of proof 
obligations 

 

Is proof 
obligation 

blocked? 
 

Ternary 

simulation 

 

Push 
clauses 

 

Inductive 
generalization 

 

continue 

 

reset 

 

updated 

flop 
map 

 

return 

UNSAT 

 

yes 

 

no 

 

return 

SAT 

 
no 

 
no 

 

no 

 

yes 

 

yes 

 

Start 

PDR 

 

Minimized 

CEX 

 

LOCALIZATION 

ABSTRACTION 

 

yes 

 



the current timeframe without spurious CEXes. Then an 

additional cleanup step is done where PDRA checks if the 

flops added by refinement appear in the generated clauses. 

Frequently, some flops do not appear in these clauses and 

can be removed from the flop map before PDRA opens the 

next timeframe. The CEX-based refinement is the same as 

the refinement step in GLA [16], while the cleanup step is 

analogous to the proof-based cleanup in GLA. 

In summary, PDRA maintains a data structure called flop 

map to remember what flops are used in the abstraction. 

The flop map is empty at the beginning and grows from 

one frame to another. When a new timeframe is opened, 

PDRA tries to maintain the set of used flops unchanged 

compared to the previous timeframe. To this end, additional 

flops required by ternary simulation are treated as PPIs. 

Once a spurious CEX is found, refinement is performed, 

the queue of POBs is emptied, and the enumeration of bad 

states continues, as shown by the block contained within 

the dotted line in Figure 1. If a real CEX or an inductive 

invariant is discovered, PDRA terminates. 

The modifications described in this section can be 

implemented on top of an available PDR engine, such as 

the one in ABC [2]. The implementation requires adding 

approximately 80 lines of C language code, not counting 

the CEX analysis code, which is reused from [16]. 

5. Comparison with previous work 
The proposed method comes close to some previous work 

[1][19][14][8]. In particular, [1] integrates PDR and 

localization abstraction at a high level, by making these two 

engines exchange information. Flop variables participating 

in bounded PDR runs are scored and used to guide the 

abstraction. This is different from our approach, which 

essentially consists of building a minimalistic localization 

abstraction engine within the PDR engine. 

The first fully integrated approach combining PDR with 

localization abstraction was presented in [19]. However, 

the abstraction used there is “variable timeframe”, as 

defined in [15], that is, in each timeframe, the abstraction 

states what flop outputs should be used to express clauses 

in the given timeframe. Our method is based on a simpler 

“fixed timeframe” abstraction used in [16]. 

The work of [14] combines PDR with abstraction by 

targeting datapath flip-flops to be abstracted. In contrast, 

our approach does not have information to distinguish 

control logic and datapath. It tries to abstract any flops not 

used in a precise over-approximation of the reachable state 

space. We believe that adopting the principles of [14] could 

make our approach even more effective. 

Another integration of PDR with localization abstraction 

is described in [8]. It uses gate-level abstraction while our 

approach is flop-level. The difference between the two is 

discussed in [16]. It is also important to note that our 

implementation is simpler. Given a clear understanding, 

our abstraction can be developed on top of a working PDR 

engine in a matter of hours.  

6. Experimental results 
PDRA is part of two public verification tools: ABC [2] 

(command pdr -t) and ABC-ZZ [17] (command treb -abs). 

The baseline of pdr and treb is described in [7].  

PDRA has been tested on HWMCC benchmarks [10] 

with inconclusive results because most of the testcases 

require preprocessing for PDR to be effective. Moreover, 

often a test case is solved by one flavor of PDR and not by 

others, making it hard to compare, except by the sheer 

number of cases solved. 

Table 1 lists the runtimes, in seconds, taken by different 

PDR flavors to solve 77 unsatisfiable industrial verification 

instances of unknown origin. Empty entries indicate that 

the instance is not solved on a Linux workstation in 900 

seconds. Table 1 shows several versions of PDR along with 

their corresponding abstracting versions (pdr, pdr –t), (treb, 

treb -abs), and (pdr –nc, pdr –nct).  The last, pdr –nc, is a 

version of IC3 with improved generalization [11]. As 

claimed, all three versions were modified fairly easily using 

the ideas outlined in this paper. 

 The last row of Table 1 shows that the PDRs with 

abstraction solve more test cases than the PDRs without 

abstraction. The final row shows geometric averages of 

runtime for 41 out of the 77 test cases solved by all six 

flavors of PDR. The runtime overhead for PDRA is 

negligible, except for treb -abs, which takes 20% more 

time compared to its baseline, treb. 

Table 2 compares different flavors of PDR on the 41 

commonly solved test cases in terms of the the number of 

timeframes needed to converge to an invariant (Column 

“Frames”), and its clause count (Column “Size”) and flop 

count (Column “Supp”).  Table 2 demonstrates that when 

PDRA is used, the number of timeframes increases by 

about 10% on average, while the number of clauses and 

flops is reduced by 15-20% on average. 

7. Conclusions 
The paper describes a practical variation of the known 

model checking algorithm PDR/IC3. The idea is to add 

localization abstraction to the baseline algorithm to reduce 

the set of flop output variables used in the over-

approximation. The modified engine performs better in 

terms of the number of cases solved with a slightly 

increased runtime. Furthermore, it reduces the size of the 

inductive invariants, making them more suitable for design 

analysis and debugging. 

Future work will include  

• Using structural reverse engineering to detect control 

flops and target abstraction to include the remaining 

flops that likely belong to a datapath. 

• Exploring different abstraction refinement strategies, 

which might be better at ruling out counter-examples. 

• Developing an application-specific SAT solver to 

speed up PDR/IC3 with and without abstraction. 

8. Acknowledgements 
This work was supported in part by SRC contract 

2710.001 “SAT-based methods for scalable synthesis and 

verification” and NSF/NSA grant “Enhanced equivalence 

checking in cryptoanalytic applications”.  

The authors thank Zyad Hassan for making publicly 

available in ABC his implementation of IC3 with improved 

generalization [11] used in the experiments of this paper. 



9. REFERENCES 
[1] J. Baumgartner, A. Ivrii, A. Matsliah, and H. Mony. “IC3-guided 

abstraction”. Proc. FMCAD’12, pp. 182–185. 
http://www.cs.utexas.edu/~hunt/fmcad/FMCAD12/029.pdf 

[2] Berkeley Logic Synthesis and Verification Group. ABC: A System 

for Sequential Synthesis and Verification. http://www-
cad.eecs.berkeley.edu/~alanmi/abc 

[3] A. R. Bradley, “k-step relative inductive generalization,” CU 

Boulder, Tech. Rep., Mar. 2010, http://arxiv.org/abs/1003.3649. 
[4] A. R. Bradley, “SAT-based model checking without unrolling”. 

Proc. VMCAI’11. http://ecee.colorado.edu/~bradleya/ 

ic3/ic3_bradley.pdf 
[5] A. R. Bradley, “Understanding IC3”, Proc. SAT’12. 

http://theory.stanford.edu/~arbrad/papers/Understanding_IC3.pdf 

[6] N. Een, A. Mishchenko, and N. Amla, "A single-instance 
incremental SAT formulation of proof- and counterexample-based 

abstraction", Proc. FMCAD'10, pp. 181-188. 
[7] N. Een, A. Mishchenko and R. Brayton, "Efficient implementation 

of property-directed reachability", Proc. FMCAD'11. https://people. 

eecs.berkeley.edu/~alanmi/publications/2011/fmcad11_pdr.pdf 

[8] K. Fan, M.-J. Yang, and C.-Y. Huang, “Automatic abstraction 
refinement of TR for PDR”. Proc. ASP-DAC’16, pp. 121-126. 

[9] A. Griggio and M. Roveri, “Comparing different variants of the IC3 

algorithm for hardware model checking”, IEEE TCAD’16,Vol.35(6).  
[10] Hardware Model Checking Competition. http://fmv.jku.at/hwmcc14/ 

[11] Z. Hassan, A. R. Bradley, and F. Somenzi. “Better generalization in 

IC3”. Proc. FMCAD’13, pp.157-164.http://www.cs.utexas.edu/users 
/hunt/FMCAD/FMCAD13/papers/85-Better-Generalization-IC3.pdf 

[12] Y.-S. Ho, P. Chauhan, P. Roy, A. Mishchenko, and R. Brayton, 

"Efficient uninterpreted function abstraction and refinement for 
word-level model checking", Proc. FMCAD'16.  

[13] A. Ivrii and A. Gurfinkel, “Pushing to the top”, Proc. FMCAD’15, 

http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD15/papers/pa
per39.pdf 

[14] S. Lee and K. A. Sakallah, “Unbounded scalable verification based 

on approximate property-directed reachability and datapath 
abstraction”. Proc. CAV’14, pp. 849–865. 

[15] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, and 

P. Nalla, "Variable time-frame abstraction", Proc. IWLS'12, pp. 41-
47. https://people.eecs.berkeley.edu/~alanmi/publications/2012/ 

iwls12_vta.pdf 

[16] A. Mishchenko, N. Een, R. Brayton, J. Baumgartner, H. Mony, and 
P. Nalla, "GLA: Gate-level abstraction revisited", Proc. DATE'13, 

pp. 1399-1404. https://people.eecs.berkeley.edu/~alanmi/ 

publications/2013/date13_gla.pdf 
[17] N. Een. ABC-ZZ. https://bitbucket.org/niklaseen/abc-zz 

[18] M. Suda, “Triggered clause pushing for IC3”, 2013, 

https://arxiv.org/pdf/1307.4966.pdf  
[19] Y. Vizel, O. Grumberg, and S. Shoham. “Lazy abstraction and SAT-

based reachability in hardware model checking”. Proc. FMCAD’12, 

pp. 173–181. https://pdfs.semanticscholar.org/3195/ 
c92c3c821f7f11949c9e99163dacf73bd267.pdf 

[20] D. Wang, P.-H. Ho, J. Long, J. H. Kukula, Y. Zhu, H.-K. Tony Ma, 

R. F. Damiano, “Formal property verification by abstraction refine-
ment with formal, simulation and hybrid engines”. Proc. DAC’01. 

 

 

Table 1: Comparing different flavors of PDR in terms of the number of solved cases and runtime on 77 industrial examples 

(implementations with abstraction, pdr -t, treb -abs, and pdr -nct, are compared against the baselines, pdr, treb, and pdr -nc). 

Test AND FF pdr pdr -t treb treb-abs pdr -nc pdr -nct 

Ex01 509 142    33.26   

Ex02 509 142    57.80  626.73

Ex03 2602 330 23.47 18.77 31.33 43.94 16.88 39.60

Ex04 2602 330 26.64 24.26 38.75 54.07 26.59 46.50

Ex05 1135 242    317.04   

Ex06 2602 330 29.25 21.49 15.62 45.30 26.42 42.70

Ex07 2602 330 30.08 22.17 22.51 51.75 23.65 50.42

Ex08 1135 242    42.86   

Ex09 19886 782  47.05  148.37  56.14

Ex10 19387 771 38.58 13.71 18.70 24.76 15.10 15.88

Ex11 15555 607    103.44 546.90  

Ex12 15555 607    101.85 544.19  

Ex13 21772 782  308.74 544.75 143.55 138.14 183.21

Ex14 21302 771 116.40 14.56 26.12 30.49 20.93 23.12

Ex15 15555 607    105.72 549.58  

Ex16 21772 782  304.82 556.40 147.49 155.16 182.67

Ex17 5777 726    728.77 141.88 82.70

Ex18 479 89 0.59 5.31 0.15 6.09 1.01 1.21

Ex19 20068 3785 9.18 54.57 38.59 81.98 7.22 20.27

Ex20 20066 3785 19.53 10.46 28.02 21.71 10.50 6.94

Ex21 20047 3785  11.05  38.42  12.46

Ex22 20098 3795  658.28  840.66  311.08

Ex23 9985 2654  640.58    169.56

Ex24 2122 353 10.85 13.31 20.51 22.63 16.99 18.71

Ex25 5043 869 11.53 15.54 28.69 38.89 24.76 40.91

Ex26 7408 965 41.18 560.69 80.60 885.90 26.54  

Ex27 18347 1207 142.47 154.26 243.24 515.71 155.65 167.72

Ex28 1755 384  18.66 74.78 46.32 16.12 16.54

Ex29 1746 383  3.72  16.97  23.31

Ex30 11945 781 14.63 13.42 24.01 26.05 16.51 17.69

Ex31 4452 731  50.33  29.82 167.96 34.09

Ex32 1979 368 89.62 79.61 40.55 63.09 38.84 97.01

Ex33 1917 360 58.79 66.04 38.47 56.96 36.20 56.58

Ex34 1840 348 54.29 51.00 64.73 40.53 30.73 55.92

Ex35 1762 335 20.74 29.36 39.28 46.66 24.54 22.53

Ex36 1697 327 17.53 32.17 28.92 29.61 44.57 18.20

Ex37 2675 178 380.46 284.26     

Ex38 2360 178 600.22  279.76 289.69 321.80 275.02

Ex39 1973 146 70.55 61.12 51.19 110.57 123.74 148.24

Table continues on the right hand side 

Test AND FF pdr pdr -t treb treb-abs pdr -nc pdr -nct 

Ex40 36851 2434    348.63  316.15

Ex41 36851 2434    92.10   

Ex42 9895 2249  37.53 14.25 4.56 37.73 8.38

Ex43 9897 2249    6.37 322.77 382.68

Ex44 36851 2434    353.64  314.82

Ex45 9460 1564 28.40 8.14 70.10 52.34 32.46 16.31

Ex46 531 131 2.55 4.34 4.57 6.00 4.93 6.61

Ex47 920 231 9.38 8.63 15.79 20.06 12.21 8.90

Ex48 952 249 24.80 34.62 120.18 36.98 19.84 22.09

Ex49 2052 413   52.44  36.15 74.71

Ex50 1072 253 24.83 38.27 67.43 43.76 21.77 21.98

Ex51 952 249 28.73 22.72 98.06 27.39 14.10 24.99

Ex52 930 241 9.1 17.62 27.44 19.70 18.48 11.84

Ex53 890 229 27.71 19.70 31.32 22.88 15.51 16.64

Ex54 920 231 9.91 8.79 15.63 20.19 11.94 8.85

Ex55 934 239 11.12 18.47 20.36 17.36 15.97 15.90

Ex56 952 249 35.61 27.54 33.61 27.27 19.31 17.22

Ex57 1948 397    297.88 44.77 72.25

Ex58 872 221 16.83 13.34 39.24 13.47 12.24 12.58

Ex59 966 237 30.29 18.57 33.86 45.23 27.67 18.70

Ex60 952 249 21.55 20.16 90.53 25.97 20.96 17.26

Ex61 1050 183 0.46 1.98 4.48 19.74 0.77 0.40

Ex62 1533 252   26.02 32.38 7.28 6.47

Ex63 3632 521 103.22 166.92 180.20 358.97 308.01 287.2

Ex64 1600 309 5.00 1.62 10.92 3.53 4.61 1.74

Ex65 1189 227 80.72 104.11 55.66 84.38 20.07 27.4

Ex66 9422 1324 108.60 165.03 116.82 267.66 148.11 158.88

Ex67 6199 972 873.41 461.90   271.85 200.09

Ex68 1233 171  480.73   798.93  

Ex69 16745 3113  284.45  308.88 281.91 406.61

Ex70 16700 3107 101.77   422.50 117.75 157.22

Ex71 16701 3107  502.31  104.58 45.32 70.61

Ex72 16701 3107 221.54  135.05 140.39 22.70 149.08

Ex73 12049 2389   151.12 239.02 20.85 244.87

Ex74 541 76 4.73 13.93 1.04 51.50 7.44 17.04

Ex75 528 76 10.05 8.69 1.13 48.31 7.17 13.51

Ex76 1228 208  688.81   257.81 419.00

Ex77 1177 195 2.75 1.69 84.52 2.12 8.64 1.76

Solved   47 58 51 71 64 67

Time, %   1.000 1.047 1.400 1.812 0.973 1.038



 

Table 2: Comparing different flavors of PDR in terms of the frame count and the invariant size on 41 industrial examples 

(implementations with abstraction, pdr -t, treb -abs, and pdr -nct, are compared against the baselines, pdr, treb, and pdr -nc). 

   pdr pdr -t treb treb -abs pdr -nc pdr -nct 

Test AND FF Frame Size Supp Frame Size Supp Frame Size Supp Frame Size Supp Frame Size Supp Frame Size Supp 

Ex03 2602 330 9 4222 228 15 3929 178 11 3906 196 12 3914 179 9 3998 208 9 4099 178 

Ex04 2602 330 15 4108 228 16 4069 186 11 3926 203 14 4047 193 15 4112 226 16 4097 206 

Ex06 2602 330 11 4197 209 14 4073 178 15 3858 184 10 3879 193 11 4127 206 16 4096 186 

Ex07 2602 330 12 4285 256 13 4110 178 10 3845 194 14 3945 198 15 4151 236 18 4120 196 

Ex10 19387 771 4 3104 379 3 2626 99 3 2577 103 3 2562 96 4 2824 177 3 2627 99 

Ex14 21302 771 4 3504 442 4 2636 99 3 2587 108 3 2563 96 4 2798 135 3 2640 99 

Ex18 479 89 14 74 65 20 306 61 11 53 48 25 140 58 15 139 66 17 110 46 

Ex19 20068 3785 33 661 256 62 1194 227 35 359 192 65 276 161 30 356 267 57 348 215 

Ex20 20066 3785 60 1285 382 107 523 42 59 486 98 63 212 43 74 693 121 75 228 40 

Ex24 2122 353 11 2134 242 13 1932 191 7 2014 237 9 1782 167 10 2104 230 12 1972 166 

Ex25 5043 869 4 4123 60 7 4139 68 4 4136 58 8 4130 67 4 4132 59 7 4182 110 

Ex27 18347 1207 17 2403 1077 17 2457 1077 17 2217 1077 17 1378 1078 17 2410 1077 17 2432 1077 

Ex30 11945 781 8 634 247 9 603 210 8 582 240 8 563 187 9 601 243 9 602 222 

Ex32 1979 368 24 3398 339 50 2466 340 19 1981 339 26 1594 339 22 1942 338 44 2447 340 

Ex33 1917 360 21 3174 333 29 2732 331 21 2184 331 24 1553 328 21 1955 336 22 2389 333 

Ex34 1840 348 44 1930 320 36 2462 317 26 2103 315 20 1744 315 36 1375 320 40 1919 320 

Ex35 1762 335 22 1619 310 30 1737 305 42 1409 307 24 1519 302 22 1700 305 20 1571 305 

Ex36 1697 327 22 1271 298 26 1635 298 18 1257 292 20 1456 296 25 1984 299 28 1105 298 

Ex39 1973 146 8 4534 137 8 4096 126 8 3746 132 8 3859 127 9 3898 137 8 4045 135 

Ex45 9460 1564 59 1022 246 58 659 208 67 909 209 62 743 208 80 1121 265 58 865 207 

Ex46 531 131 8 1056 120 9 1168 121 8 1057 119 9 950 116 8 1186 119 9 1085 118 

Ex47 920 231 14 1637 174 14 1464 169 14 1664 186 20 1595 167 17 1237 179 19 1179 169 

Ex48 952 249 15 2364 233 20 3074 235 15 4933 235 14 2975 228 17 1833 233 19 2090 237 

Ex50 1072 253 19 2208 236 17 2949 230 16 2532 232 16 2510 229 15 1835 239 18 1785 237 

Ex51 952 249 16 2853 234 21 2485 231 15 3900 234 13 1781 229 21 1418 235 19 2427 237 

Ex52 930 241 15 1596 192 21 1972 193 16 3516 216 15 2037 196 16 1749 206 17 1222 191 

Ex53 890 229 20 2831 212 16 2459 212 15 2452 207 20 1455 205 17 1812 214 16 1759 208 

Ex54 920 231 14 1637 174 14 1464 169 14 1664 186 20 1595 167 17 1237 179 19 1179 169 

Ex55 934 239 18 1597 186 15 2294 192 17 2781 206 18 1336 183 23 1846 195 17 1953 182 

Ex56 952 249 21 3015 233 21 2369 228 21 2907 234 16 1853 231 21 1446 235 17 2154 229 

Ex58 872 221 15 2326 195 19 1789 170 16 2702 198 15 1402 152 21 1428 193 17 1341 175 

Ex59 966 237 19 2489 220 17 2580 217 15 2521 219 18 2665 219 20 1975 223 18 1968 219 

Ex60 952 249 15 2653 233 17 2629 233 17 4232 232 19 1752 227 17 2285 234 17 1859 224 

Ex61 1050 183 8 124 84 10 109 67 13 123 81 14 362 82 11 101 76 10 84 53 

Ex63 3632 521 95 1441 513 116 1460 512 122 1222 509 115 1241 510 177 1741 514 152 1670 513 

Ex64 1600 309 81 303 138 15 321 136 81 353 138 12 244 130 65 306 140 19 302 139 

Ex65 1189 227 9 2831 216 10 2974 217 10 2602 216 9 1801 217 9 1422 216 9 1626 216 

Ex66 9422 1324 18 1440 1323 25 1455 1323 16 1405 1323 18 1414 1324 19 1400 1323 22 1394 1323 

Ex74 541 76 43 23 15 179 10 17 39 70 18 416 12 18 54 63 21 160 67 24 

Ex75 528 76 53 17 15 109 19 17 39 83 19 369 12 17 61 65 21 142 67 22 

Ex77 1177 195 21 482 139 16 304 66 28 4088 138 13 258 64 28 926 178 15 313 68 

Geo   1.000 1.000 1.000 1.161 0.976 0.829 0.968 1.089 0.886 1.098 0.798 0.816 1.085 0.926 0.948 1.130 0.871 0.843 

 


