
SAT-Based Optimization with Don’t-Cares Revisited

Alan Mishchenko Robert Brayton Ana Petkovska Mathias Soeken

Department of EECS, UC Berkeley Ecole Polytechnique Federale de Lausanne (EPFL)

{alanmi, brayton}@berkeley.edu {ana.petkovska, mathias.soeken}@epfl.ch

Abstract
The paper describes a SAT-based framework for logic

optimization with don’t-cares aimed at reducing delay and

area after LUT mapping. While individual components of

the framework are known, its novelty is in synergistically

combining the following aspects of SAT-based optimization

for the first time: a) improved computation of delay and

area criticality, b) novel reconvergence-driven windowing

and divisor selection, c) the use of complete don’t-cares,

and d) SAT-based generation of new useful cut-points in

the network. Experimental results show that a preliminary

implementation improves delay after LUT mapping at the

cost of some area increase, compared to previous methods.

1. Introduction
Logic synthesis and technology mapping are often

charged with the task of reducing delay in a logic network

representing a hardware design. Delay optimization is

important in FPGA synthesis because reduced delay

correlates well with improved maximum clock frequency

that can be achieved for the design. When delay

optimization succeeds in reducing delay, area often

increases, making area optimization under delay constraints

another important goal of logic synthesis for FPGAs.

In this paper, we treat delay and area optimization

uniformly. However, some methods differ depending on

whether the goal of optimization is delay or area. It is noted

when a notion or a heuristic is delay- or area-specific.

Most optimization methods for logic networks developed

in the last few decades fall into one of the two categories:

• Those applied on a technology-independent level

before mapping without taking into account a specific

LUT size used during mapping.

• Those applied after technology mapping when the

structure of the LUT network is fixed and can be

modified only incrementally.

This paper generally follows the second approach, but it

also compatible with the first approach, because it allows

candidate divisors to be selected among those subject graph

nodes that are not exposed as outputs of individual LUTs.

The paper also proposes a novel notion of delay/area

criticality, which allows for better selection of target nodes

during optimization, and a novel reconvergence-driven

windowing and divisor selection, which improve runtime.

In addition to the above, the proposed method employs

several known techniques in a way, which enhances the

generality and expressive power of the optimization.

Figure 1 compares the proposed method (command

&mfsd in ABC) against three other techniques, a) AIG-

rewriting [10] (dc2), b) structural LUT mapping [11] (if),

and c) don’t-care-based optimization [12] (mfs2). The

following criteria are used for comparison:

• Use of AIGs as an underlying representation – this is
preferred because it provides more candidate divisors

for re-expressing the target node.

• Accounting for the target LUT size – this is important

for making goal-oriented changes; otherwise structural

bias hinders the mapper in finding a good mapping.

• Use of dynamic programming – this is desirable
because it helps minimize delay at the target node by

getting the best possible delay at its fanins.

• Use of SAT-based methods – these tend to explore a
larger search space whereas other methods are often

limited to fewer structural optimization opportunities.

• Use of don’t-cares – these allow for more aggressive

transformations since the equivalence is only

maintained on the care-set. It also reduces the runtime

of QBF based functional evaluation.

• Creating cut-points that are not in the current netlist –
these additional nodes synthesized by the algorithm

can result in more optimization opportunities.

Feature for

com-

parison

AIG

rewriting

(dc2)

Structural

mapping

(if)

DC-based

optimizat.

(mfs2)

This

method

(mfsd)

AIG based Yes Yes No Yes

LUT size

aware

No Yes Yes Yes

Uses dyn.

program.

No Yes No Yes

SAT-based No No Yes Yes

Uses don’t-

cares

No No Yes Yes

Create new

cut-points

Yes No/Yes No Yes

Figure 1. Comparing optimization methods.

Note that structural mapping creates new cut-points only

when the target technology is LUT-structures [15] rather

than single LUTs.

Some traditional LUT mapping is delay-optimal for a

fixed subject graph [2][11]. However, the proposed

algorithm can change the graph structure, thereby enabling

mapping with even shorter delays.

The proposed method can be extended to standard cells,

technology-independent AIGs, and logic structures

composed of known primitives, such as MUXes or majority

gates. The main difference, compared to the LUT networks,

in the synthesis phase, when the result of synthesis is not a

LUT structure, but a complex programmable cell [13] or a

combination of gates from a standard-cell library [14].

The rest of the paper is organized as follows. Section 2

contains necessary background. Section 3 gives a top-level

view of the optimization framework. Section 4 describes

the components of the framework. Section 5 shows

experimental results. Section 6 concludes the paper.

2. Background

2.1 Boolean function

In this paper, function refers to a completely specified

Boolean function f(X): B
n
 → B, B = {0,1}. The support of

function f is the set of variables X, which can influence the

output value of f. The support size is denoted by |X|.

Expressions x and x are the negative and positive literals

of variable x, respectively. “Negative” and “positive” are

the polarities of variable x in the literals.

2.2 Boolean network

A Boolean network (or circuit) is a directed acyclic graph

(DAG) with nodes corresponding to Boolean functions and

edges corresponding to wires connecting the nodes.

A node n has zero or more fanins, i.e., nodes driving n,

and zero or more fanouts, i.e., nodes driven by n. The

primary inputs (PIs) are nodes without fanins. The primary

outputs (POs) are a subset of nodes delivering the results to

the environment. A transitive fanin (fanout) cone

(TFI/TFO) of node n is a subset of the network nodes,

reachable through the fanin (fanout) edges of the node.

Internal flexibilities of a node in a network arise because

of a limited controllability and observability. Lack of

controllability occurs because some combinations of values

are never produced at the fanins of the node. Lack of

observability occurs because the node’s value does not

have an impact on the values of the POs under some values

of the PIs. Examples can be found in [9].

These internal flexibilities result in don’t-cares at the

node n. The complement of the don’t-cares is the care set.

Given a network with PIs x and PO functions {zi(x)}, the

care set Cn(x) of a node n is a Boolean function

() [() ()]
n i i

i

C x z x z x′= ⊕∑

where ()iz x′ are the PO functions in a copy of the network

with node n complemented, as shown in Figure 3 [9].

2.3 And-Inverter Graph

An And-Invertor Graph (AIG) is a combinational

Boolean network composed of two-input AND gates and

inverters. An AIG can be derived by factoring the functions

of the logic nodes found in the network. The AND/OR

gates in the factored forms can be converted into node

AIGs using DeMorgan’s rules. The AIG of the network is

then constructed in a topological order by composing each

node AIG into a network AIG.

A cut C of a node n is a set of nodes of the network,

called leaves of the cut, such that each path from a PI to n

passes through at least one leaf. Node n is called the root of

cut C. The cut size is the number of its leaves. A trivial cut

of a node is the cut composed of the node itself. A cut is K-

feasible if cut size does not exceed K.

2.4 Boolean satisfiability

A satisfiability problem (SAT) takes a propositional

formula representing a Boolean function and decides if the

formula is satisfiable or not. The formula is satisfiable

(SAT) if there is an assignment of variables that evaluates

the formula to 1. Otherwise, the formula is unsatisfiable

(UNSAT). A software program that solves SAT problems

is called a SAT solver. SAT solvers provide a satisfying

assignment when the problem is satisfiable.

Modern SAT solvers can accept assumptions, which are

single-literal clauses holding for one call to the SAT solver.

The process of determining the satisfiability of a problem

under given assumptions is called incremental SAT solving.

2.5 Conjunctive Normal Form (CNF)

To represent a propositional formula in the SAT solver,

important aspects of the problem are encoded using

Boolean variables. The presence or absence of a given

aspect is represented by a positive or negative literal of a

variable. A disjunction of literals is called a clause. A

conjunction of clauses is called a CNF. CNFs can be

processed efficiently by mainstream CNF-based SAT

solvers, such as MiniSAT [3].

Deriving a CNF for a subset of nodes of the Boolean

network is performed by putting together CNFs obtained by

converting each node. A CNF for a node is derived by

deriving SOPs of the on-set and off-set of the Boolean

function of the node, and converting these SOPs into CNF

using the De Morgan rule.

3. Framework overview
The proposed optimization framework includes several

components whose interaction is illustrated in Figure 2.

Figure 2: Overview of optimization framework.

In the case of delay optimization, processing begins by

selecting delay-critical nodes. If an initial mapping is

provided, this mapping is used to detect the critical region

and compute a sequence of critical nodes. If no mapping is

provided, a delay-oriented mapping is computed on the fly

assuming that the critical paths contain the entire network.

Nodes are ordered by a heuristic, which selects a node

that can benefit from delay optimization more than others.

SAT-based feasible

support computation

Structural candidate

divisor selection

SAT-based LUT

structure synthesis

Iteration over

internal nodes

Generating
final netlist

Structural

windowing
Critical path

detection

For this, a priority queue is maintained during computation,

which ranks nodes based on the number of critical paths

passing through them, as discussed in Section 4.1.

For each node that is targeted for delay or area

optimization, the following steps are performed:

• A topological window and candidate divisors are
computed by a novel reconvergence-driven windowing

and divisor selection method introduced in Section 4.2.

• A subset of candidate divisors is selected and proved to
be feasible as a functional support of the target node,

or proved that no feasible subset exists, using a novel

divisor selection procedure, described in Section 4.3.

Finally, a new LUT structure, which by construction is

guaranteed to reduce area or delay at a target node, is

synthesized using QBF, as shown in Section 4.4. The main

difference, compared to previous work [6][4][13] on QBF-

based LUT-structure evaluation, is that don’t-care are used,

which improves the quality and at the same time reduces

the runtime of the QBF solver.

For example, consider the following scenario that may

appear during delay optimization. If the best delay of a

target node in the preliminary mapping is 5, the framework

attempts to change the circuit structure of the target node

and its fanins, so that delay 4 is achieved. It is assumed

here that each LUT has a delay of 1. Thus, divisors with

delay 3 or less are selected. If it is possible to realize the

target node using a LUT whose fanins have delay 3, then

the node can be realized with delay 4, and the goal of delay

optimization is achieved. If the node cannot be realized as a

single LUT whose fanins have delay 3, the framework may

check the existence of a LUT-structure composed of two

LUTs, such that inputs to the fanout LUT of the structure

have delay 3 or less, while inputs of the fanin LUT have

delay 2 or less. If that structure exists, the target node can

be realized with delay 4. If not, the computation may try a

larger LUT-structure, or move to another node.

At the end of the computation, or if a timeout occurs, the

final restructured LUT network is generated and returned.

The network is guaranteed to have the delay projected by

the framework during delay optimization.

4. Framework components

4.1 Detection of critical nodes

While most of the paper considers delay and area

optimization uniformly, this section treats them differently.

SAT-based delay optimization is based on the notion of

the delay criticality of a node. Delay criticality of a node

shows how much reducing delay at the node may reduce

the maximum delay of the network, measured as the largest

number of LUTs on any path from a PI to a PO.

SAT-based area optimization is based on the notion of the

area criticality of a node, which shows how much area

could be potentially saved by changing the node. The area

is measured as the number of LUTs.

Area criticality
We consider area criticality first. The maximum fanout

free cone (MFFC) of a node in the network, is the set of all

internal nodes that would be removed if the node were to

be removed. The larger is the MFFC of a node, the more

area-critical is the node. For example, consider a node

whose all fanins have some other fanouts besides the given

node. The MFFC of this node contains only the node itself.

Even if the node is proved redundant or replaced by another

node already present in the network, only one LUT is

saved. If, on the other hand, the node has a large MFFC, it

may be possible to reduce the MFFC size or reexpress the

function of the node in such a way that it does not depend

on some LUTs in its MFFC, but instead depends on the

LUTs that are currently outside of the node’s MFFC.

When resynthesis for area is performed, the nodes are

considered in the decreasing order of their MFFC sizes. If

an area-critical node cannot be improved, the node’s fanins

are considered in the decreasing order of their MFFC sizes.

An attempt is made to replace the most area-critical

fanin(s) by the nodes that are currently outside of the

MFFC of the fanin(s). If this is possible, the transformation

is accepted, thereby reducing the total area.

Delay criticality

To characterize delay criticality of a node, it is helpful to

introduce the notion of a critical edge. An edge between a

node and its fanin is critical, if increasing the delay of this

edge results in increasing the delay at a PO. By extension,

an internal node is critical, if it has at least one incoming or

outgoing critical edge. The critical region of the network is

the set of all critical nodes.

It is helpful to observe that two nodes may be critical and

yet an edge between them, if it is exists, may be not critical,

because the nodes are critical due to some other edges.

An input-to-output critical path (IOCP) is a sequence of

critical edges originating at a PI and terminating at a PO.

Similarly, an output-to-input critical path (OICP) is a

sequence of critical edges originating at a PO and

terminating at a PI. Two critical paths (CPs) are different if

they differ in at least one edge.

Next, we introduce a method of computing how many

different IOCPs (OICPs) pass through a given critical edge.

To compute the number of IOCPs, we assign IOCP count

of a PI to be 1, if the PI appears on a critical path, and 0,

otherwise. Next, we traverse the network in a topological

order from PIs to POs and set the IOCP count of an internal

node to be equal to the sum of IOCP counts of the fanins.

The OICP counts of the nodes are computed similarly, by

exchanging the roles of PIs and POs. The delay criticality

of a node is defined as the total number of IOCPs and

OICPs passing through the node.

This sum is computed at the beginning and updated

incrementally during delay optimization. Each time the

delay of a node is reduced, the delay change is propagated

to the TFI and TFO. The edges that were critical before,

may be no longer critical, and as a result, the number of

IOCPs and OICPs will be reduced. Both the edge delays

and the CP counts are updated incrementally, by traversing

the affected part of the node’s TFI and TFO. Only if the

global delay of the network has changed after updating the

node, new critical edges are created, in which case the edge

delays and the CP counts are recomputed from scratch.

In our implementation, the critical nodes are stored in the

priority queue ordered by their delay criticality. The most

critical node is repeatedly extracted from the queue and an

attempt is made to improve delay of the node. If the attempt

succeeds, the network is changed and the delay criticalities

of the nodes are incrementally updated, which is reflected

in the ordering of the nodes in the queue.

It should be noted that the notion of delay criticality, as

defined above, elegantly captures the node’s role in the

critical region of the network. If the sum of CP counts is 0,

the node is outside of the critical region. The larger is the

sum of CP counts, the more critical paths go through the

node and the more likely improving delay at the node may

reduce the maximum delay of the network.

To avoid making unnecessary changes, the network is

backed up each time after its maximum delay has changed.

If the maximum delay of the network is not reduced after a

number of incremental delay optimization steps when a

resource limit is reached, the network is restored to the

state it was the time of the last backup.

4.2 Windowing and divisor selection

This section describes an improved windowing algorithm,

which leads to better runtime and quality of results,

compared to the traditional windowing.

Window computation

The traditional structural window for a node contains a

fixed number of TFI/TFO levels of logic centered at the

node, plus all paths originating in the limited TFI and

terminating in the limited TFO [9]. Thus, by construction,

this window contains all recovergences, such that at least

one of the reconvergent paths goes through the node.

The main idea of the new windowing, is that the non-

reconvergent paths do not provide don’t-cares, even if they

are included in the window. One possibility is to compute

a new window by starting from the traditional window and

removing all the nodes found on the paths without

reconvergence in the current window. Another possibility,

is to collect the recovergent paths directly, by performing a

dedicated traversal starting from the node, as shown below.

For this traversal, we consider the netlist as an undirected

graph, that is, we traverse fanins and fanouts of each node

uniformly, without distinguishing them. Each node

accessed during the traversal is marked as “visited once”. If

the same node is accessed again, it is marked as “visited

more than once”. All the nodes that are “visited more than

once” along with the path connecting them with the target

node, are collected and included in the window.

Candidate divisor selection

Once the window is computed, we need to determine the

set of candidate divisors, that is, the set of nodes that may

be used to reexpress the function of the target node while

trying to optimize ir for delay or area. When the traditional

windowing [9] is used, the set of candidate divisors is

composed of two sets of nodes: (a) the window nodes in the

TFI of the target node, and (b) the window nodes that are

not in the TFI and the TFO of the target node, but whose

support in terms of the window inputs, is a subset of the

support of the target node.

In the previous subsection, we introduced an improved

reconvergence-driven windowing algorithm. Here we

similarly improve candidate divisor selection, by making it

reconvergence-driven. To this end, we group the divisors

using their topological information. Two divisors are

topologically related if they share a path to the target node

or if they are located on overlapping reconvergent paths. In

both cases, the divisors share some support variables and

may be may replace each other as fanins of the node.

For example, suppose we are building a new functional

support of the target node, and at some point we found a

feasible set of divisors, as defined in the next section.

Furthermore, suppose one divisor does not meet the

optimization requirements, in particular, its arrival time is

too high, thereby precluding a delay improvement at the

target node. In this case, we can remove this late-arriving

divisor from the feasible set, temporarily resulting in an

infeasible set. To derive another feasible set, there is no

need to try divisors that are not topologically related to the

removed one. Instead, we consider adding only divisors

that are topologically related, but have smaller delay than

the removed one. If adding one or more of them makes the

set feasible, we achieved the optimization goal. Otherwise,

we conclude that the target node’s delay cannot be

improved and the algorithm moves on the next target node.

Characterizing don’t-cares

The window computed for node n is used to derive a

Boolean relation defining the local care set of n, as shown

in Figure 3. The circuit representation of the Boolean

relation contains two copies of n’s TFO, one of which has

an inverter at n’s output. A comparator network is added to

compare the pairs of corresponding outputs of the window.

The output of the comparator is set to 1; hence any

satisfying assignment complementing n’s function causes a

difference to be seen by at least one of the window outputs.

Thus, the constructed circuit represents care set of the node

in the given window.

Figure 3. Deriving Boolean relation containing all possible

implementations of the node in terms of candidate divisors.

The Boolean relation represented by the circuit structure

in Figure 3 relates the function of n with functions of

candidate divisors whose support is a subset of the support

of the node’s TFI, illustrated as divisors d1 and d2, shown in

Figure 3. Note that candidate divisors may be contained in

n’s TFI, such as d1, or just having its support contained in

its TFI, such as d2.

4.3 Checking feasibility of a set of divisors

A set of candidate divisors is feasible for implementing a

target node, if the node’s function can be expressed in

terms of these candidates only. Obviously, the set of the

F

x x

1

TFO TFO

d2

TFI TFI

d1
n n

()iz x′

Cn(x)

zi(x)

node’s fanins is feasible but some fanins may be late-

arriving and not useful for reducing delay of the node.

The following SPFD Theorem [12] is used check the

feasibility of a set of divisors: The set of divisors is

infeasible iff there exist two care set minterms (m1, m2) such

that the node has different values in the two minterms while

each divisor has the same value in the two minterms.

In this case, the set of divisors does not have enough

expressive power to distinguish the two minterms, but the

target node should be able to distinguish them.

There are two ways of checking whether a set of divisors

is feasible. The first one, based on a resubstitution miter,

was introduced in Section 4.4 of [12]. It is faster for large

sets of divisors, but the drawback is that it requires the use

of interpolation to derive the new function at the node.

The second way to check the divisor set feasibility is

based on cube enumeration. In this case, we construct a

SAT instance representing the node’s care set, as shown in

Figure 3. Note that the window output is set to 1. This SAT

instance is used to perform three tasks:

• compute a care onset minterm m1 of n,

• compute a special care offset minterm m2 of n,

• expand m1 against the offset if m2 does not exist.

To perform the first task, n’s output is assumed to be 1,

and the SAT solver is used to find a satisfying assignment.

To perform the second task, n’s output is assumed 0

while each candidate divisor is assumed to have the same

value it had for m1. If this problem is SAT, we have found a

care offset minterm, m2, while having the same values at

the divisors as for m1. According to the above theorem, this

set of divisors is infeasible.

If the problem is UNSAT, the SAT solver’s method,

called analyze_final() in MiniSAT, is used to return a

subset of candidate divisor literals, which should be present

in a cube for it to have no overlap with the offset, that is, to

belong to the onset plus the don’t care set. Thus m1 has

been expanded to a cube having no overlap with the care

offset. The resulting cube is used later as a blocking clause

to make sure that future care on-set minterms are not

covered by this cube. The process is repeated until all care

onset minterms are covered by at least one cube, or until

the infeasibility of the set of divisors has been proved.

The advantage of checking the divisor set feasibility

using cube enumeration is that it derives the new function

at the node as a by-product. However, since large functions

often have more cubes, this method can be slower for

functions with more than 10 inputs.

4.4 Selecting a set of divisors

In the case of delay optimization, the above procedure

checks the existence of a feasible subset of divisors that can

reduce the delay of n from D to D-1. This procedure is

called for a set of all divisors of the node having delay D-2

or less. If the set is not feasible, we know that the node

cannot be implemented with delay D-1, given the circuit

structure used to generate the candidate divisors.

If the given set of divisors is feasible, the procedure

returns a reduced subset selected by calls to

analyze_final(). If the subset contains no more than K

divisors, the target node can be implemented using one K-

LUT. If the resulting subset contains more than K divisors,

we try to find a LUT-structure implementing the node in

terms of more than one K-LUT, such that the delay of the

target node does not exceed D-1.

For this, we consider the topology of a selected LUT-

structure and the delays of the set of divisors. For example,

if the LUT-structure contains two LUTs in tandem, then for

the LUT-structure to be delay-reducing, the fanins of the

top LUT should have delay D-2 or less, while the fanins of

the bottom LUT should have delay D-3 or less.

4.5 Synthesizing a LUT-structure

SAT-based synthesis of LUT-structures for the given

Boolean function was pioneered in [6]. Our implementation

uses a dedicated Quantified Boolean Formula (QBF) solver

in ABC [1], which is based on iterative SAT solving.

Computing a LUT-structure S(x, p) that can implement a

Boolean function F(x), is done by checking satisfiability of

the QBF formula: ∃p∀x [S(x, p) = F(x)]. If a satisfying

assignment for the parameters p exists, it shows how to

configure the LUT structure to realize F(x).

Unlike the case when F(x) is completely specified and is

given explicitly as a truth table or as a circuit, the

formulation in this paper uses don’t-cares. To extend the

above approach for incompletely specified functions,

Boolean function F(x) and the care-set C(x) are represented

implicitly as a SAT instance similar to the one constructed

in Section 4.3 to relate the value of the node with those of

the candidate divisors. The difference in the new SAT

instance is that, instead of comparing a window containing

the original node and the same window containing the

complemented node, as shown in Figure 3, we are

comparing the node’s original implementation with the

node’s implementation as a LUT-structure, S(x, p).

For a specific minterm, say p = p0, the above SAT

instance checks whether the LUT-structure S(x, p0)

initialized with values p0 implements the target node on the

care-set. If it does, the SAT instance is UNSAT, and the

desired LUT structure is represented by minterm p0. If it is

SAT, we get a care-set minterm x0, for which parameter

values p0 fail to implement the given function.

The minterm x0 is substituted into S(x, p), and the

resulting function, W0(p) = S(x=x0, p), is used as an

additional constraint for ∃p[S(x, p) == F(x)]. If the resulting

formula is SAT, we have another set of specific values of p,

p1, which is handled in the same way as p0, generating

another constraint W1(p).

If at some point the formula is UNSAT, the QBF instance

has no solution, meaning that the desired LUT structure

does not exist. An upper bound on the number of iterations

is 2
|x|
, but in practice convergence is often achieved much

faster. An additional speedup can be achieved by adding

symmetry-breaking clauses [4] and solving multiple QBF

instances concurrently [13].

5. Experimental results
A preliminary version of the proposed SAT-based

optimization framework specialized for delay optimization

has been implemented as command &mfsd in ABC [1].

This command differs from two SAT-based commands:

mfs2 [12] for LUT-mapped networks and mfs3 [13] for

standard-cell-mapped networks.

The implemented version is limited in the following way:

• Only delay optimization is considered

• All nodes are targeted for delay optimization rather

than some nodes on the critical paths.

• The proposed reconvergence-driven techniques are

not enabled and, instead, the traditional windowing

and candidate divisor selection are used [12].

The method implemented in &mfsd was compared

against delay optimization by mapping into LUT structures

composed of two 4-input LUTs (called “S44”) [15]. These

two methods are similar in that they use 1) dynamic

programming, 2) AIGs as the underlying data-structure,

and 3) generation of new delay-oriented cut-points, which

are outputs of the bottom LUT feeding into the top LUT.

The methods differ in that S44 considers multiple cuts at

each node and uses Boolean decomposition implemented

with the truth tables to target the 2-LUT structures. The

proposed method uses SAT-based LUT-structure synthesis

on the care-set while limiting the support to a set of feasible

divisors. The number of sets considered is fewer than the

number of cuts in S44 but the expressive power of SAT-

based synthesis with don’t-cares is higher.

Both S44 and the proposed method have been applied to a

suite of 60 industrial designs ranging in size from 1K to

50K 4-LUTs. Three runs were performed: (1) only S44, (2)

only &mfsd, (3) S44 followed by &mfsd.

The results are:

1) &mfsd improved delays, expressed in terms of 4-

LUT levels, by 4.0% compared to S44 alone,

2) when both S44 and &mfsd are used, the delays

improved by 5.3%, compared to S44 alone.

The runtimes of the proposed method are reasonable. For

the largest examples, it takes about 3-5x longer than S44

and did not exceed 5 min for any of the designs.

In these preliminary runs, the area increased by more than

10%. It is expected that the area increase will be less when

area recovery under delay constraints is performed.

6. Conclusions
The paper proposes a new powerful method for

optimization of networks mapped for LUT-based FPGAs.

The method is more general than the known methods and

improves most of the aspects of SAT-based delay and area

optimization with don’t-cares:

• windowing and candidate divisor computation are

reconvergence-driven, which reduces the size of

logic considered and the runtime, while improving

the expressive power and the quality of results;

• divisor selection is modified to find a minimal set of

divisors using a new efficient SAT-based procedure,

which efficiently tries different divisor combinations

to find the one with a minimum cost;

• a new flavor of QBF based evaluation procedure

allows for updating several LUTs at a time and

works for multi-output windows, while the previous

SAT-based optimization with don’t-cares [12] can

change only one LUT at a time, while that changing

more than one LUT [4] does not use don’t-cares.

Future work in this area will include:

• fine-turning SAT and QBF engines to reduce runtime

• extending these methods to work for standard cells

• developing SAT-based methods for topologically

constrained LUT architectures, such as 2D and 3D

meshes, in which each LUT can communicate with a

limited number of neighbors.

7. Acknowledgements
This work is supported in part by NSF/NSA grant

“Enhanced equivalence checking in cryptoanalytic

applications” and SRC contract 2710.001 “SAT-based

methods for scalable synthesis and verification”.

8. References
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System

for Sequential Synthesis and Verification. http://www-
cad.eecs.berkeley.edu/~alanmi/abc

[2] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping

algorithm for delay optimization in lookup-table based FPGA

designs”, IEEE TCAD’94, Vol. 13(1), pp. 1-12.
[3] N. Een and N. Sörensson, “An extensible SAT-solver”, Proc.

SAT’03, LNCS 2919, pp. 502-518.

[4] Y. Hu, V. Shih, R. Majumdar, and L. He. “Efficient SAT-based
Boolean matching for heterogeneous FPGA technology mapping”,

Proc. ICCAD’07.

[5] V. N. Kravets and P. Kudva, “Implicit enumeration of structural
changes in circuit optimization”. Proc. DAC’04, pp. 438-441.

[6] A. Ling, D. Singh, and S. Brown. “FPGA PLB evaluation using

Quantified Boolean Satisfiability”, Proc. FPGA’05.
http://www.eecg.toronto.edu/~brown/papers/fpl05-ling.pdf

[7] A. Malik, R. K. Brayton, A. R. Newton, and A. Singiovanni-
Vincentelli, “Two-level minimization of multi-valued functions

with large offsets”, IEEE TCAD’91, Vol. 10(4), pp. 413-424.

[8] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, "Cutless
FPGA mapping", ERL Technical Report, EECS Dept., UC Berkeley,

2007.

[9] A. Mishchenko and R. Brayton, "SAT-based complete don't-care
computation for network optimization", DATE '05, pp. 418-423.

[10] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis", Proc. DAC
'06, pp. 532-536.

[11] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton,

"Combinational and sequential mapping with priority cuts", Proc.
ICCAD '07, pp. 354-361.

[12] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang. "Scalable

don't-care-based logic optimization and resynthesis", ACM TRETS,
Vol. 4(4), April 2011, Article 34.

[13] A. Mishchenko, R. Brayton, W. Feng, and J. Greene, "Technology

mapping into general programmable cells", Proc. FPGA'15.
[14] A. Mishchenko, R. Brayton, T. Besson, S. Govindarajan, H. Arts,

and P. van Besouw, "Versatile SAT-based remapping for standard

cells", Proc. IWLS'16.
[15] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen,

"Mapping into LUT structures", Proc. DATE'12, pp. 1579-1584.

