
Fast-Extract with Cube Hashing

Bruno de O. Schmitt1, Alan Mishchenko2, Victor N. Kravets3, Robert K. Brayton2 and Andre I. Reis1

1Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS)
2Department of EECS, University of California, Berkeley

3IBM Thomas J. Watson Research Center, Yorktown Heights, NY

Abstract— The fast-extract algorithm is a well-known alge-
braic method for factoring and decomposing Boolean expressions.
Since it uses pairwise comparisons between cubes to find factors,
the runtime is degraded for networks whose primary outputs are
expressed in terms of primary inputs and have Boolean functions
with thousands of cubes. This paper describes a new implementa-
tion of the fast-extract algorithm, fxch, having complexity linear
in the number of cubes. The reduction in complexity is achieved
by hashing sub-cubes and using the hash table to find good fac-
tors to extract. Experimental results on industrial benchmarks
show superior runtime and scalability of the proposed algorithm,
compared to the available solutions.

I. INTRODUCTION

The problem of identifying common sub-expressions, also
known as divisors (or factors), in Boolean functions has been a
key component of logic synthesis tools since the early days of
multi-level synthesis [1]. The process is known as decompo-
sition if a new intermediate variable is created, otherwise it is
called factoring. The goal of decomposition is to identify fre-
quently used sub-expressions, implement them once, and share
them across the entire network. A decomposition algorithm,
such as [2], can be used to reduce the complexity of an available
multi-level network whose nodes are represented by sum-of-
products (SOPs), or it can construct a new multi-level network
from the SOP representing a multi-output Boolean function.

Decomposition methods are divided into two groups: fast al-
gebraic methods and slower but more powerful Boolean meth-
ods, which take advantage of Boolean properties of the func-
tion and use don’t cares [1]. In practice, algebraic methods are
widely used due to their lower complexity. These take as in-
put a sum of products representation of a Boolean function and
apply algebraic operations to find and extract divisors.

Algebraic methods traditionally use the notion of kernels [3]
to find multi-cube divisors that are common to two or more
expressions. The original fast-extract algorithm fx introduced
in [2] is based on this notion but restricts the set of kernels to
double-cube divisors and single-cube two-literal divisors.

A detailed overview of fx is deferred to Section II of this pa-
per. Here it is enough to note that fx uses pairwise comparison
between cubes to find divisors, which means that the complex-
ity of fx is quadratic in the number of cubes.

Almost three decades have passed since the fx algorithm was

introduced. At that time memory was not as cheap and designs
not as large and complex as today; therefore the quadratic ap-
proach to algebraic decomposition, which trades faster runtime
for lower memory usage, was appropriate. Since then, the tran-
sistor count in the designs has increased by three orders of mag-
nitude [9] while the price of memory decreased by four orders
of magnitude [8], thereby rendering the traditional fx approach
unsuitable for today’s designs. In general, due to the pressure
to reduce the runtime of CAD tools, any algorithm whose com-
plexity is greater than linear must be carefully evaluated while
trying to obtain a linear version of the algorithm that is more
scalable for large designs.

This paper focuses on presenting the new divisor extraction
algorithm. The approach is called fast-extract with cube hash-
ing, fxch. It uses cube hashing to trade increased memory usage
for faster runtime, reducing complexity from quadratic to lin-
ear in the number of cubes. The motivation for this work and
incomplete experimental results appeared in a workshop pub-
lication [4], while this paper is the first one to present the new
algorithm in a peer-reviewed conference.

The rest of the paper is organized as follows. Section II
gives background on Boolean functions, Boolean networks, al-
gebraic decomposition and the original fx algorithm. Section
III describes the implementation of fxch with a brief discussion
about cube hashing and why skipping some cubes to reduce the
hash table size is a bad idea. Section IV gives the experimental
setup and discusses the experimental results. Finally, Section
V concludes the paper.

II. BACKGROUND

A. Boolean Functions

A Boolean variable, x, is a variable that takes one of the
two values from the domain B = {false, true}, or {0, 1}.
A positive literal is the Boolean variable, x, and a negative
literal is its complement, x. The Boolean AND of k literals is
a cube, or product, i.e. c = l1 · l2 · · · lk. Let symbol “-” denote
a don’t care literal value. If a variable is not represented by
a positive literal or a negative literal in a cube, then its value is
said to be a don’t care literal. A minterm is a cube, in which
every variable is represented by either a negative or positive
literal. It can be noted that a cube with n don’t care literal
values covers 2n minterms.

Let f(X) : Bn → B be a completely specified Boolean



function of n variables X = {x1, x2, . . . , xn}. The support
of f is the subset of variables that influence the output value of
the function f. The set of minterms, for which f evaluates to 1
and to 0, defines the on-set and the off-set of f , respectively.
Unless stated otherwise, we assume that a Boolean function
is completely specified. In a multi-output Boolean function
f(X) : Bn → Bm, m > 1, each output fi, 1 ≤ i ≤ m is a
Boolean function.

Even though fxch is capable of handling multi-outputs func-
tions, for the sake of simplicity we shall continue defining
terms for single-output functions. A cube is an implicant of f
if it covers only minterms present in the on-set of f . A prime
implicant, or prime, of f is an implicant, from which no posi-
tive or negative literal can be removed without intersection with
the off-set of the function.

Any Boolean function can be represented as a two-level sum
of products (SOP), which is a Boolean OR of implicants (i.e.
S = c1 + c+ · · ·+ cn). A SOP is said to be irredundant if no
implicant can be removed without changing its functionality. A
cube c1 is contained in cube c2 if the set of minterms covered
by c1 is a subset of the minterms contained in c2. A SOP is
said to be single-cube containment free if it doesn’t have a
cube pair such that one cube contain the other.

B. Boolean Networks

A Boolean network (or circuit) is a directed acyclic graph
(DAG) G = (V,E) with nodes V and edges E. Every node
is associated with a Boolean function and a Boolean variable,
called the output variable, representing the node’s output. The
existence of an outgoing edge from node n1 to node node n2

means that the variable representing the output of n1 is an input
to the function represented by n2. In this case, we say that n1

is a fanin of n2, or that n2 is a fanout of n1.
A node n might have zero or more fanins and zero or more

fanouts. Primary inputs are nodes without fanins. Primary
outputs are a subset of nodes that connect the networks to the
environment.

C. Factoring of Boolean Functions

Algebraic factoring (or decomposition) is traditionally used
to decompose the SOP representation of a Boolean function, f ,
into a multi-level Boolean network.

The effectiveness of this approach rests on the manipulation
of SOPs as arithmetic expressions, hence the algebraic name.
This substantially simplifies division and allows it to scale to
SOPs with thousands of cubes but it also means not fully ex-
ploiting the rules of Boolean algebra, i.e. the rules of annihi-
lation and idempotency are not used. The added convenience
and efficiency limit the scope of transformations and lead to
suboptimal results [5]. For a comprehensive background on
algebraic factoring and other techniques used in synthesis of
Boolean networks, we refer the reader to [1].

The algebraic factoring operation is performed by repeat-
edly applying algebraic decomposition to a given SOP repre-
sentation. Each decomposition begins by applying the distribu-
tive law in order to enumerate a restricted set of common sub-
expressions called algebraic divisors (or divisors), followed by
selecting a divisor d and deriving a quotient q and a remainder

r, such that f = d·q+r. This process is iterated, as factoring is
applied to d, q and r recursively as long as they have non-trivial
divisors.

The result of this operation largely depends on the initial
sum-of-products form and on finding “good” candidate divi-
sors. The concept of a kernel introduced in [3] is used to define
necessary and sufficient conditions for logic sharing among
logic expressions to exist, therefore providing an effective way
of finding good candidate divisors.

The method described in [3] computes the sets of kernels for
two or more logic expressions, and then intersects them to find
common sub-expressions. A specialization of this method that
restricts kernels to double-cube divisors was introduced in [2].

D. The Original Fast-Extract Algorithm

The decomposition algorithm described in [2] is widely
known as fx. The practical value of this algorithm is in limiting
kernels to single-cube double-literal divisors and double-cube
divisors. The algorithm performs concurrent extraction of the
divisors of all types. For an in-depth discussion of fx, we refer
the reader to [2].

From now on, we limit our discussion to the fx implemented
in ABC [6], which is an efficient implementation of the original
fx. Its key characteristics are the following:

• The original functions are given in the SOP form.
• Single- and double-cube divisors are considered concur-

rently.
• Double-cube divisors are found using pairwise compari-

son between cubes of the same Boolean function. There-
fore the total number of double-cube divisors in an expres-
sion with n cubes is bounded by n2.
• The weight of each divisor is a function of the number of

saved literals and of its logic level.
• All divisors are stored in a priority queue, which is repeat-

edly accessed in order to get the divisor with the highest
weight.
• After each extraction, the SOP and the divisor weights are

updated, and new divisors are added to the queue.

III. FAST-EXTRACT WITH CUBE HASHING

In this section, we delve into the key aspects of the proposed
fxch algorithm. The pseudo-code of fxch is shown in Algo-
rithm 1. The algorithm is based on grouping (sub-section A) of
identical cubes for different outputs (in the case of the multi-
output SOP) and on efficient hashing of cubes and sub-cubes
(sub-section B) during the extraction of divisors. The algorithm
computes the set of all double-cube divisors up to four literals
(sub-section C). The algorithm may create undesirable degen-
erate divisors, which require special treatment (sub-section D).
Finally, the extraction procedure is described in sub-section E.

A. Cube Grouping

When decomposing a number of Boolean functions, the
current implementation in ABC generates an inefficient SOP
representation that considers cubes for each output indepen-
dently. This inefficient representation is given as input to fx



Algorithm 1: Fast-Extract with Cube Hashing
Input : the original multi-output SOP
Output: the network derived by the factoring process

begin
process the SOP by grouping identical cubes;
create the hash table containing sub-cubes;
create the initial set of divisors candidates;
while there are non-trivial divisors do

select the best divisor candidate;
find cubes affected by its extraction;
extract the divisor;
update the affected cubes;
update the sub-cube hash table;
update the set of divisor candidates;

process SOP by ungrouping the cubes;
return the resulting multi-level network

and fxch. One way to overcome this inefficiency is by grouping
identical single-output cubes, resulting in a multi-output SOP
representation. The example below illustrates the existing
short-comings and the proposed mitigation. Consider the truth
table and the respective SOP representation shown in Figure 1.

x1 x2 x3 y1 y2
1 1 - 1 0
- 1 1 1 0
0 0 0 1 1
0 1 1 1 1
1 - 1 0 1
1 1 0 0 1

y1 x1 x2

y1 x2 x3

y1 x1 x2 x3

y1 x1 x2 x3

y2 x1 x2 x3

y2 x1 x2 x3

y2 x1 x3

y2 x1 x2 x3

Fig. 1. Truth table and the respective SOP representation originally used by
ABC

Notice the existence of two cube pairs with identical inputs,
meaning that the representation shown in Figure 1 does not take
advantage of the fact that some cubes differ only in their out-
puts. It can be shown experimentally that the number of such
cubes can be large, and therefore processing them separately
has a negative impact on both runtime and memory usage. We
propose a better representation to mitigate this problem, as il-
lustrated in Figure 2.

y1 x1 x2

y1 x2 x3

y1y2 x1 x2 x3

y1y2 x1 x2 x3

y2 x1 x3

y2 x1 x2 x3

Fig. 2. New SOP representation used by FXCH

where each cube representation consists of an input pattern and
an output pattern.

B. Cube Hashing

The main technical contribution of this paper is the introduc-
tion of an algorithm capable of finding useful algebraic divisors
by hashing of sub-cubes, which is called cube hashing.

To better understand the concept behind this technique, con-
sider the problem of finding all cubes in a given SOP, which dif-
fer only in one literal. A naive approach consists of comparing
all cubes pairwise. The key insight used to develop a smarter
approach systematically examines cubes that differ only in one
literal, and removes that literal to makes the cubes equal. The
approach first builds a hash table containing all cubes, and then
for each cube removes one literal at a time, while inserting the
resulting sub-cube into the hash table. The collisions observed
in the hash table enable us to find cubes that differ in only one
literal. This approach is linear in the number cubes.

We can use an extension of the presented approach in order
to find divisors. All we have to do, is to hash (1) each cube
itself, (2) all of its sub-cubes created by the removal of one
literal and (3) all its sub-cubes created by the removal of a pair
of literals. In this case a collision could mean the existence of
a divisor that corresponds to the removed literals. On the other
hand, the identical sub-cubes correspond to the base, i.e. the
common part of the original cubes which remains after divisor
extraction. Figure 3 illustrates these concepts by factoring a
two-cube SOP expression.

F = (x1 · x2 · x3) + (x1 · x3 · x4)

Sub-cubes hash table
Lit cube1 cube2
1 x2 · x3 x3 · x4

2 x1 · x3 x1 · x4

3 x1 · x2 x1 · x3

divisor = x2 + x4

base = x1 · x3

Fig. 3. Decomposition of a two-cube SOP expression

The first column of the presented hash table indicates the po-
sition of the removed literal. The two colored cells indicate
a collision. In this case, the removal of the second literal from
the first cube generates the same sub-cube as the removal of the
third literal from the second cube. A divisor is generated using
the removed literals, while the base is equal to the sub-cube.
After extraction, the resulting Boolean function is:

F = x1 · x3 · (x2 + x4)

As pointed out in [4], the hash table may become excessively
large when working with a large SOP. Indeed, finding double-
cube divisors for a cube requires hashing

1 + nl +
nl∗(nl−1)

2 .

sub-cubes, where nl is the number of literals in a given cube.
Observing that initially many sub-cubes do not generate col-
lisions, and thereby are deemed useless for factoring at that
point, one could be misled into thinking that filtering such “use-
less” sub-cubes would be a good way to reduce the consumed
memory. However, as we found out experimentally, this leads
to a substantial runtime increase. Instead, it is advantageous to
have all sub-cubes in the hash table at all times. Thus, when a
divisor is extracted and the cubes are updated, it is only neces-
sary to generate sub-cubes for the updated cubes.



C. Divisors Functions

Unlike the preliminary implementation of fxch in [4], our
implementation can potentially use the set of all double-cube
divisors with up to four literals. The algorithm restricts divisors
to a small set of functions and this facilitates their ranking and
logic sharing during decomposition [5].

The complete set of possible double-cube divisors with com-
plements, is summarized in Theorem 1 in [2]. The set im-
plies that using canonical basis NAND, XOR (⊕), and MUX
as divisor functions imposes a duality property in such divi-
sors, meaning that the complement of a divisor is also a divi-
sor. The constant-1 function is also included in the set in order
to eliminate the redundant logic, since its appearance implies
the existence of distant-1 cubes (xi + xi). Thus, the divisor
functions are restricted to the following:

1, NAND, XOR, MUX

This restriction also explains why we limit divisors to four
literals. It must be noted, however, that in order to handle de-
generate divisors, we do check all double-cube divisors with
up to four literals.

D. Degenerate Divisors

There is a set of divisors that can deteriorate the outcome
of extraction if not properly handled. In the previous subsec-
tion, we encountered one form of this divisors: the constant-1
divisor: (xi+xi). In the earlier implementation of fxch, this di-
visor was ignored during extraction, meaning it was identified
but not properly handled.

Other degenerate divisors appear during the extraction pro-
cess because the input SOP is not prime and irredundant. In
any case, the problem results in handling xi+xixk, xixk +xk

and xi + xk as three different divisors, while in fact they are
the same divisor xi + xk. If degenerate divisors are not prop-
erly handled, the selection of a divisor among other candidates
is based on inaccurate assessment of divisor costs, and also
the extraction process would not decompose all possible cubes,
thereby reducing the quality of results.

E. Extraction

The extraction changes the input part of a cube. The literals
present in the divisor are removed from the cube, and a properly
complemented literal that identifies the divisor may added to it,
depending on whether or not a new intermediate variable was
created. The extraction may also change the output pattern of
a cube and produce a new cube, or invalidate an existing one.
The set of performed extractions is tabulated below according
to the possibility of cube output patterns being equal (i.e. exact
extraction) or not equal but with an intersection (i.e. inexact
extraction).

Table I identifies the input and output patterns of a cube as
x and y, respectively. The input part of a cube is treated as a
set of literals. The output pattern is treated as a bit vector; the
syntax of bit-wise operators from the C programming language
is used to describe updating of both parts. If the extraction of a
divisor from a pair of cubes is exact, the operation also invali-
dates one of them. Inexact extractions creates a new cube, and

TABLE I
SET OF POSSIBLE EXTRACTIONS.

y1 = y2 (exact) y1 6= y2 (inexact)
c1 ≡ {(x1 ∩ x2) · z, y1} c1 ≡ {x1, y1 & ∼ y2}
c2 ≡ nil c2 ≡ {x2, y2 & ∼ y1}

c3 ≡ {(x1 ∩ x2) · z, y1 & y2}

may invalidate one of the original cubes, depending on whether
the resulting output pattern is equal to zero.

IV. EXPERIMENTAL RESULTS

We describe our experimental setup and compare fxch with
other state-of-the-art methods. We also evaluate the usefulness
of the cube grouping proposed in Section III-A.

A. Experimental Setup

We implemented the algorithm described in Section III as
command fxch in ABC, an open-source tool for logic synthe-
sis, technology mapping, and formal verification of logic cir-
cuits. ABC is also used to verify the resulting networks using
combinational equivalence checking (command cec), which
compares the AIG derived by factoring against the original
multiple-output function represented by the SOP.

For comparison, we used a set of multiple-output PLA ta-
bles taken from an instruction decoder [7]. These benchmarks
demonstrate that the importance of factoring increases as the
circuit size increases [5]. The names of these benchmarks ap-
pear in the form “NPI/NPO”, where NPI and NPO denote the
number of primary inputs and primary outputs, respectively.

We compared against jee [5] and ABC’s available imple-
mentation of the original fx algorithm [2]. For ease of com-
parison, a new switch was added to command fx in ABC (fx
-x), which limits fx to use the same set of divisors containing
up to four literals that are used by fxch and jee. After being
factored, each PLA table is post-processed by ABC in order
to generate an AIG representation of the optimized logic. The
ABC structural hashing command strash is used to obtain the
starting AIG representation that is further processed by ABC
command balance. These normalization steps are applied to
the output produced by the different decomposition algorithms
before comparing them. In our experiments, jee was run as a
single-threaded application so that its results are more directly
comparable to the other algorithms.

B. Impact of Cube Grouping

To evaluate the impact of cube grouping presented in Sec-
tion III-A, we implemented two versions of fxch: one uses cube
grouping (”CG”) while the other does not. In the experiment,
we gave the decoder PLA tables to both versions. Table III lists
the collected results for both implementations in terms of run-
time and peak memory usage. The arithmetic averages of the
reduction ratios relative to not using cube grouping are given
in the last row of the table.

The results show the benefits of using cube grouping when
decomposing multi-output Boolean functions; its use reduces



TABLE II
LOGIC SYNTHESIS RESULTS: COMPARING THE fxch, THE fx FACTORING IMPLEMENTATION IN ABC AND THE jee TOOL

Design fxch fx in ABC jee factoring
Name #literals #cubes t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl
37/143 151830 15129 2.95 113 3835 22 18.18 11 4695 24 4.3 37 3587 24

38/67 528674 53463 1.16 59 3438 19 2.14 7 3727 18 2.0 25 3366 20
128/43 350315 20154 1.90 105 3051 18 2.43 9 3702 18 2.3 22 3191 18
128/53 317523 18182 1.63 102 2708 18 2.09 9 3261 19 2.0 23 2944 19
128/55 449226 25590 2.03 105 3079 18 2.46 10 3905 18 2.1 22 3069 20
128/69 811265 46344 2.72 107 3415 19 4.60 14 4295 20 2.7 28 3326 20
128/94 1342845 75439 4.56 120 5140 21 9.50 20 6271 22 6.3 46 5266 24

128/104 1147195 65491 3.98 121 4916 20 7.61 17 5853 21 5.7 44 4926 23
128/160 2147268 114343 8.35 226 7358 23 21.02 30 8889 24 15.5 76 7268 24

ratios: 0.42 8.33 0.83 0.97 1 1 1 1 0.61 2.54 0.83 1.04

TABLE III
THE IMPACT OF USING CUBE GROUPING

Runtime (s) Memory (Mb)
w/ CG w/o CG w/ CG w/o CG

37/143 2.95 14.47 113.36 673.14
38/67 1.16 2.75 58.64 265.11

128/43 1.90 4.73 105.48 430.69
128/53 1.63 3.89 102.21 421.89
128/55 2.03 6.44 104.95 523.19
128/69 2.72 14.64 106.84 556.56
128/94 4.56 29.38 120.44 1013.58

128/104 3.98 24.25 120.61 915.76
128/160 8.35 56.71 226.32 1882.85

ratios: 0.19 1 0.16 1

both runtime and peak memory at the cost of a slightly more
complicated implementation. Both implementations identify
and extract the same divisors, meaning the qualities of the re-
sulting networks are the same.

C. Synthesis results

The results of decomposing for each test case, are given
in Table II. The first column identifies each test case by the
number of inputs and outputs. The next two columns give the
original number of SOP literals and the cube count. Table II
presents an evaluation of the results in terms of runtime (col-
umn t), peak memory usage (column m), the number of nodes
(column #nodes), and the number of levels (column #lvl) in
the final AIG. At the bottom, reduction ratios relative to us-
ing ABC’s original fx are given; they were calculated using the
arithmetic mean.

It should be noted that each algorithm pre-processes the ini-
tial set of cubes in a different way. For instance, fx uses a tech-
nique which favors reduction of the number of cubes in order
to improve runtime at the expense of the quality of results.

The following conclusions can be made from Table II:

• In runtime, fxch is overall superior, but comes at the cost
of using more memory. As the testcases get larger, both

the runtime advantage and the memory increase become
more pronounced.

• The fxch implementation has on average 3% less logic lev-
els than fx and 7% less than jee. The ability to handle
degenerate divisors explains the node count improvement
compared to fx, while using level-aware divisor weights
explains the level improvement compared to jee.

D. Scalability

This experiment has two objectives. The first is to examine
the scalability of fxch as the problem size increases, while mn-
imizing the effect of pre-processing techniques used by each
algorithm. The experiment consists of synthesizing circuits
whose output is 1 if and only if a given integer represented
as an array of bits is a prime number. We used command gen
in ABC to generate PLA tables of all functions representing
prime numbers up to 18 bits and used them as input to fxch, fx,
and jee.

Table IV gives the results for the 8 largest functions. The
same metrics as in the previous experiment were used in the
evaluation. The name in the first column identifies an instance
of the primes function by the number of inputs. The next col-
umn gives the number of cubes, which is also the number of
primes among all the natural numbers of the given bit-width.

The results demonstrate the great runtime scalability of fxch
for large problem instances. It completes the most complex
test case containing 23, 000 cubes in 13 seconds. Compared to
jee, it takes on average 93% less runtime. fxch also provides
the best node count savings. However, as the problem size in-
creases, memory usage grows quickly.

V. CONCLUSION

The paper presents a new, fully functional and very effi-
cient implementation of the fxch algorithm for decomposition
and factorization of Boolean expressions, which is able to han-
dle degenerate divisors, redundant SOPs and, to some extent,
single-cube containment. Improved runtime is the main advan-
tage of the proposed method. Furthermore, when dealing with
large single-output Boolean functions, the quality of results is
better in terms of the AIG node count.



TABLE IV
SYNTHESIS OF THE PRIMALITY TESTING CIRCUITS FOR A INTEGER NUMBER WITH #inputs BINARY DIGITS

Design fxch in ABC fx in ABC jee factoring
#inputs #cubes t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl

11 309 0.02 7 455 13 0.03 2 471 13 - 3 492 13
12 564 0.04 13 739 14 0.13 2 771 14 0.1 5 825 14
13 1028 0.10 25 1355 15 0.53 2 1440 15 0.3 9 1419 15
14 1900 0.25 50 2046 16 2.07 3 2401 16 1.4 20 2287 16
15 3512 0.62 100 3670 17 7.99 5 4174 17 8.5 58 3989 17
16 6542 1.55 202 6289 18 30.87 11 7448 18 41.2 151 6491 18
17 12251 3.91 407 11413 19 2.09 min 23 11650 19 66.7 157 12096 19
18 23000 12.97 827 17260 20 8.27 min 72 22158 20 167.8 169 18144 19

ratios: 0.03 13.6 0.86 1 1 1 1 1 0.42 4.8 0.91 1

The paper also describes a new way of representing multi-
output SOPs in ABC. The technique known as cube grouping
introduced in Section III-A has been shown to improve perfor-
mance. Currently it is restricted to the fxch implementation and
the resulting multi-output cubes are ungrouped before they are
processed by other ABC commands.

ACKNOWLEDGEMENTS

The co-authors affiliated with UC Berkeley were partly
supported by NSA grant Enhanced equivalence checking in
crypto-analytic applications. They acknowledge industrial
sponsors of BVSRC: IBM, Mentor Graphics, Verific, and Xil-
inx for their continued support. The authors also acknowledge
a helpful discussion with Niklas Een several years ago, which
led to the realization that cube hashing could be used to reduce
the complexity of the fast-extract algorithm.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli, “Multi-
level logic synthesis”, Proc. IEEE, Vol. 78, Feb.1990.

[2] J. Vasudevamurthy and J. Rajski, “A method for concurrent decomposi-
tion and factorization of Boolean expressions”, Proc. Int. Conf. Comput.-
Aided Design, Nov. 1990, pp. 510−513.

[3] R. K. Brayton and C.T. McMullen, “The decomposition and factorization
of Boolean expressions”, in Proc Int. Symp. Circuits Syst., May 1982, pp.
29−54.

[4] A. Mishchenko and R. K. Brayton, “A linear divisor extraction algo-
rithm”, Proc. IWLS, July 2015.

[5] V. N. Kravets. “Application of a key-value paradigm to logic decomposi-
tion”, Proceedings of the IEEE, 103(11):2076−92, Nov. 2015.

[6] Berkeley Logic Synthesis and Verification Group, Berkeley,
Calif. “ABC: A system for sequential synthesis and verifiation”,
http://www.eecs.berkeley.edu/ alanmi/abc/.

[7] The EPFL Combinational Benchmark Suite, “Multi-output PLA bench-
marks”, http://lsi.epfl.ch/benchmarks.

[8] J. C. McCallum “Memory Prices (1957—2016)”, Retrieved October 31,
2016, from http://www.jcmit.com/memoryprice.htm

[9] Intel Corp. “Microprocessor Quick Reference Guide” Retrieved October
31, 2016, http://www.intel.com/pressroom/kits/quickreffam.htm


