
Efficient Uninterpreted Function Abstraction and
Refinement for Word-level Model Checking

Yen-Sheng Ho∗, Pankaj Chauhan†, Pritam Roy†, Alan Mishchenko∗, Robert Brayton∗
∗Department of EECS, University of California, Berkeley, CA, USA
{ysho, alanmi, brayton}@eecs.berkeley.edu

†Mentor Graphics, Inc., Fremont, CA, USA
{Pankaj_Chauhan2, Pritam_Roy}@mentor.com

Abstract—Methods for word-level model checking based on
purely bit-level techniques have difficulties with heavy arithmetic
logic. Word-level and SMT approaches often are limited by
relying on (incomplete) bounded model checking. UFAR, a hybrid
word- and bit-level approach, addresses these issues, taking
advantage of modern bit-level sequential techniques while heavy
arithmetic logic is addressed by word-level abstraction and the
use of uninterpreted function (UF) constraints. The methods
and efficiency improvements developed for UFAR enabled it to
prove 2422 of a set of 2492 industrial sequential model checking
problems within a 1-hour limit, while a bit-level model checker
super prove completed only 2115 of these within the same limit.

I. INTRODUCTION

Model checking (MC) on a Register-Transfer-Level (RTL)
word-level netlist is a necessary verification task for applica-
tions involving sequential synthesis. In this, an RTL netlist
is synthesized into another through retiming, clock-gating,
pipelining etc., and MC is required for proving the correctness
of the result. These problems are challenging if hard arithmetic
operators such as multipliers, adders, and variable shifters
are involved, and correspondences between flip flops are not
known.

Previous methods in this domain can be classified as fol-
lows. One directly “bit-blasts” the problem and then solves
with bit-level techniques such as IC3/PDR [5], [14], interpola-
tion [19], or BDDs [11]. Another [18] translates the problem
into SMT formulas (if possible) and then directly employs
SMT solvers such as Boolector [10], or Z3 [13]. A third [17]
applies predicate abstraction [16]. Term-level abstraction [2],
[1], [7], [6] replaces arithmetic operators with uninterpreted
functions (UF), and then solves with SMT solvers. However,
bit-level techniques are problematic when verifying circuits
with heavy arithmetic logic. Techniques adapted from software
verification are often not effective for hardware equivalence
checking. Most SMT-based approaches rely on (incomplete)
bounded model checking (BMC) [4] or induction [21] and
may not be applicable.

UFAR (Uninterpreted Function Abstraction and Refine-
ment), is a hybrid word- and bit-level solver, which moderates
the above issues. It takes advantage of modern sequential
techniques such as PDR and BMC at the bit-level, while
heavy word-level logic is tackled by abstraction and the use
of uninterpreted function (UF) constraints.

Such techniques are not new, even at the word level. Con-
ventional UF abstraction [2], [1], [7], [6] methods implicitly
enforce all possible UF constraints among the same functions.
This becomes inefficient when the number of similar functions
is large. Keys to UFAR’s efficiency are how simulations and
minimized counterexamples are used to refine abstractions,
how constraints are added and removed lazily, which pairs of
operators are constrained, and how UF constraints are applied
between operators of the same type but with different bit
widths. All this requires efficiently iterating between word-
level Verilog and AIG representations as refinements are done.
These techniques enable UFAR to prove problems containing
hundreds of heavy word-level operators.

We prove that UFAR is a sound and complete framework
for word-level counterexample guided abstraction and refine-
ment (CEGAR) [12]. It starts with the extreme abstraction
with all “problematic” word-level operators (e.g., multipliers,
adders, etc) removed (i.e. operator outputs are replaced by
unconstrained pseudo primary inputs). This is then bit-blasted
and given to a sound and complete bit-level model checker. If
a counterexample is returned, UFAR first simulates it on the
original netlist to check if it is real. If so, UFAR terminates
and reports it. Otherwise, the spurious counterexample is used
to refine the current abstraction. Refinement is done in this
context by 1) adding UF constraints between some pairs of
chosen compatible operators, and 2) restoring one or more of
the removed operators.

We experiment on 2492 industrial benchmarks for sequen-
tial RTL (word-level) model checking and show how different
refinement methods and heuristics are complementary, each
solving more problems in less time, and leading to a final
algorithm which solves all but 70 of the benchmarks within a
one hour time limit. We show detailed results on 19 examples
having ranges of 4-475 multipliers, 21092-302277 AIG nodes,
and 358-4785 flip-flops.

This paper first presents background material and formal
settings in Section II. The UFAR algorithm is presented in
Section III. Several optimization techniques for the algorithm
are given in Section IV. Section V gives some details about
the UFAR framework, including word-level representation and
bit-blasting this into an AIG. Experimental results on an
extensive set of industrial problems are presented in Section
VI, comparing the effectiveness of the two optimizations and

65

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

the overall UFAR algorithm. Some conclusions and future
work are discussed in Section VII.

II. BIT-VECTORS AND UF CONSTRAINTS

In the context of Verilog and its bit-vector operators, we
need to be precise about applying UF constraints between
pairs of operators. A UF constraint states that for two same-
type functions, if their inputs are equal then their outputs
are equal. Unfortunately, this is not at all straight-forward
when bit-vector operators are involved. Incorrect application
of UF constraints can lead to an unsound procedure on the
one hand or to a too restrictive application on the other. In
this section, we discuss bit-vector operators, define what it
means to be the same function, state when and how to make
UF constraints valid between two same-type operators, and
prove the soundness of the derived methods.

A. The MC problem

We assume that the input RTL design is in structural
Verilog. In structural Verilog, there are bit-vector (BV) signals
including primary inputs (PIs), primary outputs (POs), flip
flops (FFs), and internal signals. Flip flops have reset values
as initial states. A bit-vector signal s can be either signed or
unsigned, denoted by signed(s). The bit-width of s is denoted
by bw(s). A design is modeled as a finite state machine (FSM).

Definition 1. A design in structural Verilog is a tuple M =
(I,O, S, S0, T) where I is the set of inputs, O is the set of
outputs, S is the set of state variables, S0 is the set of initial
states, and T is the set of (deterministic) transition relations
where T ⊆ I × S × S. If (i, s, s′) ∈ T , then there exists a
transition from s to s′ under i.

The input format is assumed to be mitered as a single
FSM and a single output, out, representing the property to be
checked. If the problem is to prove equivalence between two
designs, a miter is created by merging all PIs and merging
corresponding mapped FFs (if any). The output out is a
Boolean signal, which is the OR of the pairwise XORs of
the corresponding outputs of the two designs. Thus it is 1 if
the two designs are different. Similarly for property checking,
the output is a monitor which signals 1 if the property fails.
In terms of linear temporal logic (LTL), the MC problem is
formulated as M |= G¬out, meaning the miter M should
never excite the signal out if the property holds.

B. Basics of word-level operators

We focus on abstracting problematic word-level operators
in a design. The subset of operators considered are all word-
level binary operators, such as +,−, ∗, /,%, <<,>>,<<<
,>>>. In Verilog, an operator is instantiated by a structural
statement which only states the function type of the operator
and the connection between signals1. An operator is modeled

1Without loss of generality, we assume that each statement contains only 1
binary operator. Statements like x = (a+b)*c can always be rewritten to
y = a+b and x = y*c.

*

c1(u32)

a1(u16) b1(u16)

*

c2(u16)

a2(u16) b2(u16)

*

c3(s32)

a3(s16) b3(s16)

op1 op2 op3

u/s: signedness
16/32: bit-width

Fig. 1: Three multipliers with different functions.

as a labeled node with a single output, up to two inputs, and
its label of function type.

Definition 2. An operator op is a tuple op = (o, i1, i2, t) where
o is the output signal, i1 and i2 are the input signals, and t is
the label of function type.

For example, the Verilog statement, c = a * b, is mod-
eled as op = (c, a, b, ∗). Note that the inputs are ordered
as specified in the Verilog statement. Note also that ∗ is a
“function-type” and not a function, since the actual function
that would be instantiated would depend on the properties of
the signals to which its inputs and output are connected. The
necessity of this important distinction will be clarified in the
next section.

C. Functions of word-level operators

In Verilog, the actual function associated with an operator
is determined by the bit-widths and signedness of its inputs,
output, and function-type. Operators with the same function
type do not necessarily have the same function; a function-type
represents a set of functions. For example, the three multipliers
in Figure 1 all represent different functions. Operators op1 and
op3 are different since op1 is unsigned multiplication while
op3 is signed multiplication. Operator op2 is different because
its output is only 16 bits.

To be precise in what follows, we need to explicitly model
what a Verilog front end does when it bit-blasts a Verilog
RTL design into a bit-level circuit. For this we need generic
operators and signal convertors.

Definition 3 (Generic operator). A generic operator is a bit-
vector operator that agrees with the integer function of its
function-type. That is, the bit-vector output, when evaluated
as an integer, is consistent with the result using the integer
function. It has the following properties.
• All of its inputs and output are signed.
• It is a pure arithmetic function parametrized with speci-

fied widths for its inputs and output.
• When a generic operation is implemented, its input widths

should be compatible with the widths of the signals
connected to them.

• The output width should be exactly large enough so as
to not impose any restriction on the operation (such as
truncation due to overflow).

In order to create signals used or produced by an instantiated
generic function, they must be converted from unsigned to
signed signals or vice versa. They also need to be converted
by truncation, sign extension, or zero extension. We model this

66

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

*

a(s16)

SC

ag(s17)

b(u16)

bg(s17)

cg(s34)

c(u16)

SC SC

*

c(u16)

a(s16) b(u16)

Generic
operator

(a) The relationship between a multiplier and its generic
version. SC denotes signal converters.

wire signed [15:0] a;
wire [15:0] b;
wire [15:0] c = a * b;

wire signed [15:0] a;
wire [15:0] b;
wire [15:0] c;
wire signed [16:0] ag = {1’b0, a};
wire signed [16:0] bg = {1’b0, b};
wire signed [33:0] cg = ag * bg;
assign c = cg;

Expose

(b) A piece of Verilog code for exposing the generic operator.

Fig. 2: An example showing how generic operators are mod-
eled and exposed.

by emulating what Verilog does in its assignment operator (=)
and concatenation operator ({}), called signal convertors.

The benefits of explicitly exposing generic operators include
1) it agrees with the arithmetic of not only bit-vectors but
integers, and 2) it unifies unsigned and signed operators. For
example, the original bit-vector multiplier, c = a * b in
Figure 2, does not agree with integer arithmetic, meaning that
if signals (a, b, c) are evaluated as integers (A,B,C), then
they do not necessarily satisfy the relation C = A× B (here
× is integer multiplication). To expose the generic multiplier
in Figure 2, first we observe that the original one is unsigned2

multiplication, so the original inputs are converted to signed
generic inputs with leading zeros inserted. Then a generic
output of 34 bits is created to prevent overflow. Finally the
generic output is converted to the unsigned original one with
some upper bits truncated. The generic multiplier, cg = ag

* bg, agrees with the integer arithmetic by construction.
This way, the original multiplier is represented by its generic
version and some signal convertors on the inputs and output.

With generic operators, all same-type generic operators
(e.g., multipliers) are considered to have the same function
since they all agree with their integer functions (e.g. integer
multiplication). This is important for uninterpreted function
abstraction since uninterpreted function constraints are valid
only for same-function classes.

D. Uninterpreted function constraints

The theory of uninterpreted functions (UF) states that given
any function F with its input X , and any two instances of
the same function, (x1, f1) and (x2, f2), then the Property (1)

2In Verilog, an operation is unsigned if at least one input is unsigned.

holds, stating that if the inputs are equal then the two outputs
must be equal.

(x1 = x2)⇒ (f1 = f2) (1)

This is called a UF constraint which is simply a relation
implied by any pair of the same two functions.

For Verilog, we need to be more precise about “same
function” and “equal inputs”. By f and g being the same
function we mean that f and g are instantiations of the same
generic function-type. By two signals being equal, we will
mean that they are signed and bit-wise equal after extension.
Then Property (1) holds with these modifications. Thus,
a UF constraint is valid between any pair of same function-
type generic operators (even if they have different bit widths).

Definition 4. Two signals, s1 and s2, are said to be equal
in Verilog if the corresponding statement, s1 == s2, is
evaluated to 1 in Verilog.

The precise Verilog semantics for comparing two signals is
as follows. It does either zero- or sign-extension for the signal
with the smaller bit-width depending on their signedness. If
both signals are signed, then it does sign-extension. Otherwise,
zero-extension is applied. Two signals are equal if they are bit-
wise equal after extension.

Definition 5. For two same function-type generic operators,
op1 = (o1, i11, i12, t) and op2 = (o2, i21, i22, t), the UF
constraint, denoted as c, is either Constraint (2) or (3).
• If t is asymmetric:

c = (i11==i21) ∧ (i12==i22)⇒ (o1==o2) (2)

• If t is symmetric:

c =

(
(i11==i21) ∧ (i12==i22)⇒ (o1==o2)

)∧
(

(i11==i22) ∧ (i12==i21)⇒ (o1==o2)

) (3)

We only apply UF constraints between generic instances
of same function-type operators. The constraints are created
as signals first and then treated as invariant constraints to the
model checking problem (see Section III-C). Thus, abstrac-
tions are created by 1) using UF constraints and 2) replacing
their outputs by new primary inputs (the generic operators are
“black-boxed”).

Definition 6. A generic instance is said to be black-boxed if
its output is replaced by a fresh primary input consistent with
the generic’s output.

Thus the new primary input is signed and has the same
width as the instance output being replaced. Note that a
UF constraint may be added even though the two operators
involved are both white-boxed. This can still be effective as it
provides a relation between operators which may not be easy
to derive using bit-level operations.

67

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

III. UFAR

In this section, the abstraction-refinement algorithm, UFAR,
for solving word level model checking problems is described.

A. The algorithm

Algorithm 1 UFAR

Input: M . M : the input miter
Input: S . S: the set of problematic operators
Output: status ∈ { SAT, UNSAT }

1: B ← S . B: the set of black-box operators
2: P ← ∅ . P: the set of UF constraints
3: M ← EXPOSINGFUNCTIONS(M , S)
4: while true do
5: A ← CREATEABSTRACTION(M , P , B)
6: status, cex ← MODELCHECKING(A)
7: if status = SAT then
8: if ISREALCEX(M , cex) then
9: return SAT

10: else
11: ∆P ← REFINEUFPAIRS(A, S, cex)
12: if ∆P 6= ∅ then
13: P ← P ∪ ∆P
14: continue
15: else
16: ∆B ← REFINEBLACK(M , P , B, cex)
17: B ← B\∆B
18: else
19: return UNSAT

Algorithm 1 provides a high level view of UFAR. It takes
two inputs; one is a miter M in word-level structural Verilog
and the other is S, the set of problematic operators that we
want to abstract (multipliers in most cases). UFAR will return
SAT if a true counterexample is found; otherwise, it concludes
that M |= G¬out and returns UNSAT. We will prove that
UFAR is a sound and complete algorithm in Section III-G.

There are two internal state sets in UFAR. The first is B,
the set of black operators that will be black-boxed in the
abstraction. The second is P , the set of operator pairs whose
UF constraints will be added to the abstraction. Initially B =
S, thereby black-boxing all problematic operators, and P = ∅.

Algorithm 1 begins with the procedure of exposing generic
operators (see Section III-B). It then operates in an abstraction-
refinement loop (lines 4–19). Each iteration begins by creating
an abstraction based on the current states of the algorithm,
which will be discussed in Section III-C. The abstraction
is then bit-blasted and solved by state-of-the-art bit-level
engines concurrently (see Section III-D). If the solver returns
UNSAT, the property is proven and UFAR terminates (line 19).
Otherwise a counterexample to the abstraction (cex) exists.
If cex is also a counterexample to the original miter, then
the property is falsified and UFAR terminates (lines 8–9).
Otherwise cex is spurious and UFAR analyzes it to refine the
abstraction (lines 11–17).

Refinement is achieved in two phases. UFAR first tries to
find new UF pairs that will block cex (see Section III-E).
If such are found, UFAR adds them to P and starts a new
iteration (lines 12–14). Otherwise, the second phase is started,
where cex is analyzed to determine a set of critical operators
(∆B) that can block cex (see Section III-F). For the next
iteration, UFAR will remove operators in ∆B from B (lines
16–17) and hence these will be white-boxed.

B. Exposing generic operators

To expose the generic version of an operator, we modify the
Verilog by inserting signed- or zero-extended signal convertors
to ensure that it becomes signed and that the bit-width of its
output is large enough. The procedure for each operator op =
(o, i1, i2, t) in the problematic set S is summarized below.

1) If one of the inputs is unsigned, then create zero-
extension-by-1 signed signal convertors for both inputs.
Denote two generic inputs as a1 and a2.

2) Create the generic operator op2 = (o2, a1, a2, t) where
o2 is signed and has a large enough bit-width.

3) Replace the original output o with the statement o =
o2. Note that this step creates the generic operator op2,
eliminating the original one op.

C. Creating abstractions

An abstraction (A) is created from the original miter (M),
using P and B, the two current states of Algorithm 1.
CREATEABSTRACTION operates in two steps:

1) For each pair p = (op1, op2) in P , construct a Boolean
signal c as defined in UF Constraints (2) or (3). Signal c =
1 implies that a UF constraint is active in M between op1
and op2. Signal c is then treated as an invariant constraint.

2) For each operator op = (o, i1, i2, t) in B, replace its
output o with a fresh primary input ppi with the same
signedness and bit-width, i.e. black-box it.

Note that an operator can be in a pair of P but not B. For
example, one benchmark contained a group of 3 multipliers
where 2 UF constraints were used between them, but only
one of the 3 was needed to be white-boxed for the final proof.
Note also that P and B are monotone.

We claim that the model A is an abstraction of M .

Lemma 1. Let N denote the model created after Step 1
(adding UF constraints) in CREATEABSTRACTION. N and
M satisfy: (¬out denotes the property)

N |= G¬out⇔M |= G¬out.

Proof. Consider any constraint signal c. We have M |= Gc
since the model M satisfies any valid UF constraint. Thus,

M |= G¬out⇔M |= G¬out ∧Gc
⇔M,Gc |= G¬out⇔ N |= G¬out

Theorem 1. The model A created by CREATEABSTRACTION
is an abstraction of the miter M .

68

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Proof. From Lemma 1, N generated by Step 1 is equisatis-
fiable to the miter M . In Step 2, it creates the model A by
replacing some internal signals in N with fresh primary inputs,
which is a known procedure for producing an abstraction.

D. Model checking using concurrency

To verify the current abstraction at the bit level, we could
use a single engine like PDR since it is efficient, sound,
and complete. Also, this procedure should be parallelized to
take advantage of different engines. Running a BMC engine
in parallel with PDR usually finds counterexamples to the
current abstraction more efficiently and thus very effective
in improving the algorithm. Also, various versions (based on
different implementations and parameters) of PDR and BMC
complement each other.

E. Refining UF pairs

This is the first phase of refinement. Given a (spurious)
counterexample cex to the abstraction, we want to find new
UF pairs ∆P among operators in S that can block cex during
the next iteration. REFINEUFPAIRS operates in two steps:

1) Simulate cex on the abstraction A to derive an assignment
function α : S × N → Z that maps every signal in A at
each time frame to a concrete value.

2) Identify pairs that violate UF constraints and add them to
∆P . For each time frame t and every pair of operators
(op1, op2) : op1, op2 ∈ S, op1 6= op2, if the values of the
inputs are equal but the outputs are different (Formula 4),
then add (op1, op2) to ∆P . Note that we consider both
input orders for symmetric operators although this is not
shown in Formula 4 for simplicity.

(α(i11, t) = α(i21, t) ∧ α(i12, t) = α(i22, t))
∧

α(o1, t) 6= α(o2, t)
(4)

Next, we discuss an upper bound for the size of P .

Theorem 2. The size of P in Algorithm 1 is bounded by
|S|(|S| − 1).

Proof. Consider the worst case where the operators in S are
all symmetric, then there are

(|S|
2

)
pairs of operators with 2

possible permutations of binary inputs. Hence the number of
pairs in the algorithm cannot exceed |S|(|S| − 1).

F. Refining black operators

In the second phase of refinement, we want to identify a
subset of operators ∆B in B such that if ∆B is removed from
B, cex will be blocked for the next iteration. We call the
procedure of removing elements from B white-boxing and the
operators in S \ B white boxes.

A straightforward way of identifying ∆B is to simulate
cex on the abstraction A and collect those operators in B
that have input-output values inconsistent with their white-
box values. However, this approach often finds an overly large
∆B, resulting in an unnecessarily large abstraction in the next
round. Hence, we propose a proof-based approach that often
obtains a much smaller ∆B.

The main idea is that if cex is spurious, then the BMC
Formula (5) is UNSAT. Here the functions β(i, t) and β(s, t)
denote the assignment of input i or state s at time t derived
from cex being simulated on the original miter M , k is the
depth of cex, and out is the miter signal.

IM (β(s, 0)) ∧
k−1∧
t=0

TM (β(i, t), β(s, t), β(s, t+ 1))

∧
k∨

t=0

out(β(i, t), β(s, t))

(5)

Next, multiplexers are introduced to select between the con-
crete version (white-box) and the abstracted version (black-
box) of an operator. If assumptions are made such that all the
concrete ones are selected initially, then the resulting BMC
formula would still be UNSAT and a modern SAT solver like
MiniSat [15] will return a subset of the assumptions that is
sufficient for UNSAT. This is a variation of finding an unsat
core and the subset returned is our candidate for ∆B.

The procedure REFINEBLACK operates in five steps.
1) For each pair in P , construct a UF constraint signal and

treat it as an invariant constraint on M .
2) For each operator op = (o, i1, i2, t) in B, introduce

two fresh primary inputs, sel and ppi, where sel is
a Boolean signal and ppi a bit-vector signal which is
consistent with the output ogen of the associated generic
operator. Replace ogen with o′gen = ITE(sel, ogen, ppi)
where ITE is the if-then-else operator. Depending on
the value of sel, either the concrete operator (ogen) or
the abstracted one (ppi) flows to the new output o′gen.

3) Denote the model created in Step 2 by N and unroll it
with the values of cex plugged in, and keep sel and ppi
as the remaining primary inputs. The cex values plugged
in are initial states and PIs at each time frame, denoted
by γ(s, 0) and γ(i, t) respectively.

4) Solve the BMC query (6), which is guaranteed to be
UNSAT. Note that γ is the assignment function of cex,
Xt is the set of sel input signals at time t, PPIt is the set
of ppi input signals at time t, and xtn is the sel signal for
the n-th operator at time t. By propagating xtn = 1 for
all t and n, the query (6) is reduced to (5) by construction
(sel = 1 means that the concrete version is chosen).

IN (γ(s, 0)) ∧
k−1∧
t=0

TN (γ(i, t), Xt,PPIt, st, st+1)

∧
k∨

t=0

out(γ(i, t), Xt,PPIt, st)

∧
k∧

t=0

|Xt|∧
n=0

xtn

(6)

5) Derive a subset ∆X of X using the assumption interface
of a modern SAT solver, and determine ∆B from ∆X .

69

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

Theorem 3. The set ∆B found by REFINEBLACK is not empty
(|∆B| > 0).

Proof. |∆B| = 0 would mean that the formula (6) is SAT,
which contradicts with the fact that cex is spurious.

G. Analysis of the algorithm

Theorem 4. Algorithm 1 is sound and complete.

Proof. (sketch) Algorithm 1 is sound because it returns UN-
SAT only if the model A satisfies G¬out, which implies
M |= G¬out from Theorem 1. As for the completeness, the
algorithm returns SAT only if a counterexample is real (line
8–9). Convergence follows because for each iteration (line 4–
19), the following statements are true.
• B and P are monotone. Either P becomes strictly bigger

(line 12–13) or B becomes strictly smaller (Theorem 3).
• |P| is upper bounded by |S|(|S| − 1) (Theorem 2) and
|B| is lower bounded by 0 (empty set of black boxes).

Therefore the iteration must terminate implying that a defini-
tive answer must have been found.

IV. OPTIMIZATION

In this section, we introduce two optimizations (counterex-
ample minimization, and random simulation), each of which
improves the basic version of UFAR, Algorithm 1.

A. Minimizing counterexamples

A counterexample can be minimized [20] in the sense
that some inputs can be assigned as X (don’t care), but the
counterexample is still valid after ternary simulation. This way,
the number of concrete assignments is minimized.

The main advantage of using minimized counterexamples
is that Procedure REFINEUFPAIRS in Algorithm 1 can return
potentially fewer, but higher-quality pairs of constraints. This
is done by modifying the condition (Formula 4) for identifying
and adding a UF constraint, where we check if the inputs are
equal and the outputs are different under concrete assignments.
With minimized counterexamples, Xs might appear on the
outputs of black-box operators (unconstrained pseudo primary
inputs). We strengthen the condition by considering only in-
compatible outputs with X assignments. Two assignments are
said to be incompatible if they have opposite values at some
bit position, and compatible if they do not. For example, the
assignments XX01 and X000 are incompatible while 10XX
and 100X are compatible. With this strengthening, pairs that
satisfy Formula 4 under concrete assignments might violate the
new condition since their outputs become compatible after the
minimization. For example, consider two operators with con-
crete assignments (o, in1, in2), (0011, 01, 10) and (0101,
01, 10), which satisfies Formula 4. After the minimization,
if the assignments become (0XX1, 01, 10) and (XXX1, 01,
10), then the pair will not be added as UF constraints since
it violates the strengthened condition with compatible outputs.
Thus, it is likely that fewer constraints are added. Also, the
constraints we drop are lower-quality in the sense that if they
are added, then UFAR will still get similar counterexamples.

B. Performing random simulation

UFAR in Algorithm 1 only finds and applies UF constraints
when a counterexample (CEX) is found. However, the CEX
returned by a verification engine may not be unique. If UFAR
were to get a different CEX, then it might find and apply a
different set of UF constraints. This inherent randomness of
counterexamples could cause UFAR to take a path where more
white boxes are needed for a proof. Thus, random simulation
is applied on the original miter to find candidates for “good”
UF constraints. The idea is that if a UF constraint is useful for
the final proof, then the corresponding pair of operators must
be related in some way. This means that for some execution
traces they would have identical input assignments.

The procedure of random simulation operates in 2 steps.
1) Determine the parameters: the number of patterns and the

number of time frames. Run random simulation on the
original miter.

2) For each time frame and for each pair of same function-
type generic operators, count the number of times iden-
tical input patterns occur.

A threshold is then set for determining what are good
candidates of UF constraints (a pair is considered good if its
count is above the threshold). A threshold should be chosen
carefully since there is a trade-off between the number and the
quality of constraints; a lower threshold increases the chances
of getting higher-quality UF constraints (in the sense that it is
more difficult to find them with counterexamples), but a lower
threshold also leads to a larger number of constraints.

V. THE UFAR FRAMEWORK

UFAR involves an iteration of abstraction and refinement
between two types of representations,

1) AIGs (bit-level circuit), and
2) an internal netlist format called WLC (word-level circuit),

a new development in ABC [9] to represent word-level
designs.

This capability includes 1) a very fast Verilog based bit-blaster,
using Verilog semantics of the WLC box operators, to translate
into an AIG, and 2) a duplication-based method to create
different WLC netlists at the word level. These developments
are critical in making UFAR efficient, to the extent that UFAR
run-time is dominated by the SAT solving in the bit-level
model checker.

A. Bit-blasting WLC with Verilog semantics

The framework starts with reading in a structural Verilog
miter representing the model checking problem. This is trans-
lated into a WLC netlist (WLCm) using ABC’s structural
Verilog parser. Next, the generic operators of all designated
“problematic” operators are exposed by creating a new WLC
netlist, denoted as WLCg. More details of creating a new WLC
netlist are described in the next subsection. It is important to
note that WLCg needs to be created only once during the
entire flow and represents the fully concretized problem. This
is bit-blasted into an AIG, denoted by AIGg to be used later.

70

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

The next step is to create a WLC netlist, WLCa, for the
current abstraction using WLCg and the state sets P and B.
WLCa is bit-blasted into an AIG, denoted as AIGa. During
this, Verilog semantics are used to faithfully interpret the box
operators of WLC netlists.

Typically the model checker, applied to AIGa, returns a
counterexample which is simulated on AIGg to see if it is
spurious. If so, the counterexample is first minimized, using
AIGg as reference. This is analyzed to decide the state changes
to P and B, which will be used to block this counterexample.
These are implemented by creating a new WLCa from WLCg
and the current state sets. Then the next iteration proceeds.

B. Creating abstractions WLCa

In the iteration in the previous section, the next abstraction
is constructed as a WLC netlist using inputs P and B and
WLCg. This is achieved by constructing one intermediate
netlist (WLCp) and the final netlist (WLCa). To activate the
UF constraints in P , WLCp is created by duplicating WLCg
but attaching the UF constraints in P to the appropriate signals.
The boxes listed in B need to be made black, so the outputs
of each such box need to be replaced by new PIs. WLCa is
built by duplicating WLCp but with the outputs of the boxes
in B replaced by the new PIs.

VI. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our
implementation of UFAR with different optimization methods
enabled. The implementation is based on ABC [9] using its
latest improvements to Verilog parsing and bit-blasting.

We ran UFAR on a set of 2492 industrial word-level Verilog
designs that were synthesized by an industrial tool to be cycle-
accurate with the original circuit. Multipliers are the targeted
problematic operators for UFAR to abstract. All experiments
were performed on a workstation of Intel Xeon E5504 CPUs
clocked at 2.0 GHz with 24 GB of RAM.

Comparing our results against publicly available verification
tools is difficult. To our knowledge, no tools exist that can
parse such designs directly without requiring a major mod-
ification3. Also, there is no standard format for sequential
word level circuits, as there is for the combinational case with
SMT-LIB [3]. Therefore we compared results of running a)
super_prove [8] on bit-blasted designs against b) three
UFAR versions with different optimization settings.

For super_prove, we simply bit-blasted an input miter
and immediately called super_prove to solve it. For UFAR
we used three versions in this comparison:
• opt1 means the basic version.
• opt2 means opt1 plus counterexample minimization.
• opt3 means opt2 plus random simulation.

For all UFAR versions, four bit-level verification engines were
run in parallel, 3 variants of PDR and one BMC implementa-
tion. BMC is much more efficient at finding counterexamples,

3Ebmc [18] cannot handle parameterized modules or functions/tasks in
Verilog. VCEGAR [17] has a more limited front-end than the one in Ebmc.

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

10 510 1010 1510 2010 2510 3010 3510

N
um

be
r o

f s
ol

ve
d

in
st

an
ce

s

Time in seconds

ufar-opt1

ufar-opt2

ufar-opt3

Fig. 3: Comparison of UFAR variants.

super_prove ufar-opt1 ufar-opt2 ufar-opt3

2115 2398 2408 2422

TABLE I: The numbers of solved instances using different
settings. 70 instances remain unsolved.

while the 3 versions of PDR in combination are efficient at
proving a problem UNSAT.

We present the results in Figure 3, where the horizontal axis
represents wall-clock time and the vertical axis represents the
cumulative number of solved instances. A time-out of 1 hour
was enforced for each example. The result of super_prove
is not shown in Figure 3 because its number of solved
instances is 2115, well below the bottom scale of 2330.
The opt2 version is slightly better than opt1 because the
counterexample minimization prevents UFAR from applying
too many constraints. The opt3 version works best because
the random simulation finds important UF constraints that can
be missed by counterexamples. All solved instances are unsat.

Table I shows the numbers of instances finally solved by
all versions within the 1-hour time-out. The three versions of
UFAR outperform super_prove, which is often ineffective
in solving problems with many arithmetic operators.

We selected 19 out of 2492 designs to present more detailed
results in Table II. The selection is somewhat arbitrary but it
does represent designs that are dissimilar and gives an idea of
expected ranges of iterations needed, UF constraints used, and
white box operators in the final abstractions. We observe the
following from Table II.

1) UFAR proves most cases with a relatively small number
of white-box multipliers.

2) The number and quality of UF constraints are two impor-
tant factors of performance. If the number is large, then
UFAR generally needs more time to run, which is why
counterexample-based constraint reduction is important.
If the quality is good, then UFAR may prove a problem
with fewer white boxes (or none). This supports the using
of the random simulation to find good constraints.

3) It takes a nontrivial number of refinements for UFAR

71

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

sp ufar-opt1 ufar-opt2 ufar-opt3

Design #Mults #AIGs #FFs Result Time Time ip/iw/np/nw Time ip/iw/np/nw Time ip/iw/np/nw

1 60 187303 2608 unsat 306.71 173.54 1/0/364/0 1127.1 3/0/12/0 3.39 1/0/874/0
2 11 72003 358 unsat 2/1/24/9 2661.2 3/1/30/9 1209.7 1/1/6/9
3 16 115888 550 unsat 20.75 2/0/37/0 3/1/17/10 18.69 1/0/12/0
4 12 49948 819 unsat 4.01 4/0/26/0 4.47 4/0/18/0 1.33 1/0/4/0
5 102 104272 1524 unsat 60.65 3/0/641/0 65.56 6/0/82/0 98.18 2/0/1252/0
6 144 161721 2456 unsat 1225.8 4/0/2366/0 2085.1 12/0/57/0 843.09 1/0/352/0
7 8 192143 5825 unsat 725.36 1/0/14/0 488.99 2/0/4/0 833.42 2/0/11/0
8 14 21092 400 unsat 474.51 3/1/30/10 316.95 3/1/28/8 272.7 2/1/33/8
9 32 46239 972 unsat 8.93 7/3/315/5 3/2/16/4 2428.6 3/3/276/9
10 43 302277 4065 unsat 157.14 3/0/597/0 106.83 4/0/40/0 66.38 1/0/447/0
11 4 25355 1552 unsat 156.16 1.49 1/0/2/0 1.10 1/0/2/0 0.99 1/0/2/0
12 15 49718 1707 unsat 25.33 3/1/40/7 48.46 8/1/34/7 24.93 3/1/52/7
13 21 65892 1997 unsat 40.18 2/1/154/7 50.42 5/1/40/9 102.24 6/1/90/7
14 223 292183 2649 unsat 2548.9 41/8/2398/50 34/9/674/55 1670.8 7/5/1401/37
15 63 91259 875 unsat 1967.4 10/4/915/29 517.86 10/4/142/37 2457.5 3/5/374/35
16 15 184859 4785 unsat 2939.8 1/1/68/4 535.18 2/1/7/3 2169.9 1/1/73/3
17 216 128137 1661 unsat 2231.2 4/0/1107/0 16/0/1943/0 401.76 1/0/394/0
18 253 199466 3751 unsat 118/0/23825/0 6.15 5/2/78/5 686.49 82/2/8638/3
19 475 274801 4204 unsat 470.71 5/0/10556/0 150.18 8/0/172/0 158.99 1/0/268/0

TABLE II: Detailed results of 19 unsat designs. The #Mults/#AIGs/#FFs means the number of multipliers/bit-level AIG
nodes/bit-level flip flops. The ip/iw/np/nw means the number of iterations of applying new UF constraints/iterations of
applying new white boxes/total UF constraints/total white boxes.

to converge, implying that UFAR builds up abstractions
gradually. A major challenge is to figure out how to strike
a good balance between the number and quality of UF
constraints and the number of white boxes needed.

4) The main effect of counterexample minimization seems
to be to make the overall algorithm more efficient but
solves only 2 additional benchmarks.

5) Random simulation made UFAR faster and helped solve
4 more benchmarks.

VII. CONCLUSION AND FUTURE WORK

UFAR is an algorithm that abstracts (black-boxes) all
problematic operators up front and refines them by applying
UF constraints and/or white-boxing. We presented two op-
timization techniques for UFAR. We demonstrated UFAR’s
scalability on a large set of industrial problems.

For future work, we would like to understand a few of the
anomalies in Table II (e.g., Designs 15 and 18) where an
optimization caused quite a large slow-down in the solving.
We also want to experiment on the 70 remaining unsolved
benchmarks to find additional techniques to solve more prob-
lems. We plan to extend UFAR to use UF constraints across
time frames and to perform refinement more gradually. For
example, instead of white-boxing an entire operator, we might
grey-box it. Last, we plan to integrate modern SMT solvers to
investigate possible advantages in this setting.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by SRC contract 2265.001
as well as NSA under the TRUST project. We also thank
industrial sponsors of BVSRC: Altera, Atrenta, Cadence,
Calypto, IBM, Intel, Mentor Graphics, Microsemi, Synopsys,
and Verific. for their continued support.

REFERENCES

[1] Z. S. Andraus, M. H. Liffiton, and K. A. Sakallah. Reveal: A formal
verification tool for verilog designs. In Proc. of LPAR ’08.

[2] Z. S. Andraus and K. A. Sakallah. Automatic abstraction and verification
of verilog models. In Proc. of DAC’04.

[3] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB Standard: Version
2.0. Technical report, Department of Computer Science, The University
of Iowa, 2010. Available at www.SMT-LIB.org.

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without bdds. In Proc. of TACAS’99.

[5] A. R. Bradley. Sat-based model checking without unrolling. In Proc.
of VMCAI’11.

[6] B. A. Brady, R. E. Bryant, and S. A. Seshia. Learning conditional
abstractions. In Proc. of FMCAD’11.

[7] B. A. Brady, R. E. Bryant, S. A. Seshia, and J. W. O’Leary. ATLAS:
automatic term-level abstraction of RTL designs. In Proc. of MEM-
OCODE’10.

[8] R. Brayton, N. Een, and A. Mishchenko. Using speculation for
sequential equivalence checking. In Proc. of IWLS’12.

[9] R. Brayton and A. Mishchenko. Abc: An academic industrial-strength
verification tool. In Proc. of CAV’10.

[10] R. Brummayer and A. Biere. Boolector: An efficient smt solver for
bit-vectors and arrays. In Proc. of TACAS’09.

[11] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 1020 states and beyond. In Proc. of LICS’90.

[12] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith.
Counterexample-guided abstraction refinement. In Proc. of CAV’00.

[13] L. De Moura and N. Bjørner. Z3: An efficient smt solver. In Proc. of
TACAS’08.

[14] N. Eén, A. Mishchenko, and R. Brayton. Efficient implementation of
property directed reachability. In Proc. of FMCAD’11.

[15] N. Eén and N. Sörensson. An extensible sat-solver. In Proc. of SAT’03.
[16] S. Graf and H. Saı̈di. Construction of abstract state graphs with pvs. In

Proc. of CAV’97.
[17] H. Jain, D. Kroening, N. Sharygina, and E. Clarke. Word level predicate

abstraction and refinement for verifying rtl verilog. In Proc. of DAC’05.
[18] D. Kroening and M. Purandare. Ebmc: The enhanced bounded model

checker. www.cprover.org/ebmc.
[19] K. L. McMillan. Interpolation and sat-based model checking. In Proc.

of CAV’03.
[20] A. Mishchenko, N. Eén, and R. Brayton. A toolbox for counter-example

analysis and optimization. In Proc. of IWLS’13.
[21] M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties

using induction and a sat-solver. In Proc. of FMCAD’00.

72

ISBN: 978-0-9835678-6-8. Copyright owned jointly by the authors and FMCAD, Inc.

