Exploiting Circuit Duality to Speed Up SAT

Luca Amarl', Pierre-Emmanuel Gaillardon!, Alan Mishchenko?, Maciej Ciesielski®, Giovanni De Micheli!
Integrated Systems Laboratory, EPFL, Switzerland!
Department of EECS, University of California, Berkeley, USA?
Department of ECE, University of Massachusetts, Amherst, USA3

Abstract— In this paper, we establish a non-trivial duality
between tautology and contradiction check to speed up circuit
SAT. Tautology check determines if a logic circuit is frue in
every possible interpretation. Analogously, contradiction check
determines if a logic circuit is false in every possible interpre-
tation. A trivial transformation of a (tautology, contradiction)
check problem into a (contradiction, tautology) check problem
is the inversion of all outputs in a logic circuit. In this work,
we show that exact logic inversion is not necessary. We give
operator switching rules that selectively exchange tautologies with
contradictions, and viceversa. Our approach collapses into logic
inversion just for tautology and contradiction extreme points but
generates non-complementary logic circuits in the other cases.
This property enables computing benefits when an alternative,
but equisolvable, instance of a problem is easier to solve than
the original one. As a case study, we investigate the impact on
SAT. There, our methodology generates a dual SAT instance
solvable in parallel with the original one. This concept can be
used on top of any other SAT approach and does not impose
much overhead, except having to run two solvers instead of one,
which is typically not a problem because multi-cores are wide-
spread and computing resources are inexpensive. Experimental
results show a 25% speed-up of SAT in a concurrent execution
scenario. Also, statistical experiments confirmed that our runtime
reduction is not of the random variation type.

I. INTRODUCTION

Inspecting the properties of logic circuits is pivotal to
logic applications for computers and especially to Electronic
Design Automation (EDA) [1]. There exists a large variety of
properties to be checked in logic circuits, e.g., unateness, lin-
earity, symmetry, balancedness, monotonicity, thresholdness
and many others [2]. Basic characteristics are usually verified
first to provide grounds for more involved tests. Tautology
and contradiction are the most fundamental properties in logic
circuits. A check for tautology determines if a logic circuit is
true for all possible input patterns. Analogously, a check for
contradiction determines if a logic circuit is false for all possi-
ble input patterns. While investigating elementary properties,
tautology and contradiction check are difficult problems, i.e.,
co-NP-complete and NP-complete, respectively [3]. Indeed,
both tautology and contradiction check are equivalent formu-
lation of the Boolean SATisfiability (SAT) problem [3]. In this
scenario, new efficient algorithms for tautology/contradiction
check are key to push further the edge of computational limits,
enabling larger logic circuits to be examined.

Tautology and contradiction check are dual problems. One
can interchangeably check for tautology in place of contradic-
tion by inverting all outputs in a logic circuit. In this trivial
approach, the two obtained problems are fully complementary
and there is no explicit computational advantage in solving
one problem instead of the other.

In this paper, we show that exact logic inversion is not
necessary for transforming tautology into contradiction, and
viceversa. We give a set of operator switching rules that

selectively exchange tautologies with contradictions. A logic
circuit modified by our rules is inverted just if identically true
or false for all input combinations. In the other cases, it is not
necessarily the complement of the original one. In a simple
logic circuit made of AND, OR and INV logic operators, our
switching rules swap AND/OR operator types. We give a set
of rules for general logic circuits in the rest of this paper. Note
that in this paper we mostly deal with single output circuits.
For multi-output circuits, the same approach can be extended
by ORing (contradiction) or ANDing (tautology) the outputs
that need to be checked into a single one.

Our approach generates two different, but equisolvable,
instances of the same problem. In this scenario, solving both
of them in parallel enables a positive computation speed-up.
Indeed, the instance solved first stops the other reducing the
runtime. This concept can be used on top of any other checking
approach and does not impose much overhead, except having
to run two solvers instead of one, which is typically not a
problem because multi-cores are wide-spread and computing
resources are inexpensive. Note that other pallel checking
techniques exist. For example, one can launch in parallel many
randomized check runs on the same problem instance with the
aim to hit the instance-intrinsic minimum runtime [4]. Instead,
in our methodology, we create a different but equi-checkable
instance that has a potentially lower minimum runtime. As a
case study, we investigate the impact of our approach on SAT.
There, by using non-trivial and trivial dualities in sequence,
we create a dual SAT instance solvable in parallel with the
original one. Experimental results show 25% speed-up of SAT,
on average, in a concurrent execution scenario. Also, statistical
experiments confirmed that our runtime reduction is not of the
random variation type.

The remainder of this paper is organized as follows. Section
IT describes some background and discusses the motivation for
this study. Section III presents theoretical results useful for the
scope of this paper. Section IV proves our main result on the
duality between tautology and contradiction check. Section V
shows the benefits enabled by this duality in SAT solving.
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

This section first provides notation on logic circuits. Then, it
gives a brief background on tautology checking from an EDA
perspective. Finally, it discusses the motivation for this study.

A. Notation

A logic circuit is a Directed Acyclic Graph (DAG) repre-
senting a Boolean function, with nodes corresponding to logic
gates and directed edges corresponding to wires connecting
the gates. The on-set of a logic circuit is the set of input
patterns evaluating to true. Analogously, the off-set of a logic
circuit is the set of input patterns evaluating to false. Each



logic gate is associated with a primitive Boolean function
taken from a predefined set of basis logic operators, e.g.,
AND, OR, XOR, XNOR, INV, MAJ, MIN etc. Logic operators
such as MAJ and MIN represent self dual Boolean functions,
i.e., functions whose output complementation is equivalent to
inputs complementation. A set of basis logic operators is said
to be universal' if any Boolean function can be represented by
a logic circuit equipped with those logic gates. For example,
the basis set {OR, INV} is universal while the basis set
{AND, MAJ} is not. Fig.l shows a logic circuit for the

f
f=(ab)d+(ab)c+dc
Gate Symbols
AND MAJ INV
ab c

Fig. 1: Logic circuit example representing the function f =

(ab)d + (ab)c + dc. The basis set is {AND, MAJ, INV}. The
gates symbolic representation is shown in the box.

function f = (ab)d + (ab)c + dc over the universal basis
set {AND, MAJ, INV}.

B. Tautology Checking

Tautology checking, i.e., verifying whether a logic circuit
is true in every possible interpretation, is an important task
in computer science and at the core of EDA [5], [7]. Tradi-
tionally, tautology checking supports digital design verification
through combinational equivalence checking [7]. Indeed, the
equivalence between two logic circuits can be detected by
XNOR-ing and checking for tautology. Logic synthesis also
uses tautology checking to (i) highlight logic simplifications
during optimization [5], [6] and to (ii) identify matching
during technology mapping [8]. On a general basis, many EDA
tasks requiring automated deduction are solved by tautology
check routines.

Unfortunately, solving a tautology check problem can be a
difficult task. In its most general formulation, the tautology
check problem is co-NP-complete. A straightforward method
to detect a tautology is the exhasutive exploration of a function
truth table. This naive approach can declare a tautology only
in exponential runtime. More intelligent methods have been
developed in the past. Techniques based on cofactoring trees
and binary recursion have been presented in [9]. Together with
rules for pruning/simplifying the recursion step, these tech-
niques reduced the checking runtime on several benchmarks.
Another method, originally targeting propositional formulas, is
Stalmarck’s method [10] that rewrites a formula with a possi-
bly smaller number of connectives. The derived equivalent for-
mula is represented by triplets that are propagated to check for
tautology. Unate recursive cofactoring trees and Stalmarck’s
method are as bad as any other tautology check method in

!In this work, the term basis does not share the same properties as in linear
algebra. In particular, here not all the basis are universal.

the worst case but very efficient in real-life applications. With
the rise of Binary Decision Diagrams (BDDs) [11], tautology
check algorithms found an efficient canonical data structure
explicitly showing the logic feature under investigation [12].
The BDD for a tautology is always a single node standing
for the logic constant frue. Hence, it is sufficient to build
a BDD for a logic circuit and verify the resulting graph
size (plus the output polarity) to solve a tautology check
problem. Unfortunately, BDDs can be exponential in size for
some functions (multipliers, hidden-weight bit, etc.). In the
recent years, the advancements in SAT solving tools [13],
[14] enabled more scalable approaches for tautology checking.
Using the trivial duality between tautology and contradiction,
SAT solvers can be used to determine if an inverted logic
circuit is unsatisfiable (contradiction) and consequently if the
original circuit is a tautology. Still, SAT solving is an NP-
complete problem so checking for tautology with SAT is
difficult in general.

C. Motivation

Tautology checking is a task surfing the edge of today’s
computing capabilities. Due to its co-NP-completeness, tau-
tology checking aggressively consumes computational power
when the size of the problem increases. To push further the
boundary of examinable logic circuits, it is important to study
new efficient checking methodologies. Indeed, even a narrow
theoretical improvement can generate a speed-up equivalent to
several years of technology evolution.

In this paper, we present a non-trivial duality between
contradiction and tautology check problems that opens up new
efficient solving opportunities.

III. PROPERTIES OF LOGIC CIRCUITS

In this section, we show properties of logic circuits with
regard to their on-set/off-set balance and distribution. These
theoretical results will serve as grounds for proving our main
claim in the next section.

We initially focus on two universal basis sets: {AND, OR,
INV} and {MAJ, INV}. We deal with richer basis sets later
on. We first recall a known fact about majority operators.

Property A MAJ operator of n-variables, with n odd, can
be configured as an [n/2]-variables AND operator by biasing
[n/2] inputs to logic false and can be configured as an [n/2]-
variables OR operator by biasing |n/2] inputs to logic true.

For the sake of clarity, an example of a three-input MAJ
configuration in AND/OR is depicted by Fig. 2. Extended

OR MAJ AND

c=true c=false
&L=

b abc ab
Fig. 2: AND/OR configuration of a three-input MAJ.

at the circuit level, such property enables the emulation of
any {AND, OR, INV} logic circuit by a structurally identical
{MAJ, INV} logic circuit. This result was previosuly shown
in [15] where logic circuit over the basis set {AND, OR,
INV} are called AND/OR-INV graphs and logic circuits over



b)

a abac a Fa arbafrc a

f=ab + ac+a(b+c) +a

cThb

a abac a

cdb
Fig. 3: Logic circuits examples. { AND, OR, INV} logic circuit

c b

representing f = ab + ac + a(b+ ¢) + @ (a). {MAJ, INV}
logic circuit emulating the circuit in (a) using constants (b).
{AND, OR, INV} logic circuits derived from (a) by switching
AND/OR operators (c). {MAJ, INV} logic circuit emulating
the circuit in (a) using an fictitious input variable d (d).

the basis set {MAJ, INV} are called MAJ-INV graphs. An
example of two structurally, and functionally, identical logic
circuits over the basis sets {AND, OR, INV} and {MAJ, INV}
is depicted by Fig. 3(a-b). The Boolean function represented in
this example is f = ab+ac+a(b+ ¢)+a. MAJ are configured
to behave as AND/OR by fixing one input to false(F)/true(T),
respectively. In place of biasing one input of the MAJ with
a logic constant, it is also possible to introduce a fictitious
input variable connected in regular/inverted polarity to substi-
tute true(T)/false(F) constants, respectively. In this way, the
function represented is changed but still including the original
one when the fictitious input variable is assigned to true.
Fig. 3(d) shows a logic circuit with a fictious input variable
d replacing the logic constants in Fig. 3(b). The Boolean
function represented there is h with property hg—trye = f-

Up to this point, we shown that {AND, OR, INV} logic
circuits can be emulated by {MAJ, INV} logic circuits con-
figured either by (i) logic constants or by (ii) a fictitious input
variable. In the latter case, {MAJ, INV} logic circuits have all
inputs assignable. With no logic constants appearing and all
operators being self-dual, this particular class of logic circuits
have a perfectly balanced on-set/off-set size. The following
theorem formalizes this property.

Theorem 3.1: Logic circuits over the universal basis set

{MAJ, INV}, with all inputs assignable (no logic constants),
have |on-set|=2""1 and |off-set|=2""", with n being the num-
ber of input variables.

Proof MAJ and INV logic operators, with no constants,
represent self-dual Boolean functions. In [2], it is shown that
self-dual Boolean functions have an |on-set|=|off-set|=2""1,
with n being the number of input variables. Also, it is shown
in [2] that Boolean functions composed by self-dual Boolean
functions are self-dual as well. This is indeed the case for
{MALJ, INV} logic circuits with no constants in input. As these
circuits represent self-dual Boolean functions, we can assert
|on-set|=|off-set|=2"~1. Q.E.D.

{MAJ, INV} logic circuits with no constants have a per-
fectly balanced partition between on-set size and off-set size.
This is the case for the example in Fig. 3(d). Eventually,
we know that by assigning d to true in such example circuit
the on-set/off-set balance can be lost. Indeed, with d=true the
{MAJ, INV} logic circuit then emulates the original {AND,
OR, INV} logic circuit in Fig. 3(a), that could have different
on-set size and off-set size. Still, it is possible to reclaim
the perfect on-set/off-set balance by superposing the cases
d=true and d=false in the {MAJ, INV} logic circuit. While we
know precisely what the {MAJ, INV} logic circuit does when
d=true, the case d=false is not as evident. We can intepret
the case d=false as an inversion in the MAJ configuration
polarity. This means that where a MAJ is configured as an
AND (OR) node in d=true, it is instead configured as an OR
(AND) node in d=false. In other words, d=false in the {MAJ,
INV} logic circuit of Fig. 3(d) corresponds to switch AND/OR
operator types in the original { AND, OR, INV} logic circuit of
Fig. 3(a). The resulting AND/OR switched circuit is depicted
by Fig. 3(c).

United by a common {MAJ, INV} generalization, {AND,
OR, INV} logic circuits and their AND/OR switched versions
share strong properties about on-set/off-set repartition. The
following theorem states their relation.

Theorem 3.2: Let A be a logic circuit over the universal
basis set {AND, OR, INV}. Let A’ be a modified version of
A, with AND/OR operators switched. The following identities
hold |on-set(A)|=|off-set(A")| and |off-set(A)|=|on-set(A")|.

Proof Say M a {MAJ, INV} logic circuit emulating A using
an extra fictitious input variable, say d. M —, is structurally
and functionally equivalent to A, while My— is structurally
and functionally equivalent to A’. From Theorem 3.1 we
know that |on-set(M)|=|off-set(M)|=2""1=2™, where m is the
number of input variables in A and n the number of input
variables in M, with n = m + 1 to take into account the
extra fictitious input variable in M. We know by construc-
tion that |on-set(Mg—1)|+|on-set(Mg—0)|=2""1=2" and |off
set(My—1)|+|off-set(M4—g)|=2"~1=2". Again by construction
we know that My—; and My—_o can be substituted by A
and A’, respectively, in all equations. Owing to the ba-
sic definition of A and A’ we have that |on-set(A)|+|off-
set(A)|=2™ and |on-set(A")|+|off-set(A")|=2"". Expressing |on-
set(A)| as 2™-|on-set(A")| from the first set of equations
and substituting this term in |on-set(A)|+|off-set(A)|=2™ we
get 2™-|on-set(A")|+|off-set(A)|=2" that can be simplified as
|off-set(A)|=|on-set(A")|. This proves the first identity of the
Theorem. The second identity can be proved analogously.



Q.E.D.

Informally, the previous theorem says that by switching
AND/OR operators in an {AND, OR, INV} logic circuit we
swap the on-set and off-set sizes. From a statistical perspective,
this is equivalent to invert Pr(A=true) with Pr(A=false),
under uniformly random input string of bits. While this also
happens with exact logic inversion, here the actual distribution
of the on-set/off-set elements is not necessarily complemen-
tary. In the next section, we show the implications of the
theoretical results seen so far in tautology and contradiction
check problems.

IV. FROM TAUTOLOGY TO CONTRADICTION AND BACK

Verifying whether a logic circuit is a tautology, a contradic-
tion or a contingency? is an important task in logic applications
for computers.

In this section, we show that tautology and contradiction
check in logic circuits are dual and interchangeable problems
that do not require exact logic inversion per se. We start by
considering logic circuit over the universal basis set {AND,
OR, INV} and we consider richer basis sets later on. The
following theorem describes the non-trivial duality between
tautology and contradiction in {AND, OR, INV} logic circuits.

Theorem 4.1: Let A be a logic circuit over the universal
basis set {AND, OR, INV} representing a tautology (contra-
diction). The logic circuit A’, obtained by switching AND/OR
operations in A, represents a contradiction (tautology).

Proof If A represents a tautology then |on-set(A)|=2™ and
|on-set(A)|=0, with m being the number of inputs. Owing to
Theorem 3.2 |on-set(A’)|=|off-set(A)|=0 and |off-set(A")|=|on-
set(A)|=2™. Tt follows that A’ is a contradiction. Analogous
reasoning holds for contradiction to tautology transformation.
Q.E.D.

Switching AND/ORs in an {AND, OR, INV} logic circuit
is strictly equivalent to logic inversion only for tautology and
contradiction. In the other cases, A and A’ are not necessarily
complementary. We give empirical evidences about this fact
hereafter. Fig. 4 depicts the obtained results in a graph chart.
We examined 17 random Boolean functions of four input
variables, with on-set size ranging from O (contradiction) to
16 (tautology). We first compared the on-set size of the real
inverted logic circuits with the on-set size of the AND/OR
switched circuits. As expected, Theorem 3.2 holds and switch-
ing AND/OR operators results in exchanging the on-set and
off-set sizes. This also happens with the real inverted circuits,
but in that case also the actual on-set/off-set elements distri-
bution is complementary. To verify what is the on-set/off-set
elements distribution in general, we define a distance metric
between the real inverted and AND/OR switched circuits. The
distance metric is computed in two steps. First, the truth tables
of the circuits are unrolled, using the same input order, and
represented as binary strings. Second, the distance metric is
measured as the Hamming distance® between those binary
strings. For tautology and contradiction extremes the distance

metric between AND/OR switched circuits and real inverted
2A logic circuit is a contigency when it is neither a tautology nor a
contradiction [2]
3The Hamming distance between two binary strings, of equal size, is the
number of positions at which the corresponding bits are different.

4-Variables AND/OR-switched vs. Real Inverted Logic Circuits

16 ={d=|nverted on-set size

=
IS

=xe=AND/OR switched on-set size

Juy
N

Hamming distance between TT of
Inverted and AND/OR switched

N

6 "

=
o

Inverted on-set size | Hamming distance
[}

0 2 4 6 g8 10 12 14 16
Original on-set size (4-variables)

Fig. 4: Comparison between real inverted and AND/OR

switched logic circuits representing 4-variable Boolean func-

tions. The on-set size ranges from 0 to 2*.

circuits is 0, as obvious consequence of Theorem 4.1. For
other circuits, real inverted and AND/OR switched circuits
are different, with distance metric ranging between 2 and 10.

As a practical intepretation of the matter discussed so far,
we can get an answer for a tautology (contradiction) check
problem by working on a functionally different and non-
complementary structure than the original one under test. We
explain hereafter why this fact is interesting. Suppose that the
logic circuit we want to check is a contigency but algorithms
for tautology (contradiction) are not efficient on it. If we just
invert the outputs of this logic circuit and we run algorithms
for contradiction (tautology) then we would likely face the
same difficulty. However, if we switch AND/ORs in the logic
circuit we get a functionally different and non-complementary
structure. In this case, algorithms for contradiction (tautology)
do not face by construction the same complexity. Exploiting
this property, it is possible to speed-up a traditional tautology
(contradiction) check problem. Still, Theorem 4.1 gurantees
that if the original circuit is a tautology (contradiction) then
the AND/OR switched version is a contradiction (tautology)
preserving the checking correctness.

Recalling the example in Fig. 3(a), the original logic cir-
cuit represents a tautology. Consequently, the logic circuit
in Fig. 3(c) represents a contradiction. These properties are
verifiable by hand as the circuits considered are small. For
an example which is a contingency, consider the {AND, OR,
INV} circuit realization for f = ab’ + ¢ (contingency). By
switching AND/ORs, we get g = (a+b')c’ which is different
from both f or f’, as preticted.

We now consider logic circuits with richer basis set func-
tions than just {AND, OR, INV}. Our enlarged basis set
includes {AND, OR, INV, MAJ, XOR, XNOR} logic oper-
ators. Other operators can always be decomposed into this
universal basis set, or new switching rules can be derived. In
the following, we extend the applicability of Theorem 4.1.

Theorem 4.2: Let A be a logic circuit over the universal
basis set {AND, OR, INV, MAJ, XOR, XNOR} representing
a tautology (contradiction). The logic circuit A’, obtained by



TABLE I: Switching Rules for Tautology/Contradiction Check

Original Logic Operator | Switched Logic Operator
INV INV
AND OR
OR AND
MAJ MAJ
XOR XNOR
XNOR XOR

switching logic operators in A as per Table I, represents a
contradiction (tautology).

Proof In order to prove the theorem, we need to show the
switching rules just for XOR, XNOR and MAIJ operators.
AND/OR switching is already proved by Theorem 4.1. Con-
sider the XOR operator decomposed in terms of {AND, OR,
INV}Y: f = a®b = ab + o’b. Applying the duality in
Theorem 4.1 we get ¢ = (a + b')(a’ + b) that is indeed
equivalent to a XNOR operator. This proves the XOR to
XNOR switching and viceversa. Analogously, consider the
MAJ operator decomposed in terms of {AND, OR, INV}:
f = ab + ac + be. Applying the duality in Theorem 4.1 we
get g = (a+b)(a+c)(b+ c) that is still equivalent to a MAJ
operator. Hence, MAJ operators do not need to be modified.
Q.E.D.

Note that in a data structure for a computer program, the
operator switching task does not require actual pre-processing
of the logic circuit. Indeed, each time that a node in the DAG
is evaluated an external flag word determines if the regular or
switched operator type has to be retrieved from memory.

In the current section, we shown a non-trivial duality
between contradiction and tautology check. In the next section,
we study its application on Boolean satisfiability.

V. EXPERIMENTAL RESULTS

In this section, we exercise our non-trivial duality in
Boolean SATisfiability (SAT) problems. First, we describe how
to use the tautology/contradiction duality to generate a second
(dual) equisatisfiable SAT instance. Second, we demonstrate
that the dual instance can be solved faster than the regular one
and the corresponding runtime reduction is not of the random
variation type. Third, and last, we show experimental results
for a concurrent regular/dual SAT execution scenario.

A. Boolean SAT and Tautology/Contradiction Duality

The Boolean SAT problem consists of determining whether
there exists or not an interpretation evaluating to true a
Boolean formula or circuit. The Boolean SAT problem is
reciprocal to a check for contradiction. When contradiction
check fails then Boolean SAT succeeds while when contra-
diction check succeeds then Boolean SAT fails. Instead of
checking for Boolean SAT or for contradiction, one can use
a dual transformation in the circuit and check for tautol-
ogy. Such transformation can be either (i) non-trivial, i.e.,
switching logic operators in the circuit as per Table I or (ii)
trivial, i.e., output complementation. If we use twice any dual
transformation, we go back to the original problem domain
(contradiction, SAT). Note that if we use twice the same
dual transformation (trivial-trival or non-trivial-non-trival) we
obtain back exactly the original circuit. Instead, if we apply
two different dual transformations in sequence (trivial-non-
trival or non-trivial-trival) we obtain an equisatisfiable but
not necessarily equivalent circuit. We use the latter approach

to generate a second equisatisfiable circuit, which we call the
dual circuit. The dual circuit SAT can be solved in parallel
with the regular one in a “first finishing wins” speculative
strategy. Fig. 5 depicts the corresponding flow. We generate the

INV. =) INV Dual
AND =) OR Circuit 2
OR =) AND >
XOR =} XNOR E> E> 'ﬂ
XNOR C—=)> XOR
MAI =) MAJ First finishing
“wins”
R
Regular | >
Circuit

Fig. 5: Speculative parallel regular/dual circuit SAT flow.

dual circuit by first applying our non-trivial duality (switching
rules in Table I) and finally complementing the outputs (frivial
duality). Note that these operations ideally require no (or very
little) computational overhead, as explained previously.

B. Verification of SAT Solving Advantage on the Dual Circuit

In our first set of experiments we focused on verifying
whether the dual circuit can be easier to satisfy than the regular
circuit. For this purpose, we modified MiniSat-C v1.14.1 [16]
to read circuits in AIGER format [18] and to encode them
in CNF internally via Tseitin transformation. The dual circuit
is generated online during reading if a switch ”-p” is given.
We considered a large circuit (0.7 M nodes) over 1000 ran-
domized (pseudo-random number generator seed) runs. Fig. 6
shows the runtime distributions for dual and regular SAT. The

Regular vs. Dual 1000 Random SAT Runs

==Dual

===Regular

Number of instances solved
= - =
N ey [e)) o] o N B
o o o o o o o

o

0 5 10 15 20 25
Runtime (s)

Fig. 6: 1000 randomized SAT runs for regular and dual circuit.

dual runtime distribution is clearly left-shifted (but partially
overlapping) with respect to the regular runtime distribution.
This confirms that (i) the dual circuit can be solved faster
than the regular one and (ii) the runtime reduction is not of
the random variation type.

C. Results for Concurrent Regular/Dual SAT Execution

In our second set of experiments (downloadable at [19])
we used ABC tool [17] to test our dual approach together



TABLE II: Experimental Results for Regular vs. Dual SAT Solving
All runtimes are in seconds

Benchmark 1/0 Logic Size | Logic Depth | Runtime Regular | Runtime Dual | [A Runtime| | Best Runtime
hardsat1 4580/1 283539 392 186.35 58.9 127.35 58.9
hardsat2 4580/1 287635 392 51.1 191.87 140.77 51.1
hardsat3 19854071 920927 267 0.94 1.1 0.16 0.94
hardsat4 2452/1 43962 436 68.82 20.53 48.29 20.53
hardsat5 5725/1 562027 464 4091 22.72 18.19 22.72
hardsat6 3065/1 86085 437 37.51 64.24 26.73 37.51
hardsat7 372240/1 85596 151 4.8 3.68 1.12 3.68
Total sat 59118277 2269771 2539 390.43 363.04 27.39 195.38

hardunsatl 61/1 448884 2181 26.72 27.22 0.50 26.72

hardunsat2 61/1 264263 2951 3.70 1.32 2.38 1.32

hardunsat3 61/1 451350 2181 27.8 20.33 747 20.33

hardunsat4 540/1 244660 1158 234.88 326.84 91.96 234.88

hardunsat5 235271 208221 439 7.61 7.65 0.04 7.65

hardunsat6 550/1 117820 423 142.28 137.94 4.34 137.94

Total unsat 3625/6 1735198 9333 442.99 521.30 78.31 428.80

Total 594807/13 4004969 11872 833.42 884.34 50.84 624.18
Norm. to Regular — — — 1.00 1.06 —

with advanced techniques to speed-up SAT. Our custom set of
benchmarks is derived by (i) unfolding SAT sequential prob-
lems (ii) encoding combinational equivalence check problems.
All benchmarks are initially described in Verilog as a netlist
of logic gates over the basis {AND, OR, INV, XOR, XNOR,
MAJ}. The dual circuits are obtained by applying switching
rules in Table I and inverting the output. The ABC script to
read and run SAT on these benchmarks is: read library.genlib;
r -m input.v; st; write out.aig; &r out.aig; &ps; &write_cnf -K
4 out.cnf; dsat -p out.cnf. Apart from standard I/O commands,
note that &write_cnf -K 4 out.cnf generates a CNF using a
technology mapping procedure and dsat -p calls MiniSat with
variable polarity alignment.

Table II shows results for regular vs. dual SAT solving with
our setup. For about half of the benchmarks (7/13) the dual
instance concluded first while for the remaning ones (6/13)
the regular instance was faster. The total regular runtime is
quite close to the total dual runtime (just 6% of deviation).
However, considering here the speculative parallel SAT flow in
Fig. 5, we can ideally reduce the total runtime by about 25%.
Note that this is an ideal projection into a parallel execution
environment, with no overhead. We experimentally verified
that the average overhead can be small (few percentage points)
thanks to the intrinsic independence of the two tasks.

VI. CONCLUSIONS

In this paper, we have shown a non-trivial duality between
tautology and contradiction check to speed up circuit SAT.
On the one hand, tautology check determines if a logic
circuit is true for all input combinations. On the other hand,
contradiction check determines if a logic circuit is false for all
input combinations. A trivial transformation of a (tautology,
contradiction) check problem into a (contradiction, tautology)
check problem is the inversion of all the outputs in a logic
circuit. In this work, we proved that exact logic inversion
is not necessary. By switching logic operator types in a
logic circuit, following the rules presented in this paper, we
can selectively exchange tautologies with contradictions. Our
approach is equivalent to logic inversion just for tautology and
contradiction extreme points. It generates non-complementary
logic circuits in the other cases. Such property enables com-
puting benefits when an alternative but equisolvable instance
is easier to solve than the original one. As a case study, we

studied the impact on SAT. There, our methodology generated
a dual SAT instance solvable in parallel with the original one.
This concept can be used on top of any other SAT approach
and does not impose much overhead, except having to run
two solvers instead of one, which is typically not a problem
because multi-cores are wide-spread and computing resources
are inexpensive. Experimental results shown 25% speed-up of
SAT in a concurrent execution scenario.

ACKNOWLEDGEMENTS
This work was supported by grant ERC-2009-AdG-246810.

REFERENCES

[1]1 G. De Micheli, Synthesis and Optimization of Digital Circuits, McGraw-
Hill, New York, 1994.

[2] T. Sasao, Switching Theory for Logic Synthesis, Springer, 1999.

[3] M. R. Garey, D. S. Johnson, Computers and Intractability— A Guide to
the Theory of NP-Completeness. W. H. Freeman and Company, 1979.

[4] A. E. Hyvarinen, et al.,, Incorporating clause learning in grid-based
randomized SAT solving, Journal on SAT (JSAT) 6, 223-244, 2009.

[5] R.K. Brayton, Logic minimization algorithms for VLSI synthesis, Vol. 2.
Springer, 1984.

[6] R. Rudell, A. Sangiovanni-Vincentelli Multiple-valued Minimization far
PLA Optimization, IEEE Trans. on CAD of ICs and Syst. 6.5: 727-750,
1987

[71 G. Hachtel, F. Somenzi, Logic synthesis and verification algorithms.
Springer, 2006.

[8] L. Benini, G. De Micheli, A survey of Boolean matching techniques for
library binding, ACM Transaction on DAES (TODAES), 2(3), 193-226,
1997.

[9] G. D. Hachtel, M. J. Reily, Verification algorithms for VLSI synthesis,
IEEE Trans. on CAD of ICs and Syst. 7.5: 616-640, 1980

[10] G. Stalmarck, A system for determining propositional logic theorems by
applying values and rules to triplets that are generated from a formula,
Swedish Patent No. 467,076 (approved 1992); U.S. Patent No. 5,276,897
(approved 1994); European Patent No. 403,454 (approved 1995).

[11] R.E. Bryant, Graph-based algorithms for Boolean function manipula-
tion, IEEE Trans. on Comp., C-35(8): 677-691, 1986.

[12] S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentelli,
Logic verification using binary decision diagrams in a logic synthesis
environment, Proc. ICCAD, 1988.

[13] C. P. Gomes, H. Kautz, A. Sabharwal, B. Selman, Satisfiability solvers,
Handbook of Knowledge Representation 3 (2008): 89-134.

[14] http://www.satcompetition.org

[15] L. Amaru, P-E. Gaillardon, G. De Micheli, Majority-Inverter Graph:
A Novel Data-Structure and Algorithms for Efficient Logic Optimization,
Proc. DAC, 2014.

[16] MiniSat SAT solver available online at http://minisat.se/MiniSat.html

[17] Berkeley Logic Synthesis and Verification Group, ABC:
A System  for  Sequential  Synthesis and  Verification,
http://www.eecs.berkeley.edu/ alanmi/abc/

[18] AIGER benchmarks available online at http.//fmv.jku.at/aiger/.

[19] http://1si.epfl.ch/DUALSAT



