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ABSTRACT 

This paper presents a novel approach to synthesize circuits based 

on threshold logic gates (TLGs). Emerging technologies, such as 

memristors, spintronics devices and tunneling diodes, are able to 

build this class of gates efficiently. For this reason, threshold 

logic is a promising alternative to conventional CMOS logic. The 

proposed approach is based on pruning non-threshold-logic cuts 

in order to limit the search space during technology mapping. As 

a result, both the number of TLGs and logic depth of the 

synthesized circuits are reduced. Experimental results have 

shown that, compared to the state-of-the-art methods, the TLG 

count is reduced by 8% and logic depth is reduced by 46%.   

Keywords 

Digital circuit, threshold logic synthesis, emerging technologies, 

technology mapping. 

1. INTRODUCTION 
The limits of MOS transistor scaling have motivated the 

investigation of new alternative devices, such as memristors, 

spintronics, resonant tunneling devices (RTD), quantum cellular 

automata (QCA) and single electron transistor (SET) [1]-[6]. It 

has been shown that threshold logic gates (TLGs) are more 

suitable to build digital integrated circuits (ICs) in these 

emerging technologies, compared to the standard AND/OR-based 

CMOS design style [3][6]. This motivates development of EDA 

tools, which can synthesize and optimize TLG-based ICs. 

Algorithms addressing threshold logic synthesis have been 

presented in recent years [6-10].  However, all these previous 

methods use SIS tool [19] to generate the initial set of single-

output Boolean networks, restricting each network fanin to six. 

The threshold synthesis starts after the circuit has already been 

covered by SIS without considering threshold logic. Once the 

circuit is covered, the previous approaches locally perform a 

threshold network synthesis for each independent single-output 

network, aiming to cover the circuit using only TLGs. 

This paper presents a novel threshold logic synthesis approach 

that is based on a new synthesis flow, combining both TLG count 

and logic depth optimization. In particular, the proposed flow 

relies on pruning the non-threshold cuts before performing the 

circuit covering. By doing this, the resulting mapped circuit is 

composed by only TLFs, which can be implemented into single 

TLGs. This cut-pruning-based method is implemented in ABC 

[20] as part of its multi-objective technology mapper. When 

compared against the state-of-the-art methods, similar results 

have been obtained in terms of TLG count (8% reduction), with 

half of logic depth on critical paths (46% reduction). We 

compare the obtained results against previous approaches by 

presenting experiments carried out over both ACM/SIGDA 

(a.k.a. MCNC) [17] and ISCAS’85 [16] benchmarks. We also 

demonstrate the scalability of the proposed method by 

synthesizing 12 large OpenCore benchmarks [18]. 

The main contributions of this paper are the following: 

(1) Simplicity: the proposed threshold logic synthesis flow 

is significantly  simpler than previous approaches;  

(2) Circuit-Level Scalability: the proposed method is 

efficiently based on cut pruning, scaling to large 

benchmark circuits;  

(3) Gate-Level scalability: the proposed threshold logic 

synthesis method is capable of synthesizing circuits 

using TLFs up to 9 inputs, while other methods are 

restricted to 6 input gates; 

(4) Quality of Results: best in class results compared to 

previous methods and new OpenCore [18] results in 

terms of both TLG count and logic depth can be used 

as a reference in further publications. 

The rest of the paper is organized as follows. Section 2 presents 

the related works. In Section 3, some fundamentals are briefly 

reviewed for a better understanding of the proposed approach. 

Section 4 describes both the technology mapping for field-

programmable gate arrays (FPGAs), which bases the synthesis 

flow proposed herein, and the proposed approach to synthesize 

TLG-based circuits. Section 5  provides the experimental results, 

whereas the conclusions are outlined in Section 6. 

2. RELATED WORKS 
Previously proposed related methods start from a given single 

output Boolean network and map the network in one or more 

TLGs. Circuits with multiple outputs are divided into single-

output networks. 

In [6], Zhang et al. propose the recursive partition of non-

threshold functions to merge the nodes respecting fanin 

restrictions. Unfortunately, the quality of results is very sensitive 

to the initial Boolean network description. 

Further, a method based on the truth table description was 

presented by Subirats et al., in [7]. The Subirats’ algorithm 

computes an ordering of variables by using information of on-set 

and off-set, performing Shannon decomposition up to find 

threshold logic functions (TLFs). However, this approach 

produces two-level threshold networks without fanin restriction, 

which is more suitable for neural networks than for digital IC 

design. 

In [8], Gowda et al. apply a factorized tree method to generate 

the network of threshold gates. The method recursively breaks 

the given initial expression tree into sub expressions, identifying 

sub-trees which represent TLFs and assigning the input weights. 

It is more appropriate for IC synthesis using several TLGs, but it 

is very time consuming and presents a strong dependence to the 

initial expression structure, including the ordering of the initial 
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tree. The method proposed by Palaniswamy et al., in [9], 

presents some improvements to the Gowda’s method [8]. 

Finally, the method proposed by Neutzling et al., in [10], is 

based on a TLG association method through the principle called 

functional composition (FC), based on dynamic programming. 

The algorithm associates simpler sub-solutions, with known 

costs, in order to produce a final solution with minimum cost. 

This method presents better results in terms of TLG count when 

compared against previous approaches. However, it does not 

present significant optimization in terms of logic depth. 

P.­Y. Kuo et al. and C.­C. Lin et al. proposed in [24][25], 

respectively, methods for TLG circuits rewiring. The methods 

start from an already synthesized TLG network and use both 

weight-inputs and threshold value summation as cost functions, 

differently from the mentioned works. 

3. PRELIMINARES 

3.1 Boolean Network 
A Boolean network is a directed acyclic graph (DAG) where 

nodes correspond to logic gates and directed edges represent the 

wires connecting the gates. It is assumed that each node has a 

unique ID (integer number).  

A fanin (fanout) cone of node n is a subset of all nodes of the 

network reachable through the fanin (fanout) edges from the 

given node. 

A node n has zero or more fanins (nodes driving n) and zero or 

more fanouts (nodes driven by n). The primary inputs (PIs) are 

nodes without fanins, whereas the primary outputs (POs) are a 

subset of nodes from the network connecting it to the 

environment. 

3.2 AIG 
And-inverter graph (AIG) is a specific type of Boolean network 

where each node has either zero incoming edges – PIs – or two 

incoming edges – AND nodes. Each edge can be complemented 

or not. Some nodes are marked as POs. 

3.3 Structural Cuts 
A cut C of a node n is a set of nodes of the network, called leaves 

of the cut, such that every path between a PI and n contains a 

node in C. A cut of n is irredundant if no subset on it is a cut. A 

k-feasible cut is an irredundant cut containing k or fewer nodes. 

Node n is called the root of cut C. The cut size is the number of 

its leaves. A trivial cut is the node itself. A local function of an 

AIG node n, denoted by fn(x), is a Boolean function of the logic 

cone rooted in n and expressed in terms of the leaves, x, of a cut 

of n 

Cut enumeration is a technique used by a cut-based technology 

mapper to perform cut computation using dynamic programming, 

starting from PIs and ending at POs [14,23]. 

3.4 Threshold Logic Function 
Threshold logic functions are a subset of Boolean functions 

which respects the following operation principle. Each input has 

a specific weight and the gate has a threshold value. If the sum of 

weight of ON inputs (inputs with value equal to 1) is equal or 

greater than the threshold value, the resulting function value is 

equal to 1. Otherwise, the resulting function value is 0. This 

operating behavior can be expressed as follows [15]: 

 

 where xi represents each input value {0,1}, wi is the weight of 

each input, and T is the function threshold value. A TLF can also 

be called a ‘linearly separable’ function. 

3.5 Threshold Logic Gates 
Threshold logic gate is an electronic circuit that implements a 

TLF. A TLG is completely represented by a compact vector 

[w1,w2,…,wn;T], where w1,w2,…,wn are the input weights and T is 

the function threshold value. For instance, the corresponding 

TLG of the given functions ƒ= x1x2x3 and g = x1+x2+x3 are 

[1,1,1;3] and [1,1,1;1], respectively.  

TLGs can implement complex functions. For example, TLG 

[4,3,3,1,1;7] implements ƒ = x1x2 + x1x3 + x2x3x4 + x2x3x5. Using 

larger threshold functions has the potential benefit of reducing 

the total number of gates needed to implement digital circuits. 

Several implementations of TLGs have been proposed for both 

CMOS and new nanometric technologies. A survey with more 

than 50 TLG implementations was presented by Beiu et al., in 

[5]. More recent implementations based on memristors [2], 

spintronics devices [3][4], RTDs [6] have also been proposed. 

3.6 Threshold Logic Identification 
Although some complex functions are TLFs, there exist some 

simple functions which are not TLFs. For example, the function 

h=x1.x2+x3.x4 cannot be implemented in a single TLG. The 

threshold logic identification process corresponds to the task 

responsible to determine if a Boolean function is TLF (or not), 

and compute the input weights and the gate threshold value. In 

this work, we have adopted the identification process presented 

in [16], instead of the integer linear programming based 

algorithms applied in previous works [6]-[9]. This is mainly due 

to fast runtime and good quality of results obtained. 

4. THRESHOLD LOGIC SYNTHESIS 
Threshold logic has been revisited as a promising logic style 

when considering emerging technologies, such as memristors, 

spintronics devices and tunneling diodes. However, the state-of-

the-art threshold logic synthesis tools are not based on specific 

technologies when defining cost functions. The works in [6]-[10] 

adopt two main design costs: (1) TLG count on mapped netlists, 

when looking at the circuit area; and (2) logic depth on critical 

paths, when looking at the circuit delay. Such cost functions are 

similar to those used for LUT-based FPGA synthesis, which 

adopt LUT count and logic depth as cost functions. 

Technology mapping for FPGAs is a well-known research field 

and a number of techniques are consolidated on the literature. 

Such methods are able to achieve impressive solutions on area 

recovery with near-optimum logic depth on critical paths. Due to 

these reasons, this work proposes a novel synthesis flow which 

adapts the FPGA technology mapper in ABC [20] to provide a 

mapped netlist composed of only threshold logic functions. The 

following subsections present a brief overview of FPGA 
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technology mapping methods, the threshold synthesis flow we 

propose in this work (which is mainly based on the FPGA 

technology mapping flow), and a comparison of this flow against 

previous approaches.  

4.1 Technology Mapping for FPGAs 
Technology mapping process transforms a technology-

independent logic network, named subject graph, into a network 

of logic nodes. For FPGAs, each logic node is represented using 

a k-input LUT implementing any Boolean function up to k inputs. 

The subject graph is often represented as an AIG. 

The delay of an FPGA circuit is determined by two factors: (1) 

the delay in k-LUTs; and (2) the interconnection delay. Each k-

LUT has a constant delay independent of the function it 

implements (the access time of a k-LUT). The interconnection 

delay is dominated by the physical configuration of the FPGA, 

which is not available during the synthesis task. Thus, state-of-

the-art FPGA technology mappers assume that each edge in the 

mapping solution has a constant delay. Due to these reasons, the 

circuit delay is commonly estimated by the logic depth and the 

circuit area is determined by the number of k-LUTs of the 

mapping solution. 

State-of-the-art FPGA technology mappers [11][12][14] produce 

near-optimum logic depth while minimizing the number of LUTs 

in the resulting network [11][14]. A typical procedure consists of 

the following steps: 

1. Near-optimum delay mapping 

 Compute arrival time at each node by computing the 

depth of all priority cuts and choosing the best one 

2. Area recovery 

  Perform area recovery using several heuristics (for 

example, area flow and exact local area [14]) 

3. Choose the resulting cover 

The depth-optimality requires computation of all cuts in delay 

mapping, which is not scalable (the number of k-cuts in a 

network with n nodes is O(nk)). The concept of priority cuts is 

based on, instead of computing all K-feasible cuts at each node, 

it computes a small number, c, of K-feasible cuts at each node 

(typically, 4 ≤ c ≤ 8). The priority cuts computation does not 

guarantee the depth-optimality. However, the depth is optimal in 

95% of the cases [21]. This one-pass depth-oriented mapping 

substantially increases the number of LUTs, which is brought 

down on area recovery step. For a detailed description of these 

steps, we refer the reader to [11] and [14]. 

Since the area and delay cost functions for threshold logic 

synthesis are, respectively, TLG count and logic depth, it is 

straightforward to relate them with FPGA technology mapping. 

The following subsection presents the technology mapping 

approach we propose for threshold logic, which is mainly based 

on the FPGA technology mapping flow.  

4.2 Technology Mapping for Threshold Logic 
Threshold logic synthesis for a given circuit finds an optimized 

netlist containing only TLFs. Notice that each TLF derives a 

single TLG in the mapped netlist. Fig. 1 illustrates the threshold 

synthesis flow used in the previous work and the flow we 

propose in this paper. State-of-the-art threshold logic synthesis 

tools are based on identifying TLFs only after the circuit was 

covered by single-output Boolean networks (“Traditional 

Covering” in Figure 1). Then, to achieve a netlist comprised only 

by TLGs, they propose to synthesize threshold networks to 

replace the non-TLFs in the covering. 

The main advantage of the synthesis flow proposed herein is to 

identify TLFs before the circuit covering. By doing this, we are 

able to discard those non-TLFs and to perform a circuit covering 

by using only TLFs, what derives a mapped netlist composed 

only by TLGs. This improvement allows us to explore the multi-

objective FPGA technology mapper, described in Section 3.1. In 

order to achieve these claims, we propose to pre-compute 

Boolean functions of cuts obtained from the AIG, identify TLFs 

over this set of computed cuts, and to discard the non-TLFs by a 

cut pruning approach. 

An efficient method to pre-compute Boolean functions of cuts in 

a design (or a suite of designs) relies on fast algorithms to 

compute NPN-canonical forms and compactly store them. We 

adapt the DSD manager data-structure [22], which stores 

representatives of each NPN class as a shared tree. The DSD 

manager provides a convenient way of checking functional 

properties, such as symmetry, unateness, and decomposability, 

and, in our specific case, identifying TLFs over the computed 

cuts. 

 

 

Figure 1: Threshold logic synthesis flow proposed in this work. 
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The method proposed herein starts by computing priority cuts in 

the input AIG, pre-computing Boolean functions from these cuts, 

and storing them in the DSD manager. Since the k-cuts are pre-

computed in the input design, it is possible to mark a 

matchable/unmatchable label for each cut and indicate these 

marks to the technology mapper. Thus, we filter those pre-

computed functions and indicate only TLFs to be matched. The 

TLFs are identified by applying the threshold logic identification 

method presented in [16]. Once the identification is performed, 

those non-threshold cuts are labeled as unmatchable and not 

allowed to be selected as the best cut of a node while mapping 

the design.  

Notice that the proposed method always find a TLF-only cover, 

since the trivial cut (the node itself) is present in every set of c 

cuts at each node [11][14]. Once we propose to use AIGs as 

subject graphs, the entire design is already decomposed into 

AND nodes, which are TLFs. 

When the final mapping is derived, a subset of best cuts is 

selected and, since they are always matchable, the resulting 

mapping only contains the cuts that can be expressed using 

TLFs. The pseudo-code of the proposed approach is presented in 

Algorithm 1. 

The complexity of mapping step is O(Knc²), dominated by the cut 

computation (linear in the size K of cuts and the number of 

circuit nodes n, and quadratic in the number of cuts c stored at 

each node). Matching of cut functions against threshold logic 

functions (TLFs) is performed in constant time for each cut (hash 

table lookup). The complexity of the pre-computation step is 

O(K·log(K)·m·m’), being m and m’ the number of primes related 

to the on-set and off-set of the candidate TLF , respectively. As 

TLFs are unate functions, the number of primes m (or m’) is at 

most K! /(floor (K/2)!*ceil(K/2)!). Notice that these complexities 

are bearable for small K, up to 9 inputs. Additionally, pre-

computation can be done only once to generate the candidate 

TLF set. 

5. EXPERIMENTAL RESULTS 
In order to validate the proposed threshold logic synthesis flow, 

experiments were carried out over different sets of benchmark 

circuits. The proposed approach is implemented in ABC [20] 

using C programing language and compiled with gcc 4.7.2 

compiler. The experiments were performed on a computer with 

Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz, 8Gb RAM. 

For each benchmark circuit, we have pre-computed the set of 

NPN classes of 9-input functions by running the script (&synch2; 

&if –n –K 9), which were iterated three times per design. This 

script performs logic synthesis with choices (&synch2), computes 

9-input cuts together with their Boolean functions and saves 

them in the DSD manager (enabled by switch “–n” in “if”). 

Once the DSD manager has been populated, we filter the pre-

computed functions and prune those non-threshold cuts by using 

the script (dsd_filter –t). This script identifies the threshold logic 

functions by applying the method in [16] and selects only the 

TLFs used in mapping step (switch “–t”). Finally, we map the 

design using only matchable cuts iterating the following script 

three times (&synch2; &if –k –K 9). Each node in a resulting 

netlist represents a TLF due to the filtering step (enabled by 

switch “–k”) and does not exceed 9 inputs (switch “–K 9”). 

In order to compare our results against the state-of-the-art 

approaches presented both by Neutzling et al. [10] and by Zhang 

et al. [6], ACM/SIGDA benchmarks (a.k.a. MCNC) [17] were 

synthesized.  Tab. I shows the results obtained in terms of TLG 

count and circuit logic depth.  

When comparing Neutzling et al.[10] to Zhang et al.[6] results, 

the former presents 54% reduction in TLG count and 30% 

reduction in logic depth. For this reason, Neutzling’s results have 

been adopted as reference metric. The proposed method presents 

TLG count lesser or equal to the reference in 76% of benchmarks 

(around 8% reduction, on average). The logic depth is reduced in 

all benchmarks (around 44% reduction, on average). The 

execution time is around 1 second per circuit, on average. 

It is important to remark that previous approaches provide 

synthesized netlists comprised with TLFs up to six inputs. The 

reason firstly presented in [6] is that, when increasing the 

number of inputs, the percentage of functions that are threshold 

decreases drastically. This statement holds when considering the 

universe of all Boolean functions. However, it has been observed 

through the carried out experiments that 55% of the identified 

TLFs in MCNC (smaller) circuits have more than six inputs and 

about 83% in Opencore (larger) circuits. 

We also synthesized the MCNC benchmark limiting the number 

of inputs up to six. In the proposed flow, changing fanin 

limitation from nine to six does not impact significantly in 

running time. When comparing the obtained results with limited 

fanin to Neutzling’s approach, similar results have also been 

obtained in terms of TLG count (4% increasing), with 40% 

reduction in terms of logic depth. 

Algorithm 1: Pseudo-code of the proposed approach. 

 Input: circuit description 

 Output: TLG-based netlist 

1 extract AIG from the input circuit; 

2 compute cuts and populate the DSD 

manager with pre-computed cut 

functions; 

3 identify and mark TLFs among these 

functions; 

4 discard cuts, which have non-threshold  

functions, during technology mapping; 

5 derive final mapping using only TLFs; 

6 return the resulting mapped circuit; 

 

 

Figure 2 – Percentage gate count reduction in each 

approach, compared to the original netlist [6]. 
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The results presented by Gowda et al., in [8], show a reduction in 

threshold gate count compared to the results provided in [6]. 

However, in [8], the authors only compare the gate count and 

present the results for MCNC circuits grouped by number of 

gates. Fig. 2 shows the gate reduction of each approach, 

compared to the original netlist [6], which uses only the 

traditional OR and AND description.  

The graphic shown in Fig. 2 demonstrates that the reduction in 

gate count is larger than the reduction presented both in [6] and 

in [7]. The proposed method has provided an average reduction 

of 50% in comparison to the original netlist, against a reduction 

of 23% and 34% obtained in [6] and in [7], respectively. The 

execution time is around 1 second per circuit, on average. 

The most recent work, proposed by Palaniswamy et al. [9], 

presents two different improvements to the method proposed in 

[7], called BDM and ZDM. The results shown in Fig. 3 presents 

the TLG count reduction obtained both by the method proposed 

herein and the Palaniswamy’s one. The ISCAS’85[16] set of 

benchmarks was synthesized for this experiment. The reference 

values are the results obtained by Gowda et al.. BDM and ZDM 

methods provide an average TLG count reduction of 12% and 

17%, respectively. The average reduction obtained by the 

proposed method is about 58%.Finally, in order to verify the 

scalability of the proposed method, we synthesize 12 large 

OpenCore benchmarks [18]. The obtained results are presented 

in Tab. II. These benchmarks were synthesized to TLGs for the 

first time and can be adopted as reference for further 

comparisons. The execution time of both identification and 

mapping steps are also presented in Tab. II. Notice that the 

execution time of the pre-computation step is proportional to the 

number of unate cuts. The TLF identification method performs 

an unateness checking as it first step avoiding binate functions, 

since all threshold functions are unate. This unateness checking 

has an insignificant execution time when compared to the 

complete identification process. 

6. CONCLUSIONS AND FUTURE WORKS 
In this paper, a novel approach to synthesize circuits using 

threshold logic gates (TLGs) is presented. The proposed method 

is based on a new synthesis flow, which allows us to use the 

multi-objective FPGA-based technology mappers and combines 

both TLG count and logic depth optimizations. The main 

contributions of this work are the following: (1) a simpler 

threshold logic synthesis flow, compared to previous work; (2) an 

efficient method based on cut pruning, scalable to large 

benchmark circuits; (3) threshold logic synthesis, which produces 

circuits using TLFs up to 9 inputs; and (4) experimental 

comparison and new results to be used as a reference in further 

publications. When compared against the state-of-the-art 

methods, the proposed method reduces the TFL count by 8% and 

logic depth by 46%.  

We intend to improve the method proposed herein by identifying 

TLFs before populating the DSD manager. Currently, the priority 

cuts computation does not consider TLFs while sorting cuts. We 

plan to propose a TLF-based priority cuts computation, which 

would identify TLFs while sorting cuts. In this method, we are 

expecting to increase the occurrences of TLF cuts at each node, 

allowing the mapper to explore solutions disregarded in the 

current approach.  
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Table II – Obtained results when synthesizing OpenCore benchmarks [18]. 

    Cut Computation Mapping Results Execution Time (s) 

Circuit PI PO 
AIG 

Nodes 

Total 

Cuts 

Unate 

Cuts 

Threshold 

Cuts 
TLGs Levels 

Identification 

Step 

Mapping 

Step 
Total 

oc_ethernet 192 1,171 10,820 60,332 5,759 1,027 3,893 7 5.8 13.5 19.3 

oc_cordix_p2r 50 32 11,846 42,492 11,218 1,961 4,876 7 12.4 13.5 25.9 

oc_cfft_1024x12 52 592 13,838 51,715 10,221 2,238 5,170 7 11.3 16.0 27.3 

oc_cordic_r2p 34 40 15,773 57,321 14,858 2,796 6,043 6 16.9 15.8 32.7 

oc_mem_ctrl 115 152 16,727 34,679 3,145 321 6,680 9 3.1 19.5 22.6 

oc_fpu 262 280 24,932 364,570 25,436 2,741 9,561 265 29.8 53.3 83.1 

oc_aquarius 464 3,328 25,058 208,686 16,823 1,831 9,776 21 19.2 50.2 69.4 

oc_des_perf 121 64 29,905 94,051 1,271 131 11,322 7 1.1 60.2 61.3 

oc_video_dct 1,903 3,528 46,433 521,682 33,743 3,195 17,127 13 40.4 73.5 113.9 

oc_video_jpeg 1,720 3,450 56,601 425,542 28,527 3,191 21,735 12 34.9 76.6 111.5 

radar20 3.292 17,732 78,342 195,782 17,401 2,330 33,936 14 19.8 106.1 125.9 

uoft_raytracer 4,364 10,569 187,683 659,183 41,575 4,886 74,205 21 51.5 327.3 378.8 

 

Figure 3 – Percentage gate count reduction in each 

approach, compared to Gowda [8]. 
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Table I – Comparison of proposed method vs related works. 

Name 
Statistics Gates (ratio) Levels (ratio) 

input output Neutzling [10] Zhang [6] Proposed Neutzling 

[10] 

Zhang  Proposed 

des 256 245 1556 (1.00) 1920 (1.23) 1538 (0.99) 19 (1.00) 16 (0.84) 6 (0.32) 

i10 257 224 840 (1.00) 1817 (2.16) 819 (0.98) 31 (1.00) 35 (1.13) 8 (0.26) 

pair 173 137 563 (1.00) 907 (1.61) 518 (0.92) 17 (1.00) 12 (0.71) 5 (0.29) 

i8 133 81 427 (1.00) 570 (1.33) 330 (0.77) 10 (1.00) 10 (1.00) 3 (0.30) 

dalu 75 16 371 (1.00) 810 (2.18) 366 (0.99) 11 (1.00) 23 (2.09) 6 (0.55) 

x3 135 99 280 (1.00) 441 (1.58) 268 (0.96) 7 (1.00) 7 (1.00) 4 (0.57) 

apex6 135 99 279 (1.00) 396 (1.42) 270 (0.97) 10 (1.00) 12 (1.20) 4 (0.40) 

alu4 14 8 275 (1.00) 410 (1.49) 250 (0.91) 22 (1.00) 23 (1.05) 8 (0.36) 

i9 88 63 266 (1.00) 275 (1.03) 241 (0.91) 8 (1.00) 8 (1.00) 3 (0.38) 

i7 199 67 197 (1.00) 304 (1.54) 262 (1.33) 3 (1.00) 5 (1.67) 2 (0.67) 

x4 94 71 152 (1.00) 189 (1.24) 136 (0.89) 5 (1.00) 8 (1.60) 3 (0.60) 

example2 85 66 151 (1.00) 182 (1.21) 122 (0.81) 6 (1.00) 8 (1.33) 4 (0.67) 

i6 138 67 141 (1.00) 276 (1.96) 202 (1.43) 3 (1.00) 5 (1.67) 2 (0.67) 

alu2 10 6 134 (1.00) 197 (1.47) 123 (0.92) 18 (1.00) 25 (1.39) 7 (0.39) 

x1 51 35 107 (1.00) 203 (1.90) 76 (0.71) 5 (1.00) 7 (1.40) 3 (0.60) 

i3 132 6 86 (1.00) 158 (1.84) 66 (0.77) 5 (1.00) 6 (1.20) 3 (0.60) 

apex7 49 37 78 (1.00) 118 (1.51) 66 (0.85) 7 (1.00) 9 (1.29) 4 (0.57) 

cht 47 36 73 (1.00) 82 (1.12) 73 (1.00) 2 (1.00) 5 (2.50) 2 (1.00) 

my_adder 33 17 71 (1.00) 96 (1.35) 82 (1.15) 10 (1.00) 18 (1.80) 4 (0.40) 

i4 192 6 70 (1.00) 74 (1.06) 66 (0.94) 9 (1.00) 5 (0.56) 3 (0.33) 

i5 133 66 66 (1.00) 66 (1.00) 66 (1.00) 5 (1.00) 6 (1.20) 3 (0.60) 

ttt2 24 21 62 (1.00) 100 (1.61) 49 (0.79) 6 (1.00) 6 (1.00) 3 (0.50) 

i2 201 1 62 (1.00) 198 (3.19) 35 (0.56) 6 (1.00) 7 (1.17) 4 (0.67) 

term1 34 10 60 (1.00) 226 (3.77) 43 (0.72) 7 (1.00) 10 (1.43) 4 (0.57) 

c8 28 18 58 (1.00) 85 (1.47) 51 (0.88) 5 (1.00) 7 (1.40) 3 (0.60) 

count 35 16 55 (1.00) 79 (1.44) 52 (0.95) 11 (1.00) 12 (1.09) 3 (0.27) 

unreg 36 16 48 (1.00) 50 (1.04) 48 (1.00) 2 (1.00) 5 (2.50) 2 (1.00) 

pcler8 27 17 36 (1.00) 47 (1.31) 30 (0.83) 4 (1.00) 7 (1.75) 2 (0.50) 

frg1 28 3 36 (1.00) 59 (1.64) 17 (0.47) 8 (1.00) 9 (1.13) 3 (0.38) 

comp 32 3 35 (1.00) 83 (2.37) 31 (0.89) 8 (1.00) 8 (1.00) 3 (0.38) 

lal 26 19 32 (1.00) 54 (1.69) 36 (1.13) 4 (1.00) 7 (1.75) 2 (0.50) 

parity 16 1 30 (1.00) 45 (1.50) 31 (1.03) 8 (1.00) 9 (1.13) 5 (0.63) 

pcle 19 9 27 (1.00) 35 (1.30) 29 (1.07) 4 (1.00) 6 (1.50) 2 (0.50) 

sct 19 15 25 (1.00) 38 (1.52) 27 (1.08) 11 (1.00) 5 (0.45) 2 (0.18) 

cordic 23 2 24 (1.00) 49 (2.04) 26 (1.08) 6 (1.00) 7 (1.17) 3 (0.50) 

f51m 8 8 24 (1.00) 82 (3.42) 32 (1.33) 6 (1.00) 8 (1.33) 3 (0.50) 

cc 21 20 23 (1.00) 35 (1.52) 21 (0.91) 3 (1.00) 6 (2.00) 2 (0.67) 

cm150a 21 1 21 (1.00) 21 (1.00) 16 (0.76) 5 (1.00) 4 (0.80) 4 (0.80) 

cu 14 11 17 (1.00) 24 (1.41) 16 (0.94) 3 (1.00) 4 (1.33) 2 (0.67) 

pm1 16 13 16 (1.00) 23 (1.44) 12 (0.75) 4 (1.00) 4 (1.00) 2 (0.50) 

tcon 17 16 16 (1.00) 32 (2.00) 16 (1.00) 2 (1.00) 3 (1.50) 2 (1.00) 

decod 5 16 16 (1.00) 24 (1.50) 16 (1.00) 1 (1.00) 3 (3.00) 1 (1.00) 

cm162a 14 5 15 (1.00) 26 (1.73) 14 (0.93) 5 (1.00) 8 (1.60) 2 (0.40) 

cm163a 16 5 15 (1.00) 25 (1.67) 14 (0.93) 5 (1.00) 6 (1.20) 2 (0.40) 

i1 25 16 14 (1.00) 23 (1.64) 16 (1.14) 4 (1.00) 5 (1.25) 2 (0.50) 

cmb 16 4 13 (1.00) 27 (2.08) 5 (0.38) 4 (1.00) 6 (1.50) 2 (0.50) 

x2 10 7 13 (1.00) 15 (1.15) 12 (0.92) 4 (1.00) 4 (1.00) 2 (0.50) 

z4ml 7 4 12 (1.00) 19 (1.58) 16 (1.33) 4 (1.00) 5 (1.25) 3 (0.75) 

cm151a 12 2 11 (1.00) 12 (1.09) 8 (0.73) 5 (1.00) 5 (1.00) 3 (0.60) 

cm152a 11 1 10 (1.00) 11 (1.10) 8 (0.80) 4 (1.00) 4 (1.00) 3 (0.75) 

cm42a 4 10 10 (1.00) 13 (1.30) 10 (1.00) 1 (1.00) 3 (3.00) 1 (1.00) 

cm85a 11 3 8 (1.00) 14 (1.75) 10 (1.25) 3 (1.00) 5 (1.67) 2 (0.67) 

cm82a 5 3 8 (1.00) 12 (1.50) 10 (1.25) 3 (1.00) 4 (1.33) 3 (1.00) 

b1 3 4 5 (1.00) 8 (1.60) 5 (1.00) 2 (1.00) 3 (1.50) 2 (1.00) 

majority 5 1 1 (1.00) 1 (1.00) 1 (1.00) 1 (1.00) 2 (2.00) 1 (1.00) 

Geomean  (1.00)  (1.54)  (0.92)  (1.00)  (1.30)  (0.54) 
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