
Threshold Logic Synthesis Based on Cut Pruning

Augusto Neutzling, Jody Matos,
Renato Ribas and André Reis

Institute of Informatics

Federal University of Rio Grande do Sul, Brazil

{ansilva, jmamatos, rpribas, andreis}@inf.ufrgs.br

Alan Mishchenko

Department of EECS

University of California, Berkeley

alanmi@eecs.berkeley.edu

ABSTRACT

This paper presents a novel approach to synthesize circuits based

on threshold logic gates (TLGs). Emerging technologies, such as

memristors, spintronics devices and tunneling diodes, are able to

build this class of gates efficiently. For this reason, threshold

logic is a promising alternative to conventional CMOS logic. The

proposed approach is based on pruning non-threshold-logic cuts

in order to limit the search space during technology mapping. As

a result, both the number of TLGs and logic depth of the

synthesized circuits are reduced. Experimental results have

shown that, compared to the state-of-the-art methods, the TLG

count is reduced by 8% and logic depth is reduced by 46%.

Keywords

Digital circuit, threshold logic synthesis, emerging technologies,

technology mapping.

1. INTRODUCTION
The limits of MOS transistor scaling have motivated the

investigation of new alternative devices, such as memristors,

spintronics, resonant tunneling devices (RTD), quantum cellular

automata (QCA) and single electron transistor (SET) [1]-[6]. It

has been shown that threshold logic gates (TLGs) are more

suitable to build digital integrated circuits (ICs) in these

emerging technologies, compared to the standard AND/OR-based

CMOS design style [3][6]. This motivates development of EDA

tools, which can synthesize and optimize TLG-based ICs.

Algorithms addressing threshold logic synthesis have been

presented in recent years [6-10]. However, all these previous

methods use SIS tool [19] to generate the initial set of single-

output Boolean networks, restricting each network fanin to six.

The threshold synthesis starts after the circuit has already been

covered by SIS without considering threshold logic. Once the

circuit is covered, the previous approaches locally perform a

threshold network synthesis for each independent single-output

network, aiming to cover the circuit using only TLGs.

This paper presents a novel threshold logic synthesis approach

that is based on a new synthesis flow, combining both TLG count

and logic depth optimization. In particular, the proposed flow

relies on pruning the non-threshold cuts before performing the

circuit covering. By doing this, the resulting mapped circuit is

composed by only TLFs, which can be implemented into single

TLGs. This cut-pruning-based method is implemented in ABC

[20] as part of its multi-objective technology mapper. When

compared against the state-of-the-art methods, similar results

have been obtained in terms of TLG count (8% reduction), with

half of logic depth on critical paths (46% reduction). We

compare the obtained results against previous approaches by

presenting experiments carried out over both ACM/SIGDA

(a.k.a. MCNC) [17] and ISCAS’85 [16] benchmarks. We also

demonstrate the scalability of the proposed method by

synthesizing 12 large OpenCore benchmarks [18].

The main contributions of this paper are the following:

(1) Simplicity: the proposed threshold logic synthesis flow

is significantly simpler than previous approaches;

(2) Circuit-Level Scalability: the proposed method is

efficiently based on cut pruning, scaling to large

benchmark circuits;

(3) Gate-Level scalability: the proposed threshold logic

synthesis method is capable of synthesizing circuits

using TLFs up to 9 inputs, while other methods are

restricted to 6 input gates;

(4) Quality of Results: best in class results compared to

previous methods and new OpenCore [18] results in

terms of both TLG count and logic depth can be used

as a reference in further publications.

The rest of the paper is organized as follows. Section 2 presents

the related works. In Section 3, some fundamentals are briefly

reviewed for a better understanding of the proposed approach.

Section 4 describes both the technology mapping for field-

programmable gate arrays (FPGAs), which bases the synthesis

flow proposed herein, and the proposed approach to synthesize

TLG-based circuits. Section 5 provides the experimental results,

whereas the conclusions are outlined in Section 6.

2. RELATED WORKS
Previously proposed related methods start from a given single

output Boolean network and map the network in one or more

TLGs. Circuits with multiple outputs are divided into single-

output networks.

In [6], Zhang et al. propose the recursive partition of non-

threshold functions to merge the nodes respecting fanin

restrictions. Unfortunately, the quality of results is very sensitive

to the initial Boolean network description.

Further, a method based on the truth table description was

presented by Subirats et al., in [7]. The Subirats’ algorithm

computes an ordering of variables by using information of on-set

and off-set, performing Shannon decomposition up to find

threshold logic functions (TLFs). However, this approach

produces two-level threshold networks without fanin restriction,

which is more suitable for neural networks than for digital IC

design.

In [8], Gowda et al. apply a factorized tree method to generate

the network of threshold gates. The method recursively breaks

the given initial expression tree into sub expressions, identifying

sub-trees which represent TLFs and assigning the input weights.

It is more appropriate for IC synthesis using several TLGs, but it

is very time consuming and presents a strong dependence to the

initial expression structure, including the ordering of the initial

147

tree. The method proposed by Palaniswamy et al., in [9],

presents some improvements to the Gowda’s method [8].

Finally, the method proposed by Neutzling et al., in [10], is

based on a TLG association method through the principle called

functional composition (FC), based on dynamic programming.

The algorithm associates simpler sub-solutions, with known

costs, in order to produce a final solution with minimum cost.

This method presents better results in terms of TLG count when

compared against previous approaches. However, it does not

present significant optimization in terms of logic depth.

P.­Y. Kuo et al. and C.­C. Lin et al. proposed in [24][25],

respectively, methods for TLG circuits rewiring. The methods

start from an already synthesized TLG network and use both

weight-inputs and threshold value summation as cost functions,

differently from the mentioned works.

3. PRELIMINARES

3.1 Boolean Network
A Boolean network is a directed acyclic graph (DAG) where

nodes correspond to logic gates and directed edges represent the

wires connecting the gates. It is assumed that each node has a

unique ID (integer number).

A fanin (fanout) cone of node n is a subset of all nodes of the

network reachable through the fanin (fanout) edges from the

given node.

A node n has zero or more fanins (nodes driving n) and zero or

more fanouts (nodes driven by n). The primary inputs (PIs) are

nodes without fanins, whereas the primary outputs (POs) are a

subset of nodes from the network connecting it to the

environment.

3.2 AIG
And-inverter graph (AIG) is a specific type of Boolean network

where each node has either zero incoming edges – PIs – or two

incoming edges – AND nodes. Each edge can be complemented

or not. Some nodes are marked as POs.

3.3 Structural Cuts
A cut C of a node n is a set of nodes of the network, called leaves

of the cut, such that every path between a PI and n contains a

node in C. A cut of n is irredundant if no subset on it is a cut. A

k-feasible cut is an irredundant cut containing k or fewer nodes.

Node n is called the root of cut C. The cut size is the number of

its leaves. A trivial cut is the node itself. A local function of an

AIG node n, denoted by fn(x), is a Boolean function of the logic

cone rooted in n and expressed in terms of the leaves, x, of a cut

of n

Cut enumeration is a technique used by a cut-based technology

mapper to perform cut computation using dynamic programming,

starting from PIs and ending at POs [14,23].

3.4 Threshold Logic Function
Threshold logic functions are a subset of Boolean functions

which respects the following operation principle. Each input has

a specific weight and the gate has a threshold value. If the sum of

weight of ON inputs (inputs with value equal to 1) is equal or

greater than the threshold value, the resulting function value is

equal to 1. Otherwise, the resulting function value is 0. This

operating behavior can be expressed as follows [15]:

 where xi represents each input value {0,1}, wi is the weight of

each input, and T is the function threshold value. A TLF can also

be called a ‘linearly separable’ function.

3.5 Threshold Logic Gates
Threshold logic gate is an electronic circuit that implements a

TLF. A TLG is completely represented by a compact vector

[w1,w2,…,wn;T], where w1,w2,…,wn are the input weights and T is

the function threshold value. For instance, the corresponding

TLG of the given functions ƒ= x1x2x3 and g = x1+x2+x3 are

[1,1,1;3] and [1,1,1;1], respectively.

TLGs can implement complex functions. For example, TLG

[4,3,3,1,1;7] implements ƒ = x1x2 + x1x3 + x2x3x4 + x2x3x5. Using

larger threshold functions has the potential benefit of reducing

the total number of gates needed to implement digital circuits.

Several implementations of TLGs have been proposed for both

CMOS and new nanometric technologies. A survey with more

than 50 TLG implementations was presented by Beiu et al., in

[5]. More recent implementations based on memristors [2],

spintronics devices [3][4], RTDs [6] have also been proposed.

3.6 Threshold Logic Identification
Although some complex functions are TLFs, there exist some

simple functions which are not TLFs. For example, the function

h=x1.x2+x3.x4 cannot be implemented in a single TLG. The

threshold logic identification process corresponds to the task

responsible to determine if a Boolean function is TLF (or not),

and compute the input weights and the gate threshold value. In

this work, we have adopted the identification process presented

in [16], instead of the integer linear programming based

algorithms applied in previous works [6]-[9]. This is mainly due

to fast runtime and good quality of results obtained.

4. THRESHOLD LOGIC SYNTHESIS
Threshold logic has been revisited as a promising logic style

when considering emerging technologies, such as memristors,

spintronics devices and tunneling diodes. However, the state-of-

the-art threshold logic synthesis tools are not based on specific

technologies when defining cost functions. The works in [6]-[10]

adopt two main design costs: (1) TLG count on mapped netlists,

when looking at the circuit area; and (2) logic depth on critical

paths, when looking at the circuit delay. Such cost functions are

similar to those used for LUT-based FPGA synthesis, which

adopt LUT count and logic depth as cost functions.

Technology mapping for FPGAs is a well-known research field

and a number of techniques are consolidated on the literature.

Such methods are able to achieve impressive solutions on area

recovery with near-optimum logic depth on critical paths. Due to

these reasons, this work proposes a novel synthesis flow which

adapts the FPGA technology mapper in ABC [20] to provide a

mapped netlist composed of only threshold logic functions. The

following subsections present a brief overview of FPGA










 


otherwise

Tif
f

n

i
ii xw

,0

1

1

 (1)

148

technology mapping methods, the threshold synthesis flow we

propose in this work (which is mainly based on the FPGA

technology mapping flow), and a comparison of this flow against

previous approaches.

4.1 Technology Mapping for FPGAs
Technology mapping process transforms a technology-

independent logic network, named subject graph, into a network

of logic nodes. For FPGAs, each logic node is represented using

a k-input LUT implementing any Boolean function up to k inputs.

The subject graph is often represented as an AIG.

The delay of an FPGA circuit is determined by two factors: (1)

the delay in k-LUTs; and (2) the interconnection delay. Each k-

LUT has a constant delay independent of the function it

implements (the access time of a k-LUT). The interconnection

delay is dominated by the physical configuration of the FPGA,

which is not available during the synthesis task. Thus, state-of-

the-art FPGA technology mappers assume that each edge in the

mapping solution has a constant delay. Due to these reasons, the

circuit delay is commonly estimated by the logic depth and the

circuit area is determined by the number of k-LUTs of the

mapping solution.

State-of-the-art FPGA technology mappers [11][12][14] produce

near-optimum logic depth while minimizing the number of LUTs

in the resulting network [11][14]. A typical procedure consists of

the following steps:

1. Near-optimum delay mapping

 Compute arrival time at each node by computing the

depth of all priority cuts and choosing the best one

2. Area recovery

 Perform area recovery using several heuristics (for

example, area flow and exact local area [14])

3. Choose the resulting cover

The depth-optimality requires computation of all cuts in delay

mapping, which is not scalable (the number of k-cuts in a

network with n nodes is O(nk)). The concept of priority cuts is

based on, instead of computing all K-feasible cuts at each node,

it computes a small number, c, of K-feasible cuts at each node

(typically, 4 ≤ c ≤ 8). The priority cuts computation does not

guarantee the depth-optimality. However, the depth is optimal in

95% of the cases [21]. This one-pass depth-oriented mapping

substantially increases the number of LUTs, which is brought

down on area recovery step. For a detailed description of these

steps, we refer the reader to [11] and [14].

Since the area and delay cost functions for threshold logic

synthesis are, respectively, TLG count and logic depth, it is

straightforward to relate them with FPGA technology mapping.

The following subsection presents the technology mapping

approach we propose for threshold logic, which is mainly based

on the FPGA technology mapping flow.

4.2 Technology Mapping for Threshold Logic
Threshold logic synthesis for a given circuit finds an optimized

netlist containing only TLFs. Notice that each TLF derives a

single TLG in the mapped netlist. Fig. 1 illustrates the threshold

synthesis flow used in the previous work and the flow we

propose in this paper. State-of-the-art threshold logic synthesis

tools are based on identifying TLFs only after the circuit was

covered by single-output Boolean networks (“Traditional

Covering” in Figure 1). Then, to achieve a netlist comprised only

by TLGs, they propose to synthesize threshold networks to

replace the non-TLFs in the covering.

The main advantage of the synthesis flow proposed herein is to

identify TLFs before the circuit covering. By doing this, we are

able to discard those non-TLFs and to perform a circuit covering

by using only TLFs, what derives a mapped netlist composed

only by TLGs. This improvement allows us to explore the multi-

objective FPGA technology mapper, described in Section 3.1. In

order to achieve these claims, we propose to pre-compute

Boolean functions of cuts obtained from the AIG, identify TLFs

over this set of computed cuts, and to discard the non-TLFs by a

cut pruning approach.

An efficient method to pre-compute Boolean functions of cuts in

a design (or a suite of designs) relies on fast algorithms to

compute NPN-canonical forms and compactly store them. We

adapt the DSD manager data-structure [22], which stores

representatives of each NPN class as a shared tree. The DSD

manager provides a convenient way of checking functional

properties, such as symmetry, unateness, and decomposability,

and, in our specific case, identifying TLFs over the computed

cuts.

Figure 1: Threshold logic synthesis flow proposed in this work.

149

The method proposed herein starts by computing priority cuts in

the input AIG, pre-computing Boolean functions from these cuts,

and storing them in the DSD manager. Since the k-cuts are pre-

computed in the input design, it is possible to mark a

matchable/unmatchable label for each cut and indicate these

marks to the technology mapper. Thus, we filter those pre-

computed functions and indicate only TLFs to be matched. The

TLFs are identified by applying the threshold logic identification

method presented in [16]. Once the identification is performed,

those non-threshold cuts are labeled as unmatchable and not

allowed to be selected as the best cut of a node while mapping

the design.

Notice that the proposed method always find a TLF-only cover,

since the trivial cut (the node itself) is present in every set of c

cuts at each node [11][14]. Once we propose to use AIGs as

subject graphs, the entire design is already decomposed into

AND nodes, which are TLFs.

When the final mapping is derived, a subset of best cuts is

selected and, since they are always matchable, the resulting

mapping only contains the cuts that can be expressed using

TLFs. The pseudo-code of the proposed approach is presented in

Algorithm 1.

The complexity of mapping step is O(Knc²), dominated by the cut

computation (linear in the size K of cuts and the number of

circuit nodes n, and quadratic in the number of cuts c stored at

each node). Matching of cut functions against threshold logic

functions (TLFs) is performed in constant time for each cut (hash

table lookup). The complexity of the pre-computation step is

O(K·log(K)·m·m’), being m and m’ the number of primes related

to the on-set and off-set of the candidate TLF , respectively. As

TLFs are unate functions, the number of primes m (or m’) is at

most K! /(floor (K/2)!*ceil(K/2)!). Notice that these complexities

are bearable for small K, up to 9 inputs. Additionally, pre-

computation can be done only once to generate the candidate

TLF set.

5. EXPERIMENTAL RESULTS
In order to validate the proposed threshold logic synthesis flow,

experiments were carried out over different sets of benchmark

circuits. The proposed approach is implemented in ABC [20]

using C programing language and compiled with gcc 4.7.2

compiler. The experiments were performed on a computer with

Intel(R) Core(TM) i5-2400 CPU @ 3.10GHz, 8Gb RAM.

For each benchmark circuit, we have pre-computed the set of

NPN classes of 9-input functions by running the script (&synch2;

&if –n –K 9), which were iterated three times per design. This

script performs logic synthesis with choices (&synch2), computes

9-input cuts together with their Boolean functions and saves

them in the DSD manager (enabled by switch “–n” in “if”).

Once the DSD manager has been populated, we filter the pre-

computed functions and prune those non-threshold cuts by using

the script (dsd_filter –t). This script identifies the threshold logic

functions by applying the method in [16] and selects only the

TLFs used in mapping step (switch “–t”). Finally, we map the

design using only matchable cuts iterating the following script

three times (&synch2; &if –k –K 9). Each node in a resulting

netlist represents a TLF due to the filtering step (enabled by

switch “–k”) and does not exceed 9 inputs (switch “–K 9”).

In order to compare our results against the state-of-the-art

approaches presented both by Neutzling et al. [10] and by Zhang

et al. [6], ACM/SIGDA benchmarks (a.k.a. MCNC) [17] were

synthesized. Tab. I shows the results obtained in terms of TLG

count and circuit logic depth.

When comparing Neutzling et al.[10] to Zhang et al.[6] results,

the former presents 54% reduction in TLG count and 30%

reduction in logic depth. For this reason, Neutzling’s results have

been adopted as reference metric. The proposed method presents

TLG count lesser or equal to the reference in 76% of benchmarks

(around 8% reduction, on average). The logic depth is reduced in

all benchmarks (around 44% reduction, on average). The

execution time is around 1 second per circuit, on average.

It is important to remark that previous approaches provide

synthesized netlists comprised with TLFs up to six inputs. The

reason firstly presented in [6] is that, when increasing the

number of inputs, the percentage of functions that are threshold

decreases drastically. This statement holds when considering the

universe of all Boolean functions. However, it has been observed

through the carried out experiments that 55% of the identified

TLFs in MCNC (smaller) circuits have more than six inputs and

about 83% in Opencore (larger) circuits.

We also synthesized the MCNC benchmark limiting the number

of inputs up to six. In the proposed flow, changing fanin

limitation from nine to six does not impact significantly in

running time. When comparing the obtained results with limited

fanin to Neutzling’s approach, similar results have also been

obtained in terms of TLG count (4% increasing), with 40%

reduction in terms of logic depth.

Algorithm 1: Pseudo-code of the proposed approach.

 Input: circuit description

 Output: TLG-based netlist

1 extract AIG from the input circuit;

2 compute cuts and populate the DSD

manager with pre-computed cut

functions;

3 identify and mark TLFs among these

functions;

4 discard cuts, which have non-threshold

functions, during technology mapping;

5 derive final mapping using only TLFs;

6 return the resulting mapped circuit;

Figure 2 – Percentage gate count reduction in each

approach, compared to the original netlist [6].

150

The results presented by Gowda et al., in [8], show a reduction in

threshold gate count compared to the results provided in [6].

However, in [8], the authors only compare the gate count and

present the results for MCNC circuits grouped by number of

gates. Fig. 2 shows the gate reduction of each approach,

compared to the original netlist [6], which uses only the

traditional OR and AND description.

The graphic shown in Fig. 2 demonstrates that the reduction in

gate count is larger than the reduction presented both in [6] and

in [7]. The proposed method has provided an average reduction

of 50% in comparison to the original netlist, against a reduction

of 23% and 34% obtained in [6] and in [7], respectively. The

execution time is around 1 second per circuit, on average.

The most recent work, proposed by Palaniswamy et al. [9],

presents two different improvements to the method proposed in

[7], called BDM and ZDM. The results shown in Fig. 3 presents

the TLG count reduction obtained both by the method proposed

herein and the Palaniswamy’s one. The ISCAS’85[16] set of

benchmarks was synthesized for this experiment. The reference

values are the results obtained by Gowda et al.. BDM and ZDM

methods provide an average TLG count reduction of 12% and

17%, respectively. The average reduction obtained by the

proposed method is about 58%.Finally, in order to verify the

scalability of the proposed method, we synthesize 12 large

OpenCore benchmarks [18]. The obtained results are presented

in Tab. II. These benchmarks were synthesized to TLGs for the

first time and can be adopted as reference for further

comparisons. The execution time of both identification and

mapping steps are also presented in Tab. II. Notice that the

execution time of the pre-computation step is proportional to the

number of unate cuts. The TLF identification method performs

an unateness checking as it first step avoiding binate functions,

since all threshold functions are unate. This unateness checking

has an insignificant execution time when compared to the

complete identification process.

6. CONCLUSIONS AND FUTURE WORKS
In this paper, a novel approach to synthesize circuits using

threshold logic gates (TLGs) is presented. The proposed method

is based on a new synthesis flow, which allows us to use the

multi-objective FPGA-based technology mappers and combines

both TLG count and logic depth optimizations. The main

contributions of this work are the following: (1) a simpler

threshold logic synthesis flow, compared to previous work; (2) an

efficient method based on cut pruning, scalable to large

benchmark circuits; (3) threshold logic synthesis, which produces

circuits using TLFs up to 9 inputs; and (4) experimental

comparison and new results to be used as a reference in further

publications. When compared against the state-of-the-art

methods, the proposed method reduces the TFL count by 8% and

logic depth by 46%.

We intend to improve the method proposed herein by identifying

TLFs before populating the DSD manager. Currently, the priority

cuts computation does not consider TLFs while sorting cuts. We

plan to propose a TLF-based priority cuts computation, which

would identify TLFs while sorting cuts. In this method, we are

expecting to increase the occurrences of TLF cuts at each node,

allowing the mapper to explore solutions disregarded in the

current approach.

ACKNOWLEDGEMENTS

Research partially supported by Brazilian funding agencies

CAPES, CNPq and FAPERGS, under grant 11/2053-9 (Pronem).

Table II – Obtained results when synthesizing OpenCore benchmarks [18].

 Cut Computation Mapping Results Execution Time (s)

Circuit PI PO
AIG

Nodes

Total

Cuts

Unate

Cuts

Threshold

Cuts
TLGs Levels

Identification

Step

Mapping

Step
Total

oc_ethernet 192 1,171 10,820 60,332 5,759 1,027 3,893 7 5.8 13.5 19.3

oc_cordix_p2r 50 32 11,846 42,492 11,218 1,961 4,876 7 12.4 13.5 25.9

oc_cfft_1024x12 52 592 13,838 51,715 10,221 2,238 5,170 7 11.3 16.0 27.3

oc_cordic_r2p 34 40 15,773 57,321 14,858 2,796 6,043 6 16.9 15.8 32.7

oc_mem_ctrl 115 152 16,727 34,679 3,145 321 6,680 9 3.1 19.5 22.6

oc_fpu 262 280 24,932 364,570 25,436 2,741 9,561 265 29.8 53.3 83.1

oc_aquarius 464 3,328 25,058 208,686 16,823 1,831 9,776 21 19.2 50.2 69.4

oc_des_perf 121 64 29,905 94,051 1,271 131 11,322 7 1.1 60.2 61.3

oc_video_dct 1,903 3,528 46,433 521,682 33,743 3,195 17,127 13 40.4 73.5 113.9

oc_video_jpeg 1,720 3,450 56,601 425,542 28,527 3,191 21,735 12 34.9 76.6 111.5

radar20 3.292 17,732 78,342 195,782 17,401 2,330 33,936 14 19.8 106.1 125.9

uoft_raytracer 4,364 10,569 187,683 659,183 41,575 4,886 74,205 21 51.5 327.3 378.8

Figure 3 – Percentage gate count reduction in each

approach, compared to Gowda [8].

151

7. REFERENCES

[1] International Technology Roadmap for Semiconductors,
2011.

[2] L. Gao, F. Alibart, and D. Strukov. Programmable CMOS/
memristor threshold logic. IEEE Trans. Nanotechnol,
12(2):115-9, 2013.

[3] F. Deliang, S. Mrigank, and R. Kaushik. Design and
Synthesis of Ultralow Energy Spin-Memristor Threshold
Logic. IEEE Trans. Nanotechnol, 13(3):574-83, 2014.

[4] N. Nukala, N. Kulkarni, S. Vrudhula. Spintronic threshold
Logic array (STLA) - a compact, low leakage, non-volatile
gate array architecture. In Proc. of Int’l Symp. on Nanoscale
Architectures, 2012.

[5] V. Beiu, J. M. Quintana, and M. J. Avedillo. VLSI
implementations of threshold logic: a comprehensive survey.
IEEE Trans. Neural Netw, 14(5):1217–43, 2003.

[6] R. Zhang, P. Gupta, L. Zhong, and N. Jha. Threshold
network synthesis and optimization and its application to
nanotechnologies. IEEE Trans. Comput-Aided Design
Integr. Circuits Syst., 24(1):107–18, 2005.

[7] J. Subirats, J. Jerez, and L. Franco. A new decomposition
algorithm for threshold synthesis and generalization of
Boolean functions. IEEE Trans. Circuits Syst. I,
55(10):3188–96, 2008.

[8] T. Gowda, S. Vrudhula, N. Kulkarni, and K. Berezowski.
Identification of threshold functions and synthesis of
threshold networks. IEEE Trans. Comput-Aided Design
Integr. Circuits Syst., 30(5):665–77, 2011.

[9] A. Palaniswamy and S. Tragoudas. Improved Threshold
Logic Synthesis Using Implicant-Implicit Algorithms. ACM
Journal on Emerg. Tech, 10(3), 2014.

[10] A. Neutzling, M. Martins, R. Ribas. and A. Reis. A
Constructive Approach for Threshold Logic Circuit
Synthesis. In Proc. of Int’l Symp. On Circuits and Systems,
2014.

[11] D. Chen and J. Cong. DAOmap: A depth-optimal area
optimization mapping algorithm for FPGA designs. In Proc.
of Int’l Conf. Comput-Aided Design, 2004.

[12] J. Cong and Y. Ding. FlowMap: An optimal technology
mapping algorithm for delay optimization in lookup-table
based FPGA designs. IEEE Trans. Comput-Aided Design
Integr. Circuits Syst., 13(1):1–12, 1994.

[13] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een.

Improvements to combinational equivalence checking. In
Proc. of Int’l Conf. Comput-Aided Design, 2006.

[14] A. Mishchenko, S. Chatterjee, and R. Brayton.
Improvements to technology mapping for LUT-based
FPGAs. IEEE Trans. Comput-Aided Design Integr. Circuits
Syst., 26(2):240–253, 2007.

[15] S. Muroga. Threshold Logic and Its Applications. New
York: Wiley-Interscience, 1971.

[16] A. Neutzling, M. Martins, R. Ribas. and A. Reis. Synthesis
of threshold logic gates to nanoelectronics. In Proc. of Symp.
on Integ. Circuits Syst. Design, 2013.

[17] S. Yang. Logic synthesis and optimization benchmarks user
guide: version 3.0. Microelectronics Center of North
Carolina (MCNC), 1991.

[18] J. Pistorius, M. Hutton, A. Mishchenko, and R. Brayton.
Benchmarking method and designs targeting logic synthesis
for FPGAs. In Proc. of Int’l Workshop on Logic &
Synthesis, 2007.

[19] E. M. Sentovich, et al.. SIS: A system for sequential circuit
synthesis. Univ. California, Berkeley, Tech. Rep. UCB/ERL
M92/41, May 1992.

[20] Berkeley Logic Synthesis and Verification Group. ABC: A
System for Sequential Synthesis and Verification. Release
10216. www.eecs.berkeley.edu/~alanmi/abc/.

[21] A. Mishchenko and R. Brayton. Combinational and
sequential mapping with priority cuts. in Proc. of Int’l Conf.
on Comput-Aided Design, 2007.

[22] A. Mishchenko and R. Brayton. Faster Logic Manipulation
for Large Designs. In Proc. of Int’l Workshop on Logic &
Synthesis, 2007.

[23] P. Pan and C.-C. Lin. A new retiming-based technology
mapping algorithm for LUT-based FPGAs. In Proc. of Int’l
Symp. on Field-Programmable Gate Arrays, 1998.

[24] P.­Y. Kuo, et al. On Rewiring and Simplification for

Canonicity in Threshold Logic Circuits. In Proc. of Int’l

Conf. on Computer­Aided Design (ICCAD), 2011.

[25] C.­C. Lin, et al. Rewiring for Threshold Logic Circuit

Minimization. In Proc. of Design Automation and Test in

Europe (DATE), 2014.

152

Table I – Comparison of proposed method vs related works.

Name
Statistics Gates (ratio) Levels (ratio)

input output Neutzling [10] Zhang [6] Proposed Neutzling

[10]

Zhang Proposed

des 256 245 1556 (1.00) 1920 (1.23) 1538 (0.99) 19 (1.00) 16 (0.84) 6 (0.32)

i10 257 224 840 (1.00) 1817 (2.16) 819 (0.98) 31 (1.00) 35 (1.13) 8 (0.26)

pair 173 137 563 (1.00) 907 (1.61) 518 (0.92) 17 (1.00) 12 (0.71) 5 (0.29)

i8 133 81 427 (1.00) 570 (1.33) 330 (0.77) 10 (1.00) 10 (1.00) 3 (0.30)

dalu 75 16 371 (1.00) 810 (2.18) 366 (0.99) 11 (1.00) 23 (2.09) 6 (0.55)

x3 135 99 280 (1.00) 441 (1.58) 268 (0.96) 7 (1.00) 7 (1.00) 4 (0.57)

apex6 135 99 279 (1.00) 396 (1.42) 270 (0.97) 10 (1.00) 12 (1.20) 4 (0.40)

alu4 14 8 275 (1.00) 410 (1.49) 250 (0.91) 22 (1.00) 23 (1.05) 8 (0.36)

i9 88 63 266 (1.00) 275 (1.03) 241 (0.91) 8 (1.00) 8 (1.00) 3 (0.38)

i7 199 67 197 (1.00) 304 (1.54) 262 (1.33) 3 (1.00) 5 (1.67) 2 (0.67)

x4 94 71 152 (1.00) 189 (1.24) 136 (0.89) 5 (1.00) 8 (1.60) 3 (0.60)

example2 85 66 151 (1.00) 182 (1.21) 122 (0.81) 6 (1.00) 8 (1.33) 4 (0.67)

i6 138 67 141 (1.00) 276 (1.96) 202 (1.43) 3 (1.00) 5 (1.67) 2 (0.67)

alu2 10 6 134 (1.00) 197 (1.47) 123 (0.92) 18 (1.00) 25 (1.39) 7 (0.39)

x1 51 35 107 (1.00) 203 (1.90) 76 (0.71) 5 (1.00) 7 (1.40) 3 (0.60)

i3 132 6 86 (1.00) 158 (1.84) 66 (0.77) 5 (1.00) 6 (1.20) 3 (0.60)

apex7 49 37 78 (1.00) 118 (1.51) 66 (0.85) 7 (1.00) 9 (1.29) 4 (0.57)

cht 47 36 73 (1.00) 82 (1.12) 73 (1.00) 2 (1.00) 5 (2.50) 2 (1.00)

my_adder 33 17 71 (1.00) 96 (1.35) 82 (1.15) 10 (1.00) 18 (1.80) 4 (0.40)

i4 192 6 70 (1.00) 74 (1.06) 66 (0.94) 9 (1.00) 5 (0.56) 3 (0.33)

i5 133 66 66 (1.00) 66 (1.00) 66 (1.00) 5 (1.00) 6 (1.20) 3 (0.60)

ttt2 24 21 62 (1.00) 100 (1.61) 49 (0.79) 6 (1.00) 6 (1.00) 3 (0.50)

i2 201 1 62 (1.00) 198 (3.19) 35 (0.56) 6 (1.00) 7 (1.17) 4 (0.67)

term1 34 10 60 (1.00) 226 (3.77) 43 (0.72) 7 (1.00) 10 (1.43) 4 (0.57)

c8 28 18 58 (1.00) 85 (1.47) 51 (0.88) 5 (1.00) 7 (1.40) 3 (0.60)

count 35 16 55 (1.00) 79 (1.44) 52 (0.95) 11 (1.00) 12 (1.09) 3 (0.27)

unreg 36 16 48 (1.00) 50 (1.04) 48 (1.00) 2 (1.00) 5 (2.50) 2 (1.00)

pcler8 27 17 36 (1.00) 47 (1.31) 30 (0.83) 4 (1.00) 7 (1.75) 2 (0.50)

frg1 28 3 36 (1.00) 59 (1.64) 17 (0.47) 8 (1.00) 9 (1.13) 3 (0.38)

comp 32 3 35 (1.00) 83 (2.37) 31 (0.89) 8 (1.00) 8 (1.00) 3 (0.38)

lal 26 19 32 (1.00) 54 (1.69) 36 (1.13) 4 (1.00) 7 (1.75) 2 (0.50)

parity 16 1 30 (1.00) 45 (1.50) 31 (1.03) 8 (1.00) 9 (1.13) 5 (0.63)

pcle 19 9 27 (1.00) 35 (1.30) 29 (1.07) 4 (1.00) 6 (1.50) 2 (0.50)

sct 19 15 25 (1.00) 38 (1.52) 27 (1.08) 11 (1.00) 5 (0.45) 2 (0.18)

cordic 23 2 24 (1.00) 49 (2.04) 26 (1.08) 6 (1.00) 7 (1.17) 3 (0.50)

f51m 8 8 24 (1.00) 82 (3.42) 32 (1.33) 6 (1.00) 8 (1.33) 3 (0.50)

cc 21 20 23 (1.00) 35 (1.52) 21 (0.91) 3 (1.00) 6 (2.00) 2 (0.67)

cm150a 21 1 21 (1.00) 21 (1.00) 16 (0.76) 5 (1.00) 4 (0.80) 4 (0.80)

cu 14 11 17 (1.00) 24 (1.41) 16 (0.94) 3 (1.00) 4 (1.33) 2 (0.67)

pm1 16 13 16 (1.00) 23 (1.44) 12 (0.75) 4 (1.00) 4 (1.00) 2 (0.50)

tcon 17 16 16 (1.00) 32 (2.00) 16 (1.00) 2 (1.00) 3 (1.50) 2 (1.00)

decod 5 16 16 (1.00) 24 (1.50) 16 (1.00) 1 (1.00) 3 (3.00) 1 (1.00)

cm162a 14 5 15 (1.00) 26 (1.73) 14 (0.93) 5 (1.00) 8 (1.60) 2 (0.40)

cm163a 16 5 15 (1.00) 25 (1.67) 14 (0.93) 5 (1.00) 6 (1.20) 2 (0.40)

i1 25 16 14 (1.00) 23 (1.64) 16 (1.14) 4 (1.00) 5 (1.25) 2 (0.50)

cmb 16 4 13 (1.00) 27 (2.08) 5 (0.38) 4 (1.00) 6 (1.50) 2 (0.50)

x2 10 7 13 (1.00) 15 (1.15) 12 (0.92) 4 (1.00) 4 (1.00) 2 (0.50)

z4ml 7 4 12 (1.00) 19 (1.58) 16 (1.33) 4 (1.00) 5 (1.25) 3 (0.75)

cm151a 12 2 11 (1.00) 12 (1.09) 8 (0.73) 5 (1.00) 5 (1.00) 3 (0.60)

cm152a 11 1 10 (1.00) 11 (1.10) 8 (0.80) 4 (1.00) 4 (1.00) 3 (0.75)

cm42a 4 10 10 (1.00) 13 (1.30) 10 (1.00) 1 (1.00) 3 (3.00) 1 (1.00)

cm85a 11 3 8 (1.00) 14 (1.75) 10 (1.25) 3 (1.00) 5 (1.67) 2 (0.67)

cm82a 5 3 8 (1.00) 12 (1.50) 10 (1.25) 3 (1.00) 4 (1.33) 3 (1.00)

b1 3 4 5 (1.00) 8 (1.60) 5 (1.00) 2 (1.00) 3 (1.50) 2 (1.00)

majority 5 1 1 (1.00) 1 (1.00) 1 (1.00) 1 (1.00) 2 (2.00) 1 (1.00)

Geomean (1.00) (1.54) (0.92) (1.00) (1.30) (0.54)

153

