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ABSTRACT | An important step in the design of a complex

system is its decomposition into a number of interacting

components, of which some are given (known) and some need

to be synthesized (unknown). Then a basic task in the design

flow is to synthesize an unknown component that when

combined with the known part of the system (the context)

satisfies a given specification. This problem arises in several

applications ranging from sequential synthesis to the design of

discrete controllers. There are different formulations of the

problem, depending on the formal models to specify the

system and its components, the composition operators, and

the conformance relations of the composed system versus the

specification. Various behavioral models have been studied in

the literature, e.g., finite state machines and automata,

omega-automata, process algebras; various forms of synchro-

nous and asynchronous (interleaving/parallel) composition

have been considered; the conformance relations include

language containment and equality, and notions of simulation.

In this paper we give an overview of the problem (a.k.a., the

unkown component problem, or submodule construction, etc.),

and we focus on its reduction to solving equations over

languages, as a key technology for supporting synthesis of

compositional systems. We survey the state-of-art and high-

light open problems requiring further investigation.

KEYWORDS | Component-based design; decomposition of finite

automata and state machines; finite automata and state

machines; parallel and synchronous language equations;
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I . INTRODUCTION

Component-based system development is perceived as a

key technology for designing hardware and software
systems in a cost- and time-effective manner, e.g., when

a system cannot be built completely from the available

modules and some ‘‘glue’’ component needs to be added to

satisfy the overall behavioral specification of the system

(called a service specification in the context of distributed

reactive systems [1]), or a component needs to be replaced

for some reason. This paradigm has been endorsed by

many industries.
Software industry uses a component-based software

development approach to develop software systems by

selecting appropriate off-the-shelf components and then

assembling them with a well-defined architecture. The

concept of building software from prebuilt components

arose by analogy with the way that hardware is now

designed and built, using ‘‘off-the-shelf’’ modules. The

concept of a software component was introduced at
the first software engineering conference in 1968 (in the

keynote speech ‘‘Mass-Produced Software Components’’

by Doug McIlroy, as reported in [2]). The fact that

components hold such an esteemed place in software

engineering history should come as no surprise: compo-

nentization is a fundamental engineering principle. Top-

down approaches decompose large systems into smaller

parts, components, and bottom-up approaches compose
smaller parts, components, into larger systems. Since

1968, components have played a role in both software

engineering research and practice [3].
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One often-used definition of software components is
‘‘A software component is a software element that

conforms to a component model and can be independently

deployed and composed without modification according to

a composition standard’’ [4]. COTS (commercial off-the-

shelf) components, product-line components, and open

source components are examples of components in use by

the software industry. The component-based software

development approach has shown considerable successes
in several application domains, among them distributed and

web-based systems, desktop and graphical applications [5].

In spite of a big interest from software practitioners

who are using ad hoc technologies, component-based

software development remains mostly a manual process,

though in recent years several software development tools

have appeared that provide visual programming based on

components. Compared to these methodologies, model-
driven (and model-based in particular) approaches can

raise the automation of the process of software

component-based development to a new level. However,

the use of formal executable models has received relatively

little attention from the research community of software

component-based development. Some attempts have been

made to formally specify component models, but each

defines a particular component model intended for a
particular purpose with different semantics, if at all [6].

Formal methods have been applied successfully to the

verification of medium-sized programs in protocol and

hardware design [7], [8]. However, their application to

component-based software development requires more

research.

Component-based design plays an increasing role also

in hardware synthesis. Consider the synthesis of sequential
circuits, which consists of replacing a given circuit

representation by an optimized one. The optimized

representation may be better in terms of area and delay.

Computing such an optimized representation is often a

challenge. The challenge is even greater when designing

networks of finite state machines (FSMs), where the task

is to synthesize/resynthesize the component FSMs in the

network, for instance optimizing the single components
until the network cannot be simplified further. In order to

avoid constructing the FSM that specifies the behavior of

the whole network, we may follow a windowing strategy

which considers just pairs of connected FSMs to find a

replacement for a component of each pair. This calls for a

component-based design approach to handle the synthesis

of an FSM embedded in a larger FSM environment, with

the goal to find the set of all FSMs that can replace the
current FSM without changing the external behavior of the

whole system; this set represents the complete sequential

flexibility of the FSM with respect to its environment.

Problems related to the computation and exploitation of

the sequential flexibility have been addressed in the past

with various techniques in different logic synthesis

applications [9], [10].

A general scenario for component-based design of
hardware and software systems may be abstracted as

follows. Given a global system specified say by an FSM S,

called the global FSM, and a library of components

represented by FSMs, called context FSMs, implement S as

a modular system using instances of the available

components; if needed, synthesize also an additional

component (not in the library) to complete the system S.

For that purpose, we define an iterative greedy procedure
based on repeating an operation of ‘‘decomposition/

division’’ as follows: given the composition of already

instantiated components, compute the quotient of the

current specification with respect to all the candidate

context components of the library, and select the best one

according to a suitable cost function (e.g., the minimum

number of states). Then include the selected component

into the modular system being built, and update the new
specification to be matched. The iteration terminates

either when the selected context FSM implements the

current specification and so S is decomposed entirely into

components of available types; or when further use of any

of the available context components does not reduce the

cost of the current specification, and so in this case any

FSM that implements the current specification is an

additional component completing the system S.
This is a generic synthesis scenario that may be

instantiated into more specialized ones. The key problem

is the availability of a ‘‘decomposition/division’’ algorithm

that computes the unknown component (quotient) that

combined with a given context yields a given specification.

This problem is known by different names (e.g., unknown

component problem in the monograph [10], submodule

construction [11], etc.) and it has been addressed by
different research communities with various formal

models and algorithms, as it will be briefly surveyed in

Section II. In Section III, we will describe its reduction to

solving equations over languages. In Section IV, we will

describe algorithms to solve effectively the equations over

languages corresponding to finite automata (and finite

state machines). In Section V we will mention the frontiers

of current research, highlight open issues calling for more
investigation and draw conclusions.

II . A RETROSPECTIVE LOOK AT THE
UNKOWN COMPONENT PROBLEM
AND EQUATION SOLVING

The earliest proposals for casting a general scenario for

component-based design in a formal setting include the
work of Cerny and Marin [12] in the context of

combinational logical circuits, and the work of Merlin

and Bochmann [11] in the context of parallel systems. The

latter reads ‘‘The usual approach to the design of parallel

systems involves the important step of dividing the overall

system into a number of separate submodules which

operate in parallel and interact in some well-defined way.
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This paper presents a new approach which assists in the
elaboration of the submodule specifications during each

single step of the refinement process. Given a complete

specification of a given module and the specifications of

some submodules, the method described below provides

the specification of an additional submodule that, together

with the other submodules, will provide a system that

satisfies the specification of the given module.’’ This work

formulates an equation in terms of a process language,
represented by a transition system, which is a finite

automaton where each state is accepting. The authors use a

protocol design problem to illustrate the proposed solution.

The proposed approach for finding the largest solution to

the equation has been further extended by Bochmann

himself [13] and other researchers to obtain solutions with

the desired properties, such as safety and liveness and

solutions restricted to FSM languages, which need to be
input-progressive and to avoid divergence, see [10] for

details and references. A number of authors consider the

equations under various relations between processes and

consider process models, such as modal transition systems

and CCS, e.g., see [14] and [15]. Some research is further

focused on modal specifications as automata whose

transitions are typed with may and must modalities, as in

[16] and [17]. It has to be mentioned that equations can also
be formulated using not only classical Moore and Mealy

FSMs, but also a more general model of Input/Output

Automata [18], called interface automata in [19].

Following Bochmann, several researchers contributed

to the equation solving theory in the context of the

protocol design problem, in particular, protocol conver-

sion problem, see, e.g., [20]–[26]. The research commu-

nity addressing the protocol design problem relies on
general techniques for solving equations, while consider-

ing various properties of interactions between compo-

nents, specific to distributed systems. For instance, in [26]

they discuss the design of converters for VLSI on-chip

protocols, by synthesizing an output transducer as an FSM

which is a submachine of the product automaton (i.e., all

the machines have the same set of actions) consisting of

legal states in terms of data dependency.
A similar observation extends to the research commu-

nity focusing on the supervisor synthesis problem in the

context of control theory [27]. In supervisory control a

controller (or supervisor) restricts the behavior of a plant

by dynamically disabling some of the controllable events

after the execution of each event with the goal to match a

desired behavior. An extensive literature has been

developed since the seminal work by Ramadge and
Wonham [28], [29], studying control under complete

and partial observation, centralized and distributed control

and also control of nonterminating behaviors [30]–[34].

The approach based on language equations developed in

this paper generalizes the results obtained in supervisory

control to arbitrary compositions of components in

equations, not limited to a loop composition of plant and

controller. The supervisory control problem in its basic
form is posed as a special case of model matching for FSMs

in [35], [36]. In this work, we focus on equation solving

considering language containment and equality, while the

above work uses simulation relations. Simulation relations

in general are stronger (more restrictive) than language

containment, further constraining the set of possible

solutions.

The problem of equation solving is also addressed by
the community focusing on the design of asynchronous

sequential circuits that are delay-insensitive, see [37]–[39].

Here, the equations are specialized to a designated

composition operator modelling asynchronous communi-

cation between processes, called parallel composition in

[10] and asynchronous composition here (the corre-

sponding type of equations is also called asynchronous

equations in [40]).
Equations specialized to synchronous communications

have a long history in the synchronous sequential synthesis

community, where the goal is the optimization of a

sequential circuit by exploiting the flexibility due to its

modular structure and its environment (see [41]–[43]).

Special cases of computing the partial or full combina-

tional or sequential flexibility in a circuit were addressed

since the 70s (see [12] and [44]), resulting in different
approaches described under various names: computation

of sequential input and output don’t care sequences as in

[45]–[47], hierarchical optimization in [48], testing

strategies and redundancy identification and removal for

interacting FSMs as in [49] and [50], computation of

flexibility with the E-machine in [51]. For a thorough

presentation of the previous work we refer to [9] and [10].

A final note about the classification of these problems
in the hierarchy of computational complexity classes: the

authors of [52] proved that assuming modular systems and

specifications modeled as deterministic finite automata

interacting with parallel composition, many problems

related to synthesis and verification of supervisory

controllers are PSPACE-complete, which implies that

synthesis and verification problems for more general

models and topologies are not easier.
We conclude this quick retrospective look by mention-

ing how a brainstorming event organized by Robert

Brayton at Cadence Berkeley Labs in February 1998

triggered a further development of the theory of unknown

components based on equation solving. The authors of this

paper, representing in fact different research communi-

ties, were challenged by the diversity of formal approaches

to the common unknown component problem. They
recognized that there was a need for a common formal

framework for treating various aspects of the problem

occurring in component-based design of hardware and

software systems, based on language equation approaches.

It was decided then to consolidate the efforts in devel-

oping such a framework. The collaboration led to a

series of contributions [53]–[59], including the research
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monograph [10] and this paper. Some of these contribu-

tions are reviewed in the subsequent sections.

III . FINDING THE UNKNOWN COMPONENTS
BY SOLVING INEQUATIONS AND EQUATIONS
OVER LANGUAGES

As anticipated in the introduction, in this section we

define equations and inequations over languages, first with

respect to abstract composition operators and then with

respect to concrete ones; in particular, we describe general

closed-form solutions first and then restricted solutions.

As reference topology, consider the scheme in Fig. 1,
where the composition of two interconnected components

(the context or plant A, and the unknown component X)

defines a language or behaviour contained in or equal to

the one defined by the specification C. The context and the

unknown components interact through internal signals,

and exchange information with the environment by means

of external input and output channels. Restricted topolo-

gies simplify this general scheme, by removing some
interconnections.

An alphabet is a finite set of symbols. The set of all

finite strings over a fixed alphabet X is denoted by X?. X?

includes the empty string �. A subset L � X? is called a

language over alphabet X.

If L; L1; L2 are languages and X is an alphabet, some

standard operations on languages are: union L1 [ L2,

concatenation L1L2, Kleene closure L? ¼ [1i¼0Li (and
positive Kleene closure Lþ ¼ [1i¼1Li), intersection

L1 \ L2, comple ment L ¼ X? n L, and di f ference

L1 n L2 ¼ L1 \ L2.

Furthermore, we recall the notions of substitution and

homomorphism of languages [60]. A substitution f is a

mapping of an alphabet S onto subsets of D? for some

alphabet D. The substitution f is extended to strings by

setting fð�Þ ¼ f�g and fðxaÞ ¼ fðxÞfðaÞ, and then to
languages by setting fðLÞ ¼ ffð�Þ j � 2 Lg. In the sequel,

instead of the functional notation fðLÞ, we will use the

suffix notation Lf , as in L> and L?, or even in L>D and L?D

where we introduce explicitly the alphabet D of the image

language under the substitutions f ¼ > or f ¼ ?. An

homomorphism h is a substitution such that hðaÞ is a

single string for each symbol a in the alphabet S.

Given the disjoint alphabets I;U;O, a language L1 over
alphabet I � U and a language L2 over alphabet U � O,

consider the following symbols to represent operators

defined over alphabets and languages:

• � denotes an operator between alphabets;

• � denotes a composition operator between

languages, defined as

L1 �I�O L2 ¼ ðL1Þ>O \ ðL2Þ>I

� �
?I�O

where > and ? denote language substitutions

operators in suffix notation, as introduced above.

A. Language Equations Under Abstract Composition
We define language inequations and equations, whose

solutions we want to characterize.

Definition 3.1: Given the disjoint alphabets I;U;O, a

language A over alphabet I � U and a language C over

alphabet I � O, we define the language inequation

A�I�O X � C (1)

and the language equation

A�I�O X ¼ C (2)

with respect to the unknown language X over alphabet

U � O.

Notice that for simplicity, when referring to both

‘‘language inequations’’ and ‘‘language equations’’ in this
exposition we may lump them together under the term

‘‘language equations.’’ To make explicit the alphabets from

which each language and operator depends, the previous

language inequation should be written as

AI�U �I�O XU�O � CI�O (3)

and the language equation as

AI�U �I�O XU�O ¼ CI�O: (4)

In the sequel, for ease of parsing the notation, we will

annotate explicitly only the language subscripts deemed

essential to avoid ambiguity. In this section we will

describe a closed-form solution of such language inequa-

tions with respect to an abstract composition operator �
under the least restrictive known algebraic conditions.

Definition 3.2: Given the disjoint alphabets I;U;O, a

language A over alphabet I � U and a language C over

alphabet I � O, language B over alphabet U � O is called a

solution of the inequation A�I�O X � C iff A�I�O B � C.

A solution is called the largest solution if it contains any

other solution. B ¼ ; is the trivial solution.

Fig. 1. General topology.
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The following theorem states requirements on the
substitution operators > and ? that allow writing the

largest solution in the closed-form S ¼ A�U�O C.

Theorem 3.1: If the substitution operators > and ? are

such that:

H1: given disjoint alphabets Z; Y and language L over Z,

ðL>YÞ?Z ¼ L;

H2: given disjoint alphabets Z; Y and languages L1; L2

over Y � Z, if L1 ¼ ðL1?ZÞ>Y or L2 ¼ ðL2?ZÞ>Y then

ðL1 \ L2Þ?Z ¼ L1 ?Z \ L2 ?Z;

H3: given disjoint alphabets Z; Y and language L over

Y � Z, L?Z ¼ ; , L ¼ ;;
then there exists the largest solution of the inequation

A� X � C and this solution is the language

S ¼ A� C: (5)

Any language contained in S is a solution of the language

inequation. If the language S ¼ A� C is empty, then the

inequation has a single trivial solution, namely the empty

language. ffl
Proof: Consider a string � 2 ðU � OÞ?, then � is in

the largest solution of A� X � C iff A� f�g � C and the

following chain of equivalences follows:

A� f�g � C ,
A>O \ f�g>Ið Þ?I�O \ C ¼ ; ,

by Hyp: H1 : C ¼ ðC>UÞ?I�O
A>O \ f�g>Ið Þ?I�O \ ðC>UÞ?I�O ¼ ; ,
by Hyp: H2 : \ and ? commute

A>O \ f�g>I \ C>Uð Þ?I�O¼ ; ,
by Hyp: H3 : Y ¼ U; X ¼ I � O

A>O \ f�g>I \ C>U ¼ ; ,
by Hyp: H3 : Y ¼ I;X ¼ U � O

A>O \ f�g>I \ C>Uð Þ?U�O¼ ; ,
by Hyp: H2 : \ and ? commute

f�g>Ið Þ?U�O \ ðA>O \ C>UÞ?U�O ¼ ; ,
by Hyp: H1 : f�g>Ið Þ?U�O¼ f�g
f�g \ ðA>O \ C>UÞ?U�O ¼ ; ,

� 62 ðA>O \ C>UÞ?U�O ,
� 2 ðA>O \ C>UÞ?U�O ,

� 2 A� C:

Therefore the largest solution of the language inequation

A� X � C is given by the language S ¼ A� C.

Corollary 3.1: If S� A� C ¼ C, then S is the largest
solution of the language equation A� X ¼ C. A subset of S
may not be a solution of the language equation.

If S� A� C � C, then the language equation is

unsolvable and the language D ¼ S� A� C is the largest

subset of C such that the language equation A� X ¼ D is
solvable. ffl

B. Language Equations Under Concrete Composition:
Synchronous and Asynchronous Operators

Consider two systems A and B with associated

languages LðAÞ and LðBÞ. The systems communicate with

each other by a channel U and with the environment by

channels I and O. We introduce two concrete composition

operators that describe the external behaviour of the

composition of LðAÞ and LðBÞ: synchronous composition

(studied, e.g., in [54]) and asynchronous (a.k.a. as
interleaving or parallel) composition (studied, e.g., in

[40] and [53]).

1) Synchronous Inequations and Equations: To define

synchronous composition, consider the following opera-

tions on languages.

1) Given a language L over alphabet X � V, consider

the homomorphism p : X � V ! V? defined as

p ðx; vÞð Þ ¼ v

then the language

L#V ¼ pð�Þ j � 2 Lf g

over alphabet V is the projection of language L to

alphabet V, or V-projection of L. By definition of

substitution pð�Þ ¼ �.
2) Given a language L over alphabet X and an

a l p h a b e t V , c o n s i d e r t h e s u b s t i t u t i o n

l : X ! 2ðX�VÞ? defined as

lðxÞ ¼ ðx; vÞ j v 2 Vf g

then the language

L"V ¼ lð�Þ j � 2 Lf g

over alphabet X � V is the lifting of language L to

alphabet V, or V-lifting of L. By definition of

substitution lð�Þ ¼ f�g.
By definition ;#V ¼ ;, ;"V ¼ ;. As an example of lifting,

consider X ¼ fu; vg, L ¼ fuvg, V ¼ fx; yg, then L"V ¼
fðu; xÞðv; xÞ; ðu; xÞðv; yÞ; ðu; yÞðv; xÞ; ðu; yÞðv; yÞg.

The given substitution operators change a language and

its alphabet of definition; in particular the operators " and

# vary the components that are present in the Cartesian
product defining the language alphabet. We assume that

each component has a fixed position in the Cartesian

product. For instance, let language L1 be defined over

alphabet I and language L2 be defined over alphabet O,

then language L1"O is defined over alphabet I� O and also

language L2"I is defined over alphabet I� O, assuming an

ordering of alphabets.
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Definition 3.3: Given the alphabets I;U;O, language L1

over I� U and language L2 over U � O, the synchronous

composition of languages L1 and L2 is the language1

½ðL1Þ"O \ ðL2Þ"I�#I�O, denoted by L1 	I�O L2, defined over

I� O.

Notice that each language may be defined by the

Cartesian product of other languages, according to the

overall composition topology.

So the synchronous composition operator 	 is a
concrete instantiation of the abstract operator �, where

the alphabet operator � becomes �, and the language

substitution operators > and ? become, respectively, "
and #. One can prove that Hyp. H1, H2, and H3 of Th. 3.1

hold for the substitution operators " and # (see [10],

respectively, Prop. 2.1(a) p. 11, Prop. 2.3(d) p. 12, and

Prop. 2.7(b) p. 14). Therefore, as a corollary of Th. 3.1,

we deduce the solution of the synchronous language
inequation

A 	 X � C: (6)

Theorem 3.2: Given the alphabets I;U;O, a language A
over alphabet I� U and a language C over alphabet I� O,

the largest solution S over alphabet U � O of the

inequation A 	 X � C is the language S ¼ A 	 C. ffl
Proof: The proof follows from Th. 3.1, because Hyp.

H1, H2, and H3 hold for the operators " and # (see [10],

Prop. 2.1(a) p. 11 for H1, Prop. 2.3(d) p. 13 for H2, and

Prop. 2.7(b) p. 14 for H3). Notice that the assumptions

under which Hyp. H2 holds are verified (in the first

instance because ððC"UÞ#I�OÞ"U ¼ C"U and in the second

instance because f�g"I ¼ ððf�g"IÞ#U�O
Þ
"I

).

For convenience of the reader, we spell out in detail by
the following corollary the conclusions from Th. 3.2 and

Cor. 3.1.

Corollary 3.2: Given the alphabets I;U;O, a language A
over alphabet I� U and a language C over alphabet I� O,

language S 6¼ ; over alphabet U � O is a solution of the

inequation A 	 X � C iff S � A 	 C. If the language A 	 C is

empty, then the only solution of the inequation A 	 X � C
is the empty language.

If A 	 A 	 C ¼ C, then the language S ¼ A 	 C is the
largest solution over U � O of the equation A 	 X ¼ C.

However, not each subset of S inherits the property of

being a solution of the language equation.

If A 	 A 	 C � C, then the equation A 	 X ¼ C is

unsolvable and the language D ¼ A 	 A 	 C is the largest

subset of C such that the equation A 	 X ¼ D is solvable

over U � O. ffl
At the moment no better characterization of all the

solutions (all subsets of the largest solution) of a language

equation is known.

2) Asynchronous Inequations and Equations: To define
asynchronous composition, consider the following operations

1) Given a language L over alphabet X [ V, where

X \ V ¼ ;, c o n s i d e r t h e h o m o m o r p h i s m

r : X [ V ! V? defined as

rðyÞ ¼ y if y 2 V
� if y 2 X,

�

then the language

L+V ¼ rð�Þ j � 2 Lf g

over alphabet V is the restriction of language L to

alphabet V, or V-restriction of L, i.e., words in L+V

are obtained from those in L by deleting all the

symbols in X. By definition of substitution

rð�Þ ¼ �.
2) Given a language L over alphabet X and an

alphabet V disjoint from X, consider the mapping

e : X ! 2ðX[VÞ? defined as

eðxÞ ¼ f�x� j �; � 2 V?g

then the language

L*V ¼ eð�Þ j � 2 Lf g

over alphabet X [ V is the expansion of language

L to alphabet V, or V-expansion of L, i.e., words in

L*V are obtained from those in L by inserting

anywhere in them words from V?. Notice that e is

not a substitution and that eð�Þ ¼ f� j � 2 V?g.
By definition ;+V ¼ ;, ;*V ¼ ;. As an example of

expansion, consider X ¼ fu; vg, L ¼ fuvg, V ¼ fx; yg,
then L*V ¼ ffx; yg?ufx; yg?vfx; yg?g.

Definition 3.4: Given the pairwise disjoint alphabets

I;U;O, language L1 over I [ U and language L2 over U [ O,

the asynchronous composition of languages L1 and L2 is

the language ½ðL1Þ*O \ ðL2Þ*I�+I[O, denoted by L1 
I[O L2,
defined over I [ O.

So the asynchronous composition operator 
 is a

concrete instantiation of the abstract operator �, where

the alphabet operator � becomes [, and the language

substitution operators> and? become, respectively,* and

+. One can prove that Hyp. H1, H2, and H3 of Th. 3.1 hold

for the substitution operators * and + (see [10], respec-

tively, Prop. 2.1(c) p. 11, Prop. 2.5(d) p. 13, and Prop. 2.7(d)
p. 14). Therefore, as a corollary of Th. 3.1, we deduce the

solution of the asynchronous language inequation

A 
 X � C: (7)

Theorem 3.3: Given the pairwise disjoint alphabets

I;U;O, a language A over alphabet I [ U and a language C
over alphabet I [ O, the largest solution S over alphabet1Use the same order I � U � O in the languages ðL1Þ"O and ðL2Þ"I.

Villa et al. : Component-Based Design by Solving Language Equations

Vol. 103, No. 11, November 2015 | Proceedings of the IEEE 2157



U [ O of the inequation A 
 X � C is the language
S ¼ A 
 C. ffl

Proof: The proof follows from Th. 3.1, because Hyp.

H1, H2 and H3 hold for the operators * and + (see [10,

Sec. 2.1.1, p. 9–14]). Notice that the assumptions under

which Hyp. H2 holds are verified (in the first instance

because ððC*UÞ+I[OÞ*U
¼ C*U and in the second instance

because f�g*I ¼ ððf�g*IÞ+U[O
Þ*I).

A summary of conclusions symmetric to the ones in
Cor. 3.2 can be drawn from Th. 3.3.

In summary, there is a complete characterization of the

set of solutions of language inequalities, whereas the

complete characterization of the set of solutions of

language equations needs additional research. More

results and discussions on solutions of language equations

can be found in [10] and [58].

C. Restricted Solutions of Language Equations
Given a language inequality or equation, not each

solution is of interest, but specific applications may

dictate a restriction to subsets of solutions. A straight-

forward restriction may be to enforce that the composed

system be nontrivial. Restricted solutions which have

been investigated include prefix-closed, progressive and

compositionally progressive solutions. We illustrate
such restricted solutions for a synchronous language

equation and for simplicity we assume that component

languages are defined over the Cartesian product of

two alphabets.

Definition 3.5: The language L over alphabet A is prefix-

closed if each prefix of each word is in the language L. A

language L over alphabet A ¼ I� O is I-progressive if
8� 2 A� 8i 2 I 9o 2 O ½� 2 L! �ði; oÞ 2 L�. A language

L over alphabet A ¼ I� O is I-defined if L#I ¼ I�.
If a language over A ¼ I� O is I-progressive then it is

also I-defined, but the converse does not hold. A

progressive solution ensures that the solution language is

complete w.r.t. the alphabet I, i.e., for each string � 2 I�

there exists a word in the language with the projection �.

Progressive solutions are used in logic synthesis, since
physical devices usually are input-enabled at each state,

and especially are of interest when solving equations

over FSMs.

Definition 3.6: Given a language L1 over alphabet I� U,

a language B over alphabet O� U is I-compositionally

progressive (w.r.t. the language L1Þ if the language

L1"I�U�O \ B"I�U�O is I-progressive.
When a solution of the language equation is compo-

sitionally progressive we are guaranteed that the

corresponding composition does not fall into a deadlock

when I is the set of external inputs submitted by the

environment.

Given language L1 over alphabet I� U and language L
over alphabet � ¼ I� O, let X be an unknown language

over alphabet � ¼ U � O and S� ¼ L1 	� L be the largest
solution of the language equation L1 	� X ¼ L. It is

interesting to investigate subsets of S� that satisfy further

properties, i.e., are prefix-closed, progressive, etc.

If S� is prefix-closed then S� is the largest prefix-closed

solution to the equation. However, not each subset of S�
inherits this property. If S� is not prefix-closed then denote

by PrefðS�Þ the set obtained from S� by deleting each string

that has a prefix not in S�.

Theorem 3.4: If L1 	� PrefðS�Þ ¼ L then PrefðS�Þ is the

largest prefix-closed solution to the equation L1 	� X ¼ L.

If L1 	� PrefðS�Þ � L, then the equation L1 	� X ¼ L has no

prefix-closed solution. ffl
If S� is defined over the alphabet U � O and S� is U-

progressive then S� is the largest U-progressive solution to

the equation. However, not each subset of S� inherits this
property. If S� is not U-progressive then denote by ProgðS�Þ
the subset obtained from S� by deleting each string � such

that for some u 2 U, there is no o 2 O for which

�ðu; oÞ 2 S�.

Theorem 3.5: If L1 	� ProgðS�Þ ¼ L then ProgðS�Þ is the

largest progressive solution to the equation L1 	� X ¼ L. If

L1 	� ProgðS�Þ � L, then the equation L1 	� X ¼ L has no
progressive solution. ffl

In Section IV-B we will discuss compositionally

progressive solutions over FSM languages, where it holds

that if a synchronous FSM equation (FSM inequality) has a

compositionally progressive solution then the FSM equa-

tion (FSM inequality) has the largest compositionally

progressive solution.

IV. LANGUAGE EQUATIONS OVER
REGULAR LANGUAGES

In the previous section we studied the largest solutions of

language inequations and equations. In this section we

restrict them to a context and specification that are regular

languages. For them we are able to set up effective

computations that solve them; this is due to fact that
regular languages are generated by finite automata, for

which we know how to implement the operators required

to find the solutions in closed form or by iterative

procedures. We will also discuss the special case of regular

languages generated by FSMs (in short, FSM languages),

and point out some results about their restricted solutions

of practical interest.

A. Solving Effectively Regular Language Equations
To solve equations over regular languages we operate

on Finite Automata (FA), which are closed under the

operations required to compute the largest solution.

Definition 4.1: A finite automaton (FA) is a 5-tuple

F ¼ hS;S;D; r;Qi. S represents the finite state space, S
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represents the finite alphabet of actions, and D � S � S� S
is the next state relation, such that ð�; p; nÞ 2 D iff n 2 S is a

next state of present state p 2 S on action i 2 S. The initial or

reset state is r 2 S and Q � S is the set of final or accepting

states. The automaton F is deterministic, if for each state

s 2 S and any action � 2 S there exists at most one state s0,
such that ð�; s; s0Þ 2 D, otherwise it is nondeterministic. A

variant of FA allows the introduction of �-moves, meaning

that D � ðS [ f�Þg � S� S.2

Well-known results state that each regular language

can be generated or represented by a deterministic finite

automaton and that regular languages are closed under

union, intersection and complementation. Regular lan-

guages are also closed under projection, lifting, restriction

and expansion. Below we sketch the constructions for the

less known operations of projection, lifting, restriction and

expansion.
Projection ð#Þ Given FA F that accepts language L over

I� U, FA F#I that accepts language L#I over I is obtained by

replacing each edge ðði; uÞ; s; s0Þ in F by the edge ði; s; s0Þ.3

Lifting ð"Þ Given FA F that accepts language L over I,
FA F"I�U that accepts language L"I�U over I� U is obtained

by replacing each edge ði; s; s0Þ in F by the set of edges

fðði; uÞ; s; s0Þ : u 2 Ug.
Restriction ð+Þ Given FA F that accepts language L

over A and a nonempty subset V of A, FA F+V that accepts

language L+V over V is obtained by replacing each edge

ða; s; s0Þ in F, with a 2 A n V, by the edge ð"; s; s0Þ.2

Expansion ð*Þ Given alphabet A, a nonempty subset V
of A, FA F that accepts language L over V, FA F*A that

accepts language L*A over A is obtained by the following

procedure: for each state s of FA F, 8a 2 A n V, the edge

(self-loop) ða; s; sÞ is added.
Given that the operators used to express the solution of

regular language inequations (see Cor. 3.2 and Cor. 3.3)

have constructive counterparts on finite automata, we

conclude that there is an effective (constructive) way to

solve inequations and equations over regular languages.

As an illustration, given a regular language equation

LC 	� X ¼ L, where LC is a regular language over alphabet

I� U, L is a regular language over � ¼ I� O, and the
unknown is a regular language X over � ¼ U � O, the

following algorithm computes the unknown component X:

1) Derive finite automata FC and F which accept

respectively regular languages LC and L.

2) If F is a nondeterministic automaton then

determinize F by the subset construction and

obtain the automaton F by interchanging the sets

of accepting and nonaccepting states of F.
3) Obtain the automaton FC"I�U�O by replacing each

label ði; uÞ with all triples ði; u; oÞ, o 2 O.

4) Obtain the automaton F"I�U�O by replacing each
label ði; oÞ with all triples ði; u; oÞ, u 2 U.

5) Build the intersection FC"I�U�O \ F"I�U�O. The

states of the obtained automaton are pairs of states

of FC"I�U�O and F"I�U�O, the initial state is the pair

of initial states, and a state of the intersection is

accepting if both states of the pair are accepting.

6) Project FC"I�U�O \ F"I�U�O to � ¼ U � O by

deleting i from the labels ði; u; oÞ. The obtained
automaton in general is nondeterministic; in this

case, determinize it by the subset construction

and obtain the automaton FC 	� F which accepts

the language LC 	� L. Obtain the automaton S�
which accepts the regular language LC 	� L by

interchanging the sets of accepting and non-

accepting states of FC 	� F.

7) Derive the automaton ðFC"I�U�O \ S�"I�U�OÞ#I�O.
If the automaton accepts the language L then the

regular language LC 	� L is the largest solution

over the alphabet U � O of the equation

LC 	� X ¼ L. Otherwise, the regular language

equation LC 	� X ¼ L has no solution over the

alphabet U � O.

We apply the previous procedure to the example shown

in Fig. 2, where accepting states are shown in double lines.

Automata FC and F accept respectively the languages LC

and L over alphabets I� U and I� O. The automaton F in

Fig. 2(c) accepts the language L. Fig. 2(d) shows the

automaton FC"I�U�O \ F"I�U�O that accepts the intersec-

tion LC"I�U�O \ L"I�U�O. Fig. 2(e) presents the determin-

istic automaton that accepts the projection of

LC"I�U�O \ L"I�U�O onto the alphabet U � O, i.e., the

synchronous composition LC 	U�O L, while Fig. 2(f) shows

the automaton that accepts the largest solution
S� ¼ LC 	� L of the equation LC 	I�O X ¼ L over alphabet

U � O.

As an example of asynchronous equation over regular

languages, consider LC 
E X ¼ L where LC is a regular

language over alphabet AC, L is a regular language over

alphabet E, and the unknown language X is over alphabet

R � AC [ E, and let the corresponding finite automata be

represented in Fig. 3 (from [58], [61]). The automaton FC

is defined over the alphabet AC ¼ fe1; e2; ig and the

automaton F over the alphabet E ¼ fe1; e2; xg. The

automaton SR shown in Fig. 3(c) is defined over

R ¼ AC [ E ¼ fe1; e2; i; xg and accepts the largest solution

LC 
R L of the equation LC 
E X ¼ L. Notice that F ¼ ;,
F*fig ¼ ;, FC*fxg \ F*fig ¼ ;, ðFC*fxg \ F*figÞ+R

¼ ;, and

so ðFC*fxg \ F*figÞ+R
¼ SR, where the language of SR is R?.

There are two issues to investigate further:

1) the existence of solutions that are not regular for a

regular (synchronous or asynchronous) language

equation;

2) the characterization of all the subsets of the

largest solution of a regular language equation.

2Apply the closure procedure to obtain an equivalent deterministic FA
without "-moves.

3Apply the subset construction to obtain an equivalent deterministic
FA.
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About the latter question, notice that when solving an
inequation we consider sequences and thus any subset of

the largest solution is a solution of the inequation;

instead, when solving an equation we consider sets of

sequences, in place of sequences. The complete charac-

terization of the solutions of a parallel equation over

deterministic automata was developed in [61], based on

the regular languages associated with the states of the

largest solution.

B. Restricted Solutions of Equations Over
FSM Languages

FSMs are a formalism widely used in hardware and

software design, and they generate a subclass of regular

languages. Inequations and equations over FSMs and their

associated languages model problems of compositional

FSM design. Here we review briefly the basic notions

related to FSMs and their languages from [10], and then we

mention some results about solutions of FSM languages.

Definition 4.2: A finite state machine (FSM) is a 5-

tuple M ¼ hS; I;O; T; ri where S represents the finite state

space, I represents the finite input space, O represents the

finite output space and T � I� S� S� O is the transition

relation. On input i, the FSM at present state p may transit
to next state n and produce output o iff ði; p; n; oÞ 2 T.

State r 2 S represents the initial or reset state.

If at least one transition is specified for each present

state and input pair, the FSM is said to be complete,

otherwise it is partial. An FSM where there is at most one

transition for given present state and input is called a

deterministic FSM (DFSM), otherwise it is a nondeter-

ministic finite state machine (NDFSM). An NDFSM is a
pseudo nondeterministic FSM (PNDFSM) [10] if for each

triple ði; p; oÞ 2 I� S� O, there is at most one state n such

that ði; p; n; oÞ 2 T.

Definition 4.3: An FSM M0 ¼ hS0; I0;O0; T0; r0i is a

submachine of FSM M ¼ hS; I;O; T; ri if S0 � S, I0 � I,
O0 � O, r0 ¼ r, and T0 is a restriction of T to the domain

I0 � S0 � S0 � O0.

Definition 4.4: A complete FSM is said to be of Moore

type if ði; p; n; oÞ 2 T implies that for all i0 there is n0 such

that ði0; p; n0; oÞ 2 T.4

We now introduce the notion of a language associated

to an FSM. This is achieved by looking to the automaton

underlying a given FSM. For our purposes, we define two

related languages: one over the alphabet I� O and the
other over the alphabet I [ O, naturally associated,

respectively, with synchronous and asychronous com-

position.

For a language over I� O, the automaton coincides

with the original FSM where all states are made accepting

and the edges carry a label of the type ði; oÞ.
For a language over I [ O, the automaton is obtained

from the original FSM, by replacing each edge ði; s; s0; oÞ by

4Notice that this definition allows for NDFSMs of Moore type,
contrary to the more common definition of Moore type: for each present
state p there is an output o such that all transitions whose present state is p
carry the same output o.

Fig. 2. Solving a synchronous equation over regular languages: (a) automaton FC; (b) automaton F; (c) automaton F; (d) FC"I�U�O \ F"I�U�O;

(e) deterministic automaton ðFC"I�U�O \ F"I�U�OÞ#U�O accepting the language LC 	U�O L; (f) automaton accepting the largest solution S� ¼ LC 	� L.

Fig. 3. Solving an asynchronous equation over regular languages:

(a) automaton FC ; (b) automaton F; (c) automaton SR.
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the pair of edges ði; s; ðs; iÞÞ and ðo; ðs; iÞ; s0Þ where ðs; iÞ is a
new node (non-accepting state); all original states are

made accepting. The new automaton forces the require-

ment that an input always precedes an output.

Definition 4.5: A language L is an FSM language if there

is an FSM M such that the associated automaton FðMÞ
accepts L. Given an FSM M ¼ hS; I;O; T; ri, one of the two

following finite automata may be associated to an FSM
(according to whether we assume synchronous or asyn-

chronous composition):

1) FðMÞ ¼ hS; I� O;D; r; Si, where ðði; oÞ; s; s0Þ 2 D
iff ði; s; s0; oÞ 2 T;

2) FðMÞ ¼ hS [ ðS� IÞ; I [ O;D; r; Si, where

ði; s; ðs; iÞÞ 2 D ^ ðo;ðs;iÞ; s0Þ 2 D iff ði; s; s0; oÞ2T.

Definition 4.6: FSM MA is a reduction of FSM MB,
written MA � MB, iff the language of MA is contained in

the language of MB. If the languages of MA and MB coincide,

written MA ffi MB, then MA and MB are equivalent.

By definition, an FSM language is a regular language

represented by the corresponding automaton. However, it

is not the case that each regular language is the language of

an FSM, and in [10] we show that for each regular

language L over input alphabet I and output alphabet O,
there exists the largest subset LFSM of L that is an FSM

language. The language of a given FSM over alphabets I
and O is contained in L iff it is contained in LFSM.

In order to derive the synchronous (asynchronous)

composition of FSMs, we compose the underlying

automata (over the alphabet I� O for the synchronous

composition, and over I [ O for the asynchronous one) and

then we transform the obtained automaton into an FSM.
When solving the FSM inequation MA 	MX � MC or

equation MA 	MX ffi MC, again we solve the equation over

the underlying automata. However the largest language

solution so obtained is not necessarily an FSM language, so

there is an additional step of extracting the largest

contained FSM language (generated by a subautomaton

of the automaton representing the largest language

solution) and transforming its automaton into the
corresponding FSM. The detailed procedures for solving

synchronous and asynchronous FSM inequations and

equations are given in [10]. As in the case of finite

automata, an FSM is a solution of an FSM inequation iff

the FSM is a reduction of the largest FSM solution (an

FSM is a solution of an FSM equation only if the FSM is a

reduction of the largest FSM solution).

Notice that the largest FSM solution is unique as a
language, but it may be represented by different FSMs

(including partial and nondeterministic ones), of which we

may choose a unique representative (e.g., a PNDFSM with

a minimum number of states).

Next we consider some restricted solutions of FSM

inequations and equations which are of theoretical and

practical interest.

1) Complete Combinational Solutions: Solutions of equa-
tions over FSMs are combinational when the unknown can

be replaced by an FSM with a single state (e.g., a

combinational winning strategy in a safe game).

A straightforward sufficient condition for the nonex-

istence of such solutions is based on iterative deleting the

states for which there exists an input such that the set of

outputs under this input does not intersect with the set of

outputs at the initial state (proposed in [62]).

2) Complete and Moore FSM Solutions: We are interested

in complete FSMs to model the common case that a

hardware/software component is input-enabled, implying

that a solution has to be completely specified, since

undefined input sequences mean that any output response

to this sequence will violate the specification. In [10]

Sec 3.1.2, conditions are stated for a regular language
(over alphabets I� U or I [ O) to be the language of a

partial or complete FSM, otherwise procedures are given

to extract the largest such sublanguage.

Moreover, another requirement of practical interest for

FSMs is that each input is followed by an output. For

synchronous composition of deterministic FSMs a suffi-

cient condition to enforce such requirement is to have a

Moore FSM in each closed loop of the composition. The
reason is that a Moore FSM ‘‘breaks’’ the cycle because its

outputs depend only on the current state and do not

depend directly on the inputs. In [10] p. 43, a procedure is

described that given as input an FSM, returns its largest

submachine that is a Moore FSM; moreover it is proved

that the latter contains (behaviourally) any Moore FSM

included in the original FSM.

As an example from [10], given the inequation
MA 	MX � MC, with MA and MC shown, respectively, in

Fig. 4(a) and 4(b), the largest FSM solution MX is shown in

Fig. 4(c), and the largest Moore FSM solution MooreðMXÞ
in Fig. 4(d).

In summary, both the procedures for deriving the

largest complete FSM solution and the largest Moore FSM

solution are based on iterative deleting ‘‘bad’’ states from

the largest solution, and thus their complexity is polyno-
mial in the number of states/transitions of the largest

solution; if such procedures do not return a solution then

such a solution does not exist for the given inequation.

Since the set of all complete (or Moore) reductions of the

largest solution coincides with the set of reductions of the

largest complete (Moore) submachine of the largest

solution, any complete (Moore) submachine of the largest

complete (Moore) solution is a complete (Moore)
solution of the FSM inequality (see Th. 3.9 in [10]).

Moreover, any Moore reduction of the largest Moore

FSM solution combined with the context FSM yields a

complete FSM.

A related notion of implementability of interacting

machines M1 and M2 was reported in [63], where M1 is

implementable with M2 if there exists a pair of
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implementations of M1 and M2 such that no combinational

loop is created by interconnecting them through the

matching variables. A condition for implementability
based on the acyclicity of a directed bipartite graph is

given; moreover, there is a discussion on how to deal with

restricted unimplementable solutions of the largest

solution of a synchronous FSM equation. Notice that for

deterministic FSMs the assumption that M1 or M2 are

Moore FSMs is sufficient to guarantee implementability.

Related issues were investigated in [64], [65].

3) Compositionally Progressive FSM Solutions: Another

restriction of practical interest is that the composition of

context and solution be defined for all inputs (input-

progressive) or at least for the same set of inputs as the

specification, which means that the composed system is

required to have no livelocks or deadlocks. The

corresponding solutions are called compositionally pro-

gressive solutions.
Two procedures for deriving compositionally progres-

sive solutions for synchronous FSM inequations are

proposed in [59]. Differently from the largest complete

solution and the largest Moore solution, the largest

compositionally progressive solution cannot be derived as

a submachine of the largest solution of a synchronous FSM

inequation. In order to derive the largest compositionally

progressive solution as a submachine of the largest

solution, the largest solution should be transformed into

a so-called perfect FSM (the construction was first used in

[24] for parallel equations, but the term was coined in
[61]). For the composition of the context with a perfect

FSM it holds that, for each state ða;mÞ of the composition,

the projection of the language accepted by the state onto

the alphabet of the unknown component equals the

language accepted by the state m of the perfect FSM. A

perfect FSM that is equivalent to the largest solution can

be derived by duplicating and splitting states of the largest

solution using the following steps: first the composition of
the context and largest solution is projected onto the

alphabet of the unknown component without merging

equivalent states in the projection, and then the language

of the obtained automaton is augmented with all the

sequences of the language of the largest solution that do

not participate in the composition with the given context.

The largest compositionally progressive solution is repre-

sented by a submachine of the perfect largest solution. The
same holds for synchronous and asynchronous composi-

tion of finite automata [61], [66].

C. Design Automation Support With BALM
and BALM-II

Manipulation of finite automata has been extensively

studied since the early days of computing. It became more

practical to solve problems expressed in terms of automata

Fig. 4. Solving a synchronous inequation over FSMs: largest FSM and largest Moore FSM solutions: (a) FSM MA; (b) FSM MC; (c) Largest FSM

solution MX ; (d) Largest Moore FSM solution MooreðMXÞ.
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theory with the advent of efficient symbolic techniques
such as Binary Decision Diagrams (BDDs), satisfiability

(SAT) solvers, and AND-INVERTER graphs (AIGs). Based

on these techniques, the BALM (Berkeley Automata and

Language Manipulation) package aims at providing an

experimental environment for efficient manipulation of

finite automata in various application domains, e.g.,

synthesis, verification, control, etc. The environment

features the most common automata operations, such as
determinization and state minimization, as well as some

visualization capabilities. The source code of BALM and its

manual are available at [67] and [68]. Recently BALM has

been upgraded to BALM-II, adding the specification

interfaces and the operations required to solve asynchro-

nous (called parallel in BALM-II) equations. BALM-II

subsumes BALM, and its source code and manual are

available at [69], [70], to which we refer for extended
explanations and examples. The applicability of BALM to

finite-state machine synthesis is demonstrated by solving

an unknown component problem formulated using

language equations.

BALM provides a specialized procedure for resynthesis

of sequential circuits [57]. A part of the sequential design

to be optimized is selected and temporarily blackboxed. An

improved representation of this part can be found by
asserting that the behavior of the design with the blackbox

is equivalent to the behavior of the original design before

blackboxing. As said before, this problem is reduced to

language equation solving. A solution of the language

equation is computed and converted into a circuit used to

replace the blackbox. The resulting circuit structure may

improve area and delay and lead to a better implementa-

tion in terms of the selected technology. In BALM, this
problem is solved using the best known combination of

data-structures and algorithms developed for finite

automata manipulation. The input is in the form of a

circuit. Intermediate computations are based on BDDs

representing the partitioned transition relation. The state-

transition structure of the solution is obtained in the

explicit form as a transition table, with transition

conditions and output functions represented compactly
using BDDs. The transition structure can be encoded and

converted into another circuit that can be used as a missing

part in the given circuit. The implementation available in

BALM can handle up to millions of states represented

implicitly (using BDDs) or explicitly (using the transition

table). However, the complementation (determinization)

of nondeterministic automata uses explicit enumeration

and hence is limited to about 100 K states.

V. CURRENT RESEARCH AND
OPEN PROBLEMS

We conclude by pointing out the frontline of research for

this design methodology, underlining some interesting

open problems.

A. Equations Over !-Regular Languages
The formulation of the unknown component problem

can be extended from the finite regular case to equations

over !-automata. In [10, Ch. 4], it is shown how to extend

asynchronous (i.e., parallel) equations to !-languages

described by Büchi automata. Expansion and restriction

of !-languages are defined along with the corresponding

!-expansion and !-restriction of !-automata, so that !-

parallel composition of !-automata can be defined. The
largest solution of an asynchronous equation over Büchi

automata is then formulated similarly to the finitary

regular case.

Moreover, in [10, Ch.18], an extension of BALM is

reported to handle synchronous equations over co-Büchi

specifications. This extension is motivated by sequential

synthesis problems where the objective is to find a strategy,

implementable as an FSM, in order to guide a system to a
given subset of accepting states with some desirable

property and keep it there. Such requirements can be

expressed by co-Büchi automata. The synthesis flow is

similar to the one for regular (finite-word) automata with

the main difference in the last step, where the most general

solution is trimmed to obtain FSM solutions that meet the

co-Büchi condition. This necessitates a special nonregular

method, based on formulating the problem as a SAT
instance where each satisfying assignment corresponds to a

way of trimming the graph to enforce the desired property.

B. Relations Among Composition Operators
It is an open question whether the conditions H1, H2,

and H3 shown in Section III-A to be sufficient to obtain

closed-form solutions of language inequations (they had

been discussed preliminarily in [71]) are the least
restrictive ones, and so are also necessary. Sufficient

conditions were discussed also in [72].

Variants of synchronous composition are introduced in

[73] as product, � (with the comment sometimes called
completely synchronous composition), and in [74] as

synchronous parallel composition, �. Variants of parallel
composition are introduced in [73] as parallel composition, k
(with the comment often called synchronous composition),
and in [74] as interleaving parallel composition, k; the same

operator was called asynchronous composition in [40].

These definitions were usually introduced for regular

languages and finite automata.

It has also been noticed by Kurshan [74] and Arnold

[75] that asynchronous systems can also be modeled with

the synchronous interpretation, using null transitions to

keep a transition system in the same state for an arbitrary
period of time. Kurshan [74] observes that: ‘‘While

synchronous product often is thought to be a simple-

even uninteresting!-type of coordination, it can be shown

that, through use of nondeterminism, this conceptually

simple coordination serves to model the most general

‘asynchronous’ coordination, i.e., where processes prog-

ress at arbitrary rates relative to one another. In fact the
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‘interleaving’ model, the most common model for asyn-
chrony in the software community, can be viewed as a

special case of this synchronous product.’’ More discussion

can be found in [76]. A thorough investigation of the

composition operators and their relations is still missing.

C. Developing Better Tools
While working on language equations, we tried to

achieve the most scalable implementation in order to
determine what is the largest size of a problem that can be

solved using this methodology. Initially, we used mono-

lithic BDDs to represent the automata, and reached the

limits of scalability of BDDs in this sense. Later, we

formulated the problem of computing the unknown

component using the partitioned representation [57].

This allowed us to increase the size of problems solved,

but soon we reached the limit of partitioned BDDs as well.
Currently, we are not aware of any method or trick that

can increase scalability of the BDD-based implementation

for solving language equation problems.

Additionally, we encountered difficulties when trying

to find the best solution in the largest set of solutions

computed. The difficulty here is that, to evaluate the

quality of a solution, it should be extracted, state-assigned,

and implemented as a circuit. It is hard to predict the
quality of a solution without going through these steps,

which is infeasible for all but a relatively small number of

solutions. We tried several criteria to extract a good

solution, but none of them worked well from the practical

stand-point. Nevertheless, when resynthesizing a relatively

small component in a circuit, the quality of randomly

selected candidates was good enough to lead to some

improvements in area.
Looking into the future, we conjecture that more

scalable tools for solving language equations can be

developed using circuit manipulation and Boolean Satisfia-

bility. For this, a new representation of language automata

in the form of circuits should be developed. Next,

operations on language automata (such as union, concat-

enation, intersection) should be carried out by performing

circuit transformations. In a similar way, quantification can
be done for the circuit representation by cofactoring the

circuit and adding new gates. Finally, the set of all solutions

should be formulated as a Boolean problem solved using

SAT over the resulting circuit. Although the circuit can

grow large after all the intermediate circuit transforma-

tions, the power of SAT-based methods is that they do not

build a complete canonical representation of all solutions as

in the case of BDDs. Instead, SAT methods explore a
relevant part of the search space to find one feasible

solution or prove that none exists. By iterating SAT calls

and parameterizing them in different ways, we can find a

substantially large subset of solutions satisfying some

desirable properties. This is just a blueprint of a future

solution, which needs to be researched and developed.

However, a similar approach was successful in performing

SAT-based don’t-care-based optimization of Boolean net-
works without computing complete don’t-cares [77].

Scalability can also be addressed with strategies based on

hierarchical decomposition and divide-and-conquer ap-

proaches, as in the design of on-chip protocol converters

discussed in [26], where each component protocol is

represented as a composition of smaller automata, so that

there is no need of a monolithic component automaton when

deriving a protocol transducer. Finally, we remark that, even
though the worst-case computational complexity of these

synthesis problems is PSPACE-complete (as mentioned in

Section II reporting from [52]), many instances of practical

interest may turn out to be more tractable.

D. UCP Versus Other Synthesis Formulations
It is useful to interpret the unknown component

problem (UCP) in a logical framework and compare it with
other formulations of synthesis problems. It has been

pointed out in [78] that UCP for regular languages under

synchronous composition can be embedded into WS1S

(Weak Second-Order Logic of 1 Successor) formulas, for

which there is a decision procedure and tools to compute a

minimum deterministic automaton for which a given

formula holds [79].

There are two relevant synthesis problems with which
to compare UCP: Supervisory control problem (SCP);

Reactive synthesis problem (RSP), often known as

synthesis from LTL.

The supervisory control problem (SCP) is: given a plant

G (modeled by a finite automaton or an !-automaton or a

Petri net), check for the existence of a supervisor S
(controller) such that the closed-loop system S=G satisfies

a given specification Hspec (usually a restriction of G) [73],
whose events are classified as uncontrollable or control-

lable, of which the latter may be disabled by the controller;

moreover, find the least restrictive supervisor, if there is

one. A common further condition on the supervisor is that

it should be nonblocking, i.e., from every reachable state in

the closed-loop system there should be a path to an

accepting state. If there are many supervisors achieving the

goal, the preferred one disables as few events as possible.
The theory of supervisory control shows that such

supervisor can be found both with a closed-form solution

and an iterative computation. The problem can be made

more complex by introducing partial observability of the

events of the plant. More complex control architectures

have been studied (coordinated, distributed, decentra-

lized, hierarchical, see [80]).

The controller topology of SCP is a special case of UCP,
however SCP handles also controllable/uncontrollable and

observable/unobservable events, whereas in the standard

formulation of UCP all events are controllable and

observable. Some preliminary discussion on how to model

limited controllability in UCP can be found in [10,

Ch. 15.3], but the matter requires further investigation. A

useful contribution in this direction can be found in [13],
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where it is remarked that controllable events can be
modeled as outputs and uncontrollable events as inputs.

The reactive synthesis or implementability problem

(RSP) (see [81]) is: given an LTL formula � with input and

output atomic propositions, check for the existence and, if

so, synthesize a controller S as a Moore or Mealy machine

such that all behaviours of S satisfy �. Superficially, the

two settings (SCP and RSP) are quite different: e.g., the

events in SCP are divided as controllable and uncontrol-
lable, whereas in RSP all inputs are uncontrollable; in SCP

the plant is given explicitly, and the objective is to find the

least restrictive supervisor. However, it has been shown

that SCP can be modeled as RSP [82], [83], by defining a

version of RSP (called RSCP, reactive synthesis control

problem) with the plant modeled as a transition system

(see [84]) whose states are partitioned into uncontrollable

and controllable. Given the past states up to the current
state of the plant, the strategy disables some successors of

the current state to restrict the plant modeled by the

transition system, and produce the closed-loop system that
satisfies the LTL (or CTL or CTL*) specification �. For

some CTL formulas � there are unique maximally

permissive strategies. Of related interest in this context

is also the connection between LTL formulas and

equivalent Büchi automata (i.e., recognizing the same !-

language [85]), and the extension of UCP to equations over

!-languages and tractable classes of Büchi automata

mentioned in Section V-A.
Roughly speaking, one expects to be able to embed

versions of UCP into RSP (as done for SCP versus RSP in

[82], [83]), since the former appears to model mainly

synthesis for safety properties, however not all the features

of UCP appear to be easily mappable. In general, there is

space for a cross-fertilization between the two formula-

tions, relying on unifying notions such as the one of game
(see [86] and [10, Ch. 5.3]), to leverage on the respective
strengths in terms of connection topologies, types of

composition, expressivity of the specifications. h
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