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ABSTRACT 
Field-Programmable Gate Arrays (FPGA) implement logic 
functions using programmable cells, such as K-input lookup-
tables (K-LUTs). A K-LUT can implement any Boolean function 
with K inputs and one output. Methods for mapping into K-LUTs 
are extensively researched and widely used. Recently, cells other 
than K-LUTs have been explored, for example, those composed of 
several LUTs and those combining LUTs with several gates. 
Known methods for mapping into these cells are specialized and 
complicated, requiring a substantial effort to evaluate custom cell 
architectures. This paper presents a general approach to 
efficiently map into single-output K-input cells containing LUTs, 
MUXes, and other elementary gates. Cells with to 16 inputs can 
be handled. The mapper is fully automated and takes a logic 
network and a symbolic description of a programmable cell, and 
produces an optimized network composed of instances of the 
given cell. Past work on delay/area optimization during mapping 
is applicable and leads to good quality of results. 

1. INTRODUCTION 
Technology mapping for traditional FPGAs transforms a design 

into a network of K-input LUTs [7]. Since a K-LUT can 
implement any Boolean function of up to K inputs, mapping into 
LUTs can be structural, without any functional matching needed 
for standard cells and programmable cells. 
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Novel FPGA architectures based on programmable cells have 

been proposed. For example, LUT structures combine two or 
more LUTs in one cell [5][17]. Other extensions include cells 
based on LUTs and AND gates [1], LUTs and MUXes [4][16], 
and cones of elementary gates [20]. 

A common difficulty in evaluating any such architecture is the 
need to develop a dedicated mapper, or at least modify a 
traditional LUT mapper often using ad hoc and suboptimal 
methods. This task is difficult because matching into the given 
cell often requires sophisticated programming to fairly evaluate a 
proposed architecture. As a result, custom mappers are often 
inflexible (a change of the cell structure may lead to a non-trivial 
redesign of the mapper) and slow (in our experience, a 10x slow-
down is common and expected when a modified LUT mapper 
performs on the fly matching against the cell).  

To facilitate research in FPGA architecture evaluation, a 
general technology mapper ideally takes any design and 
programmable cell and produces a mapped network composed of 
multiple instances of the given cell, each with its own 
configuration parameters.  These specify an assignment of 
variables of the original function to the cell inputs, and bits used 
to program LUTs present in the cell, so that the cell can realize a 
given Boolean function. 

The present paper answers this need by proposing a general 
mapper into K-input programmable cells, where K can be up to 
16, although computation is more efficient when K does not 
exceed 12, covering many of the practically interesting cell 
architectures. 

The proposed mapper does not require manual tuning, other 
than providing a description of the cell. The time-consuming 
Boolean matching is replaced by a pre-computation, which can be 
carried out concurrently, reducing this one-time preparation from 
hours to minutes. 

Finally, the quality of results produced by the mapper is on par 
with that of results produced by state-of-the-art LUT mappers, 
because the same mapping heuristics are used.  

The paper is organized as follows. Section 2 reviews 
background. Section 3 shows a way to characterize a general 
programmable cell. Section 4 describes the process of pre-
computing Boolean functions to be matched against the cell. 
Section 5 describes the Boolean matching. Section 6 describes 
modifications to a LUT mapper needed for mapping into 
programmable cells. Experimental results are described in 
Section 7, while Section 8 concludes the paper. 

2. BACKGROUND 

2.1 Boolean network 
A Boolean network (or circuit) is a directed acyclic graph 

(DAG) with nodes corresponding to logic gates and edges 
corresponding to wires connecting the nodes.  

A node n has zero or more fanins, i.e. nodes driving n, and zero 
or more fanouts, i.e. nodes driven by n. The primary inputs (PIs) 
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are nodes without fanins. The primary outputs (POs) are a subset 
of nodes of the network, connecting it to the environment. A fanin 
(fanout) cone of node n is a subset of nodes of the network, 
reachable through the fanin (fanout) edges of the node. 

2.2 And-Inverter Graph 
And-Inverter Graph (AIG) is a Boolean network whose nodes 

can be classified as follows: 
• One constant 0 node. 
• Combinational inputs (primary inputs, flop outputs). 
• Internal two-input AND nodes. 
• Combinational outputs (primary outputs, flop inputs). 
The fanins of internal AND nodes and combinational outputs 

can be complemented. The complemented attribute is represented 
as a bit mark on a fanin edge, rather than a single-input node. Due 
to their compactness and homogeneity, AIGs have become a de-
facto standard for representing circuits in technology mappers. 

2.3 Structural cut 
A cut C of a node n is a set of nodes of the network, called 

leaves of the cut, such that each path from a PI to n passes 
through at least one leaf. Node n is called the root of cut C. The 
cut size is the number of its leaves. A trivial cut is the node itself. 
A cut is K-feasible if the number of leaves does not exceed K. A 
local function of a node n, denoted fn(x), is a Boolean function of 
the logic cone rooted in n and expressed in terms of the leaves, x, 
of a cut of n. 

Cut enumeration [15] is a technique used by a cut-based 
technology mapper to compute cuts using dynamic programming, 
starting from PIs and ending at POs. 

2.4 Boolean function 
Let f(X): Bn → B, B = {0,1}, be a completely specified Boolean 

function, or function for short. The support of f, supp(f), is the set 
of variables X influencing the output value of f. The support size 
is denoted by |X|.  

Two functions are NPN-equivalent if one of them can be 
obtained from the other by negation (N) and permutation (P) of 
the inputs and outputs. Consider the set of all Boolean functions 
derived from a given function F by a sequence of these 
transforms. These functions constitute the NPN class of function 
F. The NPN canonical form of function F is one function 
belonging to its NPN class, also called the representative of this 
class.  Selection of the representative is algorithm-specific. For 
example, in some cases, the representation is the function whose 
truth table has minimum (or maximum) integer value among all 
the truth tables of functions belonging to the NPN class. 

3. CELL DESCRIPTION 
It is assumed that a programmable cell is composed of LUTs, 

MUXes and the elementary gates, AND and XOR. Other gates 
types can be expressed using these primitives.  

The proposed matcher takes a character string expressed using 
the notation from [13][14]: parentheses represent an AND, square 
braces represent an XOR, angular braces represent a 2:1-MUX, 
curly braces represent a LUT, and an exclamation mark is NOT. 
For example, (abc) is AND(a, b, c), and <abc> is MUX(a, b, c) = 
ab + !ac.   For example, a 7-input cell composed of a 6-LUT 
feeding a 2-input AND [1] is represented as: h={abcdef};i=(gh). 
The lower-case characters (a, b, c, etc) are reserved for primary 
inputs. Internal variables (in this case, h and i) follow without 
gaps in the alphabetical order. Spaces are disallowed in the 
description. 

4. HARVESTING FUNCTIONS 
During mapping into K-input cells, Boolean functions 

considered by an AIG-based mapper are those appearing as 
functions of K-input cuts in the AIG. Industrial designs often 
contain different types of logic and may vary greatly in terms of 
the functions found at their structural cuts. The matcher is applied 
to only those functions appearing at some cut in the design. Such 
functions can be collected and stored for future use.  

An efficient method [19] to pre-compute Boolean functions of 
cuts in a design, or a suite of designs relies on fast algorithms to 
compute NPN-canonical forms [9] and compactly store them in a 
data-structure called the DSD manager [13][14]. The manager 
stores representatives of each NPN class as a shared tree, 
providing a convenient way of checking functional properties, 
such as symmetry, unateness, decomposability, etc.  

5. BOOLEAN MATCHING 
SAT-based evaluation of programmable cells was introduced in 

[11] and further developed in [6][8]. Our implementation uses a 
dedicated Quantified Boolean Formula (QBF) solver, which 
performs iterative counterexample-guided refinement [18][10].  

In this case, the problem of matching a function F(x) with a cell 
C(x, p), is equivalent to checking satisfiability of the formula: 
∃p∀x[C(x, p) == F(x)]. In addition, if a satisfying solution exists, 
it shows how to configure the cell using parameters p to realize 
function F(x).  

The iterative approach finds one SAT assignment, (x0, p0), of 
the formula C(x, p) == F(x). For the given values of p0, if 
∀x[Cp0(x) == F(x)] holds, then a solution, p0, is found. Otherwise, 
x0 is substituted into C(x, p), and the resulting function, Cx0(p), is 
used as an additional constraint for ∃p[C(x, p) == F(x)]. If at some 
point the formula is UNSAT, the QBF instance has no solution 
and the match does not exist. An upper bound on iterations 
required is 2|x|, but in practice it converges much faster. Additional 
speedup can be achieved by adding symmetry-breaking clauses 
and solving multiple QBF instances concurrently. 

6. TECHNOLOGY MAPPING 
We modified the priority-cut-based technology mapper [12] to 

enable processing K-input cuts whose functions are pre-computed 
and pre-matched. The mapper has access to the DSD manager 
storing each NPN class of Boolean functions appearing in the 
design along with its matching status (matchable/unmatchable) as 
well as the configuration parameters for the matchable functions. 

In a typical LUT mapper, cuts are computed along with their 
truth tables using topological cut enumeration [15]. The cuts are 
then support-minimized by removing variables appearing in the 
structural support but not in the Boolean functions of the cut. 
NPN classes of the cut functions are computed [9]. These steps 
are performed as usual. Our modifications to the mapper concern 
handling of cuts whose functions have no match with the given 
cell. Such cuts are labeled and not allowed to be selected as best 
cuts. When prioritizing cuts, preference is given to matchable 
cuts, and if there is room left, some of the labeled cuts are stored 
and used to compute cuts for the fanouts. It is possible that, by 
merging two unmatchable cuts, a matchable cut is produced. 

When the final mapping is derived, a subset of best cuts is 
selected and returned to the user as the final mapping. Since the 
best cuts are always matchable, the resulting mapping only 
contains the cuts that can be expressed using the target cell. At 
this point, the configuration parameters are retrieved and used to 
output the set of configured cells representing the given design. 
Optionally, a functional equivalence check can be performed to 
make sure that the network of configured programmable cells has 
the same functionality as the original Boolean network. 



7. EXPERIMENTAL RESULTS 
The proposed framework is implemented in ABC [2]. For a 

case-study, we a suite of 10 representative designs whose sizes 
are between 10K and 90K 6-LUTs.  

7.1 Programmable cells 
Figure 1 shows two programmable cells, which contain three 3-

LUTs and two 2-ANDs. Our experiments indicate that the 
additional 2-LUT present in Cell B substantially increases its 
expressive power at the cost of only four additional configuration 
bits. Selecting these two cells is somewhat arbitrary but it allows 
us to illustrate the proposed method with Cell B having 
reconvergent paths, which is hard to handle using traditional 
Boolean methods.  

 

 
Figure 1. Programmable cells used in this paper. 

Description of Cell A: j={abc};k={def};l=(gj);m=(kh);n= 
{lim};AB;BC;DE;EF;GH. Description of Cell B: j={cd};k= 
{abj};l={jef};m=(gk);n=(lh);o={min};AB;CD;EF;GH. In both 
cases, an optional list of primary input symmetries is appended, 
which makes the SAT solver 2-4x faster. The lower-case 
characters are inputs and internal nodes. The upper-case 
characters are used for symmetries. (With some extra effort, 
symmetries can be computed automatically.) 

7.2 Harvesting Boolean functions 
As the first step, NPN classes of 9-input functions appearing in 

the selected benchmarks are pre-computed. Any logic synthesis 
script can be used for this task. In our experiments, the script 
(&synch2; &if -n –K 9) was iterated three times for each 
benchmark. This script performs logic synthesis with choices 
(&synch2), computes 9-input cuts together with their Boolean 
functions and saves them in the DSD manager (switch ‘-n’). The 
computation took about 20 minutes and the resulting manager 
contained about one million NPN classes together with their 
occurrence counters. The manager is saved into a file as follows: 
dsd_save funcs9.dsd. The size of the resulting file is 41MB. 

All functions that are not collected by the script but appear in a 
design during mapping will be treated as unmatchable by the 
mapper. This limitation was addressed, but the description is 
outside of the scope of this paper, because ignoring a small 
fraction of complex functions, in our experience, does not impact 
the quality of results.  This is why the next optional step is to 
filter out rare NPN classes. Such classes rarely appear during 
mapping; moreover, it is unlikely that they can be matched with 
the cell.  Filtering them out tends to preserve quality and reduce 
runtime. 

In our experiments, NPN classes appearing in the designs less 
than 10 times are removed: dsd_load funcs9.dsd; dsd_filter -L 10; 
dsd_save funcs9filter.dsd. The resulting file contains 130K classes 
and occupies only 4MB. We tried using unfiltered NPN classes, 
leading to a negligible (less than 1%) degradation of area/delay. 

7.3 Boolean matching 
Matching was performed by the following command: dsd_load 

funcs9filter.dsd; set progressbar; dsd_match –S 
"<cell_description>" -P 30; dsd_save funcs9match.dsd; dsd_ps. 
The last column printed by dsd_ps shows the number/percentage 
of classes unmatchable with the cell. 

The runtime of concurrent matching (dsd_match) in our 
experiments was 450 sec for Cell A (1750 sec for Cell B) on a 
computer with 16 hyper-threaded cores. The argument “-P 30” 
limits the number of concurrent worker threads to 30, not 
counting the controller thread. The same computation for Cell A 
runs 8410 sec on one thread, which is 18.7x slower than the 
concurrent one.  

7.4 Technology mapping 
Given a pre-matched library of NPN classes of functions 

appearing in the sample designs, mapping can be performed using 
command &if -k after reading the library as follows: dsd_load 
funcs9match.dsd. Optionally, a custom LUT library (command 
read_lut) can be used to specify the LUT-size-specific area/delay. 

In our experiment, we iterated the following script three times 
(&synch2; &if –k –K 9). Each node in the resulting netlists does 
not exceed 9 inputs and can be realized by the given 
programmable cell. Currently, the configuration parameters for 
the nodes are computed but not used. In general, a hierarchical 
mapped netlist can be produced where instances contain the logic 
of each cell defined by its configuration parameters. 

The result of mapping into programmable cells is compared 
against mapping into traditional K-LUTs (6 ≤ K ≤ 9) produced by 
command &if in ABC [2]. Three iterations of the script (&synch2; 
&if –m –K <num>) were used with switch ‘-m’ forcing truth table 
computation and cut minimization because these steps are 
required for mapping into programmable cells. In all cases, the 
results of mapping were verified using command &cec. 

7.5 Summary of experiment 
The experimental results are summarized in Table 1. Cell B 

outperforms Cell A in terms of both area and delay measured in 
terms of the number of cells and the number of cell levels. Area 
produced using Cell B is close to that for 9-LUTs, even though 
Cell B has only 28 configuration bits and two extra AND-gates, 
compared to the 512 bits needed for a 9-LUT! Delay produced by 
Cell B is between delays produced using 8-LUTs and 9-LUTs.  

Table 1 shows that the synthesis flow based on Cell B is 48% 
slower than the flow based on the traditional 6-LUTs and only 
20% slower than the flow based on 9-LUTs.  

The good performance of Cell B motivates research into 
programmable cells containing reconvergent logic structure. 

Another way to improve expressive power of the cells is to 
allow for constants and inverters at the free inputs of the AND-
gates. For this, "g" and "h" in the cell description can be replaced 
by "{g}" and "{h}", respectively, where curly braces represent a 
1-input LUT.  Yet another way to boost the expressive power, is 
to replace 2-ANDs with 2-LUTs. In both cases, the matching and 
mapping stages of the flow can be repeated, resulting in more 
matches and improved quality of mapping, while the runtime of 
matching may degrade due to the increased cell complexity. 

8. CONCLUSIONS 
The paper presents an integrated approach to map logic netlists 

into arbitrary single-output programmable cells specified by the 
user. The approach is based on pre-computing typical Boolean 
functions appearing in a set of sample netlists and pre-matching 
them against the given cell. An available technology mapper is 
minimally modified to make use of the matching information. 
Because of the pre-computation, the runtime of the mapper is 
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reasonable. The quality of results is good because the same 
efficient heuristics are used as during mapping into K-LUTs. 
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04 39366 36414 37315 35384 39548 33357 9 8 7 6 8 7 75 93 99 103
05 44426 41609 38232 36036 47810 36679 9 8 7 7 8 7 102 134 145 159
06 88964 83504 76317 72346 94669 72835 9 8 7 7 8 7 205 272 286 310
07 31048 27950 25042 24257 31769 24893 8 8 7 6 7 7 60 78 86 94
08 33154 29074 25268 26008 37626 26634 19 15 15 13 18 14 58 86 82 96
09 32684 32091 31485 31164 34709 31355 5 4 4 3 4 3 24 28 28 30
10 12909 12286 11688 11554 13165 11916 7 6 6 4 7 5 11 14 18 20
Geomean 1.000 0.929 0.870 0.841 1.065 0.852 1.000 0.885 0.820 0.707 0.919 0.759 1.000 1.282 1.381 1.487 

 


