
Technology Mapping into General Programmable Cells
 Alan Mishchenko Robert Brayton Wenyi Feng Jonathan Greene
Department of EECS, University of California, Berkeley Microsemi Corporation SOC Products Group
 {alanmi, brayton}@berkeley.edu {wenyi.feng, jonathan.greene}@microsemi.com

ABSTRACT
Field-Programmable Gate Arrays (FPGA) implement logic
functions using programmable cells, such as K-input lookup-
tables (K-LUTs). A K-LUT can implement any Boolean function
with K inputs and one output. Methods for mapping into K-LUTs
are extensively researched and widely used. Recently, cells other
than K-LUTs have been explored, for example, those composed of
several LUTs and those combining LUTs with several gates.
Known methods for mapping into these cells are specialized and
complicated, requiring a substantial effort to evaluate custom cell
architectures. This paper presents a general approach to
efficiently map into single-output K-input cells containing LUTs,
MUXes, and other elementary gates. Cells with to 16 inputs can
be handled. The mapper is fully automated and takes a logic
network and a symbolic description of a programmable cell, and
produces an optimized network composed of instances of the
given cell. Past work on delay/area optimization during mapping
is applicable and leads to good quality of results.

1. INTRODUCTION
Technology mapping for traditional FPGAs transforms a design

into a network of K-input LUTs [7]. Since a K-LUT can
implement any Boolean function of up to K inputs, mapping into
LUTs can be structural, without any functional matching needed
for standard cells and programmable cells.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – Optimization;
B.7.1 [Integrated Circuits]: Types and Design Styles –
Gate arrays

General Terms
Algorithms, Performance, Design, Experimentation,
Modelling

Keywords
FPGA, technology mapping, programmable cells, Boolean
matching, Boolean function

Novel FPGA architectures based on programmable cells have

been proposed. For example, LUT structures combine two or
more LUTs in one cell [5][17]. Other extensions include cells
based on LUTs and AND gates [1], LUTs and MUXes [4][16],
and cones of elementary gates [20].

A common difficulty in evaluating any such architecture is the
need to develop a dedicated mapper, or at least modify a
traditional LUT mapper often using ad hoc and suboptimal
methods. This task is difficult because matching into the given
cell often requires sophisticated programming to fairly evaluate a
proposed architecture. As a result, custom mappers are often
inflexible (a change of the cell structure may lead to a non-trivial
redesign of the mapper) and slow (in our experience, a 10x slow-
down is common and expected when a modified LUT mapper
performs on the fly matching against the cell).

To facilitate research in FPGA architecture evaluation, a
general technology mapper ideally takes any design and
programmable cell and produces a mapped network composed of
multiple instances of the given cell, each with its own
configuration parameters. These specify an assignment of
variables of the original function to the cell inputs, and bits used
to program LUTs present in the cell, so that the cell can realize a
given Boolean function.

The present paper answers this need by proposing a general
mapper into K-input programmable cells, where K can be up to
16, although computation is more efficient when K does not
exceed 12, covering many of the practically interesting cell
architectures.

The proposed mapper does not require manual tuning, other
than providing a description of the cell. The time-consuming
Boolean matching is replaced by a pre-computation, which can be
carried out concurrently, reducing this one-time preparation from
hours to minutes.

Finally, the quality of results produced by the mapper is on par
with that of results produced by state-of-the-art LUT mappers,
because the same mapping heuristics are used.

The paper is organized as follows. Section 2 reviews
background. Section 3 shows a way to characterize a general
programmable cell. Section 4 describes the process of pre-
computing Boolean functions to be matched against the cell.
Section 5 describes the Boolean matching. Section 6 describes
modifications to a LUT mapper needed for mapping into
programmable cells. Experimental results are described in
Section 7, while Section 8 concludes the paper.

2. BACKGROUND

2.1 Boolean network
A Boolean network (or circuit) is a directed acyclic graph

(DAG) with nodes corresponding to logic gates and edges
corresponding to wires connecting the nodes.

A node n has zero or more fanins, i.e. nodes driving n, and zero
or more fanouts, i.e. nodes driven by n. The primary inputs (PIs)

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
FPGA’15, February 22–24, 2015, Monterey, Califirnia, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3315-3/15/02…$15.00.
http://dx.doi.org/10.1145/2684746.2689082

are nodes without fanins. The primary outputs (POs) are a subset
of nodes of the network, connecting it to the environment. A fanin
(fanout) cone of node n is a subset of nodes of the network,
reachable through the fanin (fanout) edges of the node.

2.2 And-Inverter Graph
And-Inverter Graph (AIG) is a Boolean network whose nodes

can be classified as follows:
• One constant 0 node.
• Combinational inputs (primary inputs, flop outputs).
• Internal two-input AND nodes.
• Combinational outputs (primary outputs, flop inputs).
The fanins of internal AND nodes and combinational outputs

can be complemented. The complemented attribute is represented
as a bit mark on a fanin edge, rather than a single-input node. Due
to their compactness and homogeneity, AIGs have become a de-
facto standard for representing circuits in technology mappers.

2.3 Structural cut
A cut C of a node n is a set of nodes of the network, called

leaves of the cut, such that each path from a PI to n passes
through at least one leaf. Node n is called the root of cut C. The
cut size is the number of its leaves. A trivial cut is the node itself.
A cut is K-feasible if the number of leaves does not exceed K. A
local function of a node n, denoted fn(x), is a Boolean function of
the logic cone rooted in n and expressed in terms of the leaves, x,
of a cut of n.

Cut enumeration [15] is a technique used by a cut-based
technology mapper to compute cuts using dynamic programming,
starting from PIs and ending at POs.

2.4 Boolean function
Let f(X): Bn → B, B = {0,1}, be a completely specified Boolean

function, or function for short. The support of f, supp(f), is the set
of variables X influencing the output value of f. The support size
is denoted by |X|.

Two functions are NPN-equivalent if one of them can be
obtained from the other by negation (N) and permutation (P) of
the inputs and outputs. Consider the set of all Boolean functions
derived from a given function F by a sequence of these
transforms. These functions constitute the NPN class of function
F. The NPN canonical form of function F is one function
belonging to its NPN class, also called the representative of this
class. Selection of the representative is algorithm-specific. For
example, in some cases, the representation is the function whose
truth table has minimum (or maximum) integer value among all
the truth tables of functions belonging to the NPN class.

3. CELL DESCRIPTION
It is assumed that a programmable cell is composed of LUTs,

MUXes and the elementary gates, AND and XOR. Other gates
types can be expressed using these primitives.

The proposed matcher takes a character string expressed using
the notation from [13][14]: parentheses represent an AND, square
braces represent an XOR, angular braces represent a 2:1-MUX,
curly braces represent a LUT, and an exclamation mark is NOT.
For example, (abc) is AND(a, b, c), and <abc> is MUX(a, b, c) =
ab + !ac. For example, a 7-input cell composed of a 6-LUT
feeding a 2-input AND [1] is represented as: h={abcdef};i=(gh).
The lower-case characters (a, b, c, etc) are reserved for primary
inputs. Internal variables (in this case, h and i) follow without
gaps in the alphabetical order. Spaces are disallowed in the
description.

4. HARVESTING FUNCTIONS
During mapping into K-input cells, Boolean functions

considered by an AIG-based mapper are those appearing as
functions of K-input cuts in the AIG. Industrial designs often
contain different types of logic and may vary greatly in terms of
the functions found at their structural cuts. The matcher is applied
to only those functions appearing at some cut in the design. Such
functions can be collected and stored for future use.

An efficient method [19] to pre-compute Boolean functions of
cuts in a design, or a suite of designs relies on fast algorithms to
compute NPN-canonical forms [9] and compactly store them in a
data-structure called the DSD manager [13][14]. The manager
stores representatives of each NPN class as a shared tree,
providing a convenient way of checking functional properties,
such as symmetry, unateness, decomposability, etc.

5. BOOLEAN MATCHING
SAT-based evaluation of programmable cells was introduced in

[11] and further developed in [6][8]. Our implementation uses a
dedicated Quantified Boolean Formula (QBF) solver, which
performs iterative counterexample-guided refinement [18][10].

In this case, the problem of matching a function F(x) with a cell
C(x, p), is equivalent to checking satisfiability of the formula:
∃p∀x[C(x, p) == F(x)]. In addition, if a satisfying solution exists,
it shows how to configure the cell using parameters p to realize
function F(x).

The iterative approach finds one SAT assignment, (x0, p0), of
the formula C(x, p) == F(x). For the given values of p0, if
∀x[Cp0(x) == F(x)] holds, then a solution, p0, is found. Otherwise,
x0 is substituted into C(x, p), and the resulting function, Cx0(p), is
used as an additional constraint for ∃p[C(x, p) == F(x)]. If at some
point the formula is UNSAT, the QBF instance has no solution
and the match does not exist. An upper bound on iterations
required is 2|x|, but in practice it converges much faster. Additional
speedup can be achieved by adding symmetry-breaking clauses
and solving multiple QBF instances concurrently.

6. TECHNOLOGY MAPPING
We modified the priority-cut-based technology mapper [12] to

enable processing K-input cuts whose functions are pre-computed
and pre-matched. The mapper has access to the DSD manager
storing each NPN class of Boolean functions appearing in the
design along with its matching status (matchable/unmatchable) as
well as the configuration parameters for the matchable functions.

In a typical LUT mapper, cuts are computed along with their
truth tables using topological cut enumeration [15]. The cuts are
then support-minimized by removing variables appearing in the
structural support but not in the Boolean functions of the cut.
NPN classes of the cut functions are computed [9]. These steps
are performed as usual. Our modifications to the mapper concern
handling of cuts whose functions have no match with the given
cell. Such cuts are labeled and not allowed to be selected as best
cuts. When prioritizing cuts, preference is given to matchable
cuts, and if there is room left, some of the labeled cuts are stored
and used to compute cuts for the fanouts. It is possible that, by
merging two unmatchable cuts, a matchable cut is produced.

When the final mapping is derived, a subset of best cuts is
selected and returned to the user as the final mapping. Since the
best cuts are always matchable, the resulting mapping only
contains the cuts that can be expressed using the target cell. At
this point, the configuration parameters are retrieved and used to
output the set of configured cells representing the given design.
Optionally, a functional equivalence check can be performed to
make sure that the network of configured programmable cells has
the same functionality as the original Boolean network.

7. EXPERIMENTAL RESULTS
The proposed framework is implemented in ABC [2]. For a

case-study, we a suite of 10 representative designs whose sizes
are between 10K and 90K 6-LUTs.

7.1 Programmable cells
Figure 1 shows two programmable cells, which contain three 3-

LUTs and two 2-ANDs. Our experiments indicate that the
additional 2-LUT present in Cell B substantially increases its
expressive power at the cost of only four additional configuration
bits. Selecting these two cells is somewhat arbitrary but it allows
us to illustrate the proposed method with Cell B having
reconvergent paths, which is hard to handle using traditional
Boolean methods.

Figure 1. Programmable cells used in this paper.

Description of Cell A: j={abc};k={def};l=(gj);m=(kh);n=
{lim};AB;BC;DE;EF;GH. Description of Cell B: j={cd};k=
{abj};l={jef};m=(gk);n=(lh);o={min};AB;CD;EF;GH. In both
cases, an optional list of primary input symmetries is appended,
which makes the SAT solver 2-4x faster. The lower-case
characters are inputs and internal nodes. The upper-case
characters are used for symmetries. (With some extra effort,
symmetries can be computed automatically.)

7.2 Harvesting Boolean functions
As the first step, NPN classes of 9-input functions appearing in

the selected benchmarks are pre-computed. Any logic synthesis
script can be used for this task. In our experiments, the script
(&synch2; &if -n –K 9) was iterated three times for each
benchmark. This script performs logic synthesis with choices
(&synch2), computes 9-input cuts together with their Boolean
functions and saves them in the DSD manager (switch ‘-n’). The
computation took about 20 minutes and the resulting manager
contained about one million NPN classes together with their
occurrence counters. The manager is saved into a file as follows:
dsd_save funcs9.dsd. The size of the resulting file is 41MB.

All functions that are not collected by the script but appear in a
design during mapping will be treated as unmatchable by the
mapper. This limitation was addressed, but the description is
outside of the scope of this paper, because ignoring a small
fraction of complex functions, in our experience, does not impact
the quality of results. This is why the next optional step is to
filter out rare NPN classes. Such classes rarely appear during
mapping; moreover, it is unlikely that they can be matched with
the cell. Filtering them out tends to preserve quality and reduce
runtime.

In our experiments, NPN classes appearing in the designs less
than 10 times are removed: dsd_load funcs9.dsd; dsd_filter -L 10;
dsd_save funcs9filter.dsd. The resulting file contains 130K classes
and occupies only 4MB. We tried using unfiltered NPN classes,
leading to a negligible (less than 1%) degradation of area/delay.

7.3 Boolean matching
Matching was performed by the following command: dsd_load

funcs9filter.dsd; set progressbar; dsd_match –S
"<cell_description>" -P 30; dsd_save funcs9match.dsd; dsd_ps.
The last column printed by dsd_ps shows the number/percentage
of classes unmatchable with the cell.

The runtime of concurrent matching (dsd_match) in our
experiments was 450 sec for Cell A (1750 sec for Cell B) on a
computer with 16 hyper-threaded cores. The argument “-P 30”
limits the number of concurrent worker threads to 30, not
counting the controller thread. The same computation for Cell A
runs 8410 sec on one thread, which is 18.7x slower than the
concurrent one.

7.4 Technology mapping
Given a pre-matched library of NPN classes of functions

appearing in the sample designs, mapping can be performed using
command &if -k after reading the library as follows: dsd_load
funcs9match.dsd. Optionally, a custom LUT library (command
read_lut) can be used to specify the LUT-size-specific area/delay.

In our experiment, we iterated the following script three times
(&synch2; &if –k –K 9). Each node in the resulting netlists does
not exceed 9 inputs and can be realized by the given
programmable cell. Currently, the configuration parameters for
the nodes are computed but not used. In general, a hierarchical
mapped netlist can be produced where instances contain the logic
of each cell defined by its configuration parameters.

The result of mapping into programmable cells is compared
against mapping into traditional K-LUTs (6 ≤ K ≤ 9) produced by
command &if in ABC [2]. Three iterations of the script (&synch2;
&if –m –K <num>) were used with switch ‘-m’ forcing truth table
computation and cut minimization because these steps are
required for mapping into programmable cells. In all cases, the
results of mapping were verified using command &cec.

7.5 Summary of experiment
The experimental results are summarized in Table 1. Cell B

outperforms Cell A in terms of both area and delay measured in
terms of the number of cells and the number of cell levels. Area
produced using Cell B is close to that for 9-LUTs, even though
Cell B has only 28 configuration bits and two extra AND-gates,
compared to the 512 bits needed for a 9-LUT! Delay produced by
Cell B is between delays produced using 8-LUTs and 9-LUTs.

Table 1 shows that the synthesis flow based on Cell B is 48%
slower than the flow based on the traditional 6-LUTs and only
20% slower than the flow based on 9-LUTs.

The good performance of Cell B motivates research into
programmable cells containing reconvergent logic structure.

Another way to improve expressive power of the cells is to
allow for constants and inverters at the free inputs of the AND-
gates. For this, "g" and "h" in the cell description can be replaced
by "{g}" and "{h}", respectively, where curly braces represent a
1-input LUT. Yet another way to boost the expressive power, is
to replace 2-ANDs with 2-LUTs. In both cases, the matching and
mapping stages of the flow can be repeated, resulting in more
matches and improved quality of mapping, while the runtime of
matching may degrade due to the increased cell complexity.

8. CONCLUSIONS
The paper presents an integrated approach to map logic netlists

into arbitrary single-output programmable cells specified by the
user. The approach is based on pre-computing typical Boolean
functions appearing in a set of sample netlists and pre-matching
them against the given cell. An available technology mapper is
minimally modified to make use of the matching information.
Because of the pre-computation, the runtime of the mapper is

Cell A Cell B

a b c

g j k h

m l i

n

d e f

o

i nm

g h

c

a b

d

e f
j

k l

reasonable. The quality of results is good because the same
efficient heuristics are used as during mapping into K-LUTs.

9. ACKNOWLEDGEMENTS
This work is supported in part by SRC contract 1875.001 and

NSA grant ”Enhanced equivalence checking in crypto-analytic
applications”. We also thank industrial sponsors of BVSRC:
Altera, Atrenta, Cadence, Calypto, IBM, Intel, Jasper, Mentor
Graphics, Microsemi, Real Intent, Synopsys, Tabula, and Verific
for their continued support.

10. REFERENCES
[1] J. H. Anderson, Q. Wang, "Area-efficient FPGA logic

elements: architecture and synthesis," Proc. ASP-DAC’11,
pp. 369-375. http://janders.eecg.toronto.edu/pdfs/aspdac
_2011.pdf

[2] Berkeley Logic Synthesis and Verification Group. ABC: A
System for Sequential Synthesis and Verification.
http://www-cad.eecs.berkeley.edu/~alanmi/abc

[3] V. Bertacco and M. Damiani, "Disjunctive decomposition of
logic functions," Proc. ICCAD ‘97, pp. 78-82.

[4] S. Chin, J.H. Anderson, “A case for hardened multiplexers in
FPGAs,” Proc. ICFPT’13, pp. 42-49.
http://janders.eecg.toronto.edu/ pdfs/xan.pdf

[5] J. Cong and Y. Hwang, “Boolean matching for LUT-based
logic blocks with applications to architecture evaluation and
technology mapping,” IEEE TCAD’01, Vol. 20(9), pp. 1077-
1090.

[6] J. Cong and K. Minkovich, “Improved SAT-based Boolean
matching using implicants for LUT-based FPGAs”, Proc.
FPGA’07. http://cadlab.cs.ucla.edu/~kirill/fpga07.pdf

[7] R. J. Francis, J. Rose, and K. Chung, ”Chortle: A technology
mapping program for lookup table-based field programmable
gate arrays”, Proc. DAC ’90, pp. 613-619.

[8] Y. Hu, V. Shih, R. Majumdar, and L. He. “Efficient SAT-
based Boolean matching for heterogeneous FPGA
technology mapping”, Proc. ICCAD’07.

[9] Z. Huang, L. Wang, Y. Nasikovskiy, and A. Mishchenko,
"Fast Boolean matching based on NPN classification", Proc.

ICFPT'13. http://www.eecs.berkeley.edu/~alanmi/publica
tions/2013/icfpt13_npn.pdf

[10] M. Janota, W. Klieber, J. Marques-Silva, and E. Clarke,
“Solving QBF with counterexample-guided refinement”,
Proc. SAT’12. https://www.cs.cmu.edu/~wklieber/papers/
qbf-cegar-sat-2012.pdf

[11] A. Ling, D. Singh, and S. Brown. “FPGA PLB evaluation
using Quantified Boolean Satisfiability”, Proc. FPGA’05.
http://www.eecg.toronto.edu/~brown/papers/fpl05-ling.pdf

[12] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton,
"Combinational and sequential mapping with priority cuts",
Proc. ICCAD '07, pp. 354-361.

[13] A. Mishchenko and R. Brayton, "Faster logic manipulation
for large designs", Proc. IWLS'13. http://www.eecs.berkeley.
edu/ ~alanmi/publications/2013/iwls13_dsd.pdf

[14] A. Mishchenko, "Enumeration of irredundant circuit
structures", Proc. IWLS'14. http://www.eecs.berkeley.edu/
~alanmi/publications/2014/iwls14_dsd.pdf

[15] P. Pan and C.-C. Lin, “A new retiming-based technology
mapping algorithm for LUT-based FPGAs”, Proc. FPGA
’98, pp. 35-42.

[16] M. Purnaprajna and P. Ienne, “A case for heterogeneous
technology-mapping: soft vs hard multiplexers”. Proc.
FCCM’13, pp. 53-56.

[17] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C.
Chen, "Mapping into LUT structures", Proc. DATE'12.

[18] A. Solar-Lezama, Ch. G. Jones, and R. Bodik, "Sketching
concurrent datastructures", Proc. PLDI '08. http://people.csa
il.mit. edu/asolar/papers/pldi207_SketchingConcurrency.pdf

[19] W. Yang, L. Wang, and A. Mishchenko, "Lazy man's logic
synthesis", Proc. ICCAD'12, pp. 597-604. http://www.eecs.
berkeley.edu/~alanmi/publications/2012/iccad12_lms.pdf

[20] G. Zgheib, L. Yang, Z. Huang, D. Novo, H. Parandeh-
Afshar, H. Yang, and P. Ienne, “Revisiting and-inverter
cones”. Proc. FPGA’14, pp. 45-54. http://lap.epfl.ch/files/
content/ sites/lap/files/shared/publications/ZgheibFeb14_
RevisitingAndInverterCones_FPGA14.pdf

Table 1. Comparing traditional K-LUT mapping with mapping using the K-input programmable cells

Design Area (number of instances) Delay (logic depth in terms of instances) Runtime (seconds)
 6-LUT 7-LUT 8-LUT 9-LUT Cell A Cell B 6-LUT 7-LUT 8-LUT 9-LUT Cell A Cell B 6-LUT 9-LUT Cell A Cell B
01 31246 28197 25734 24101 32408 25284 19 16 14 14 15 14 216 243 262 271
02 19808 19428 18998 18439 21694 18503 5 5 5 4 5 4 11 14 14 15
03 25528 23042 21314 20310 29071 20766 12 11 10 9 14 10 59 80 97 97
04 39366 36414 37315 35384 39548 33357 9 8 7 6 8 7 75 93 99 103
05 44426 41609 38232 36036 47810 36679 9 8 7 7 8 7 102 134 145 159
06 88964 83504 76317 72346 94669 72835 9 8 7 7 8 7 205 272 286 310
07 31048 27950 25042 24257 31769 24893 8 8 7 6 7 7 60 78 86 94
08 33154 29074 25268 26008 37626 26634 19 15 15 13 18 14 58 86 82 96
09 32684 32091 31485 31164 34709 31355 5 4 4 3 4 3 24 28 28 30
10 12909 12286 11688 11554 13165 11916 7 6 6 4 7 5 11 14 18 20
Geomean 1.000 0.929 0.870 0.841 1.065 0.852 1.000 0.885 0.820 0.707 0.919 0.759 1.000 1.282 1.381 1.487

