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Abstract— Deriving a circuit for a Boolean function or improving 
an available circuit are typical tasks solved by logic synthesis. 
Numerous algorithms in this area have been proposed and 
implemented over the last 50 years. This paper presents a "lazy” 
approach to logic synthesis based on the following observations: 
(a) optimal or near-optimal circuits for many practical functions 
are already derived by the tools, making it unnecessary to 
implement new algorithms or even run the old ones repeatedly; 
(b) larger circuits are composed of smaller ones, which are often 
isomorphic up to a permutation/negation of inputs/outputs. 
Experiments confirm these observations. Moreover, a case-study 
shows that logic level minimization using lazy man’s synthesis 
improves delay after LUT mapping into 4- and 6-input LUTs, 
compared to earlier work on high-effort delay optimization.     

I. INTRODUCTION  
Multi-level logic synthesis [6][29] derives a multi-level logic 

circuit for a given Boolean function. Originally, the function is 
given as a truth table, Sum-of-Product (SOP), Binary Decision 
Diagram (BDD), etc, or a circuit of poor or unknown quality. 
The goal is to find a new circuit with the same functionality 
but smaller area, delay, power consumption etc., which can be 
efficiently mapped into standard cells or lookup tables, placed 
and routed, and realized as a high-quality hardware device.  

For example, when logic synthesis is applied to a Boolean 
function represented as a BDD, we may first derive its SOP 
[15], next factor the SOP [5], and finally convert the factored 
form into a circuit.  If the function is given as a circuit with a 
large number of inputs and outputs, the circuit can be 
restructured using circuit rewriting [4][17], resubstitution [19], 
logic sharing extraction [24], etc. 

Different tools perform logic synthesis in different ways 
resulting in different circuit structures. These differences 
occur because implementations use heuristics and pursue 
different optimization goals. As a result, there is no “best” 
circuit structure for a given function. Sometimes even a 
suboptimal structure may be useful. For example, the result of 
technology mapping depends on the initial circuit structure 
[10]. In some cases, a suboptimal circuit before mapping leads 
to a better result after mapping. 

This is why, in many applications, it is desirable to have 
multiple structural representations of each function. Hence, it 
is necessary to run different tools and different scripts and 
produce several structural snapshots of the same design. 
However, maintaining multiple tools or routinely applying 
multiple synthesis scripts is expensive and inefficient.  

The proposed approach named “lazy man’s logic synthesis” 
learns from the output of different tools applied to various 

designs and creates a library of AIG structures. When these 
structures are available and compactly recorded, there is no 
need to perform traditional logic synthesis. It is enough to 
check whether a function is already present in the library. The 
process of looking up is made fast by hashing functions using 
an affordable semi-canonical form described in this paper. 

Consider trying to decompose a 6-input function into a 
network of 2-input gates. This may be done in many ways, 
especially when the function is non-trivial. Instead of 
implementing and running different decomposition methods 
[3][5][16], deriving several circuit structures and comparing 
them to choose the optimal one, we assume that this circuit 
structure is already present in some design before synthesis or 
is derived by some tool when it is applied to some design. It is 
not necessary to run that tool again or to try to find the design 
where the given function occurs. Instead, we rely on the fact 
that the “optimal” structure was available when the library was 
created and therefore it must be present in the library. 

We analyzed several suites of public benchmarks and 
industrial designs and found that the number of semi-canonical 
classes of K-input functions (K ≤ 12) appearing in these 
designs is large, but not prohibitively large. To perform this 
analysis, we computed K-input cuts [22] and collected semi-
canonical classes of functions describing the output of each cut 
in terms of its inputs. We hashed the classes and counted how 
often they appear in the benchmarks before, during, and after 
synthesis using different logic synthesis scripts. 

The reader may refer to the experimental results for a detailed 
description of this experiment. Here we mention only that, to 
cover 90% of the most frequently appearing 12-input functions, 
we need to maintain a library with 738,239 functional classes, 
whose truth tables take roughly 369 MBytes. This number is an 
underestimation, since for each functional class, several circuit 
structures need to be stored. However, it can be shown that for 
functions larger than 10 inputs, truth tables dominate memory 
requirements, which are realistic for modern workstations. 

The contributions of this paper are: 
• A new way of performing logic synthesis. Instead of 

deriving new circuit structures during runtime of a logic 
synthesis algorithm, the structure is retrieved from a 
precomputed library.  

• A new way of accumulating circuit structures in a library 
and hashing them using a semi-canonical form, which 
trades speed of computation for reduced memory. 

• Analysis of the logic synthesis benchmarks to show the 
number of frequently occurring semi-canonical classes of 
12-input functions and how much memory is needed to 
represent a realistic library of these functions.  



• Promising results of delay optimization after FPGA 
mapping into 4-LUTs and 6-LUTs, obtained using the 
proposed approach to logic synthesis. 

The rest of the paper is organized as follows. Section 2 
reviews previous work. Section 3 describes some background. 
Section 4 describes the algorithm. Section 5 represents the 
experimental results. Section 6 concludes the paper and 
outlines future work. 

II. PREVIOUS WORK 
Precomputing 4-LUT structures for FPGA mapping is 

proposed in [12]. A method for caching decomposable 
functions to up 16 inputs is used in [25] to speed up FPGA 
mapping. Both approaches precompute logic structures in 
terms of LUTs, rather than AIGs, as in the present work. 

Technology-independent synthesis based on precomputed 
AIG structures is proposed in the following papers: [4] (4-input 
two-level structures), [17] (4-input cuts), [14] (5-input cuts). 
However, these methods do not use preexisting benchmarks or 
tools to generate useful structures, as in the present work. 
Moreover, they look only at 4- and 5-input functions, while the 
present work is geared to functions with 6-16 inputs. 

Other methods of computing multiple logic structures useful 
for technology mapping were proposed, which led to the use of 
structural choices [13][10]. The difference here is that the 
number of choices used in [13][10] is relatively small (only one 
out of five nodes, on average, has structural choices in [10]) 
and the structures generated are of limited nature (only a small 
number of algebraic decompositions are considered in [13]). 

On the application side, a closely related work is that on SOP 
balancing [21], which has the goal of reducing the AIG level 
count, as a preprocessing step before technology mapping into 
standard cells or LUTs. Both types of mapping have been tried 
in [21] with substantial delay improvements. 

However, SOP balancing has several known limitations: for 
each cut, it considers only one logic structure derived by 
applying a delay-driven decomposition to the AND-gates and 
the OR-gates contained in the SOP.  In contrast, the proposed 
approach is more general. It precomputes multiple circuit 
structures, including those not found by SOP balancing. 
Moreover, it scales to larger functions, compared to SOP 
balancing, which only works well for functions up to 8 inputs. 

The following example illustrates the limitations of SOP-
balancing. Consider function F = !c*!(b*!a) whose input arrival 
times are {0, 0, 1}.  Figure 1a shows the structure found by 
SOP-balancing. Clearly, delay and area of the structure is 3 and 
3, respectively. The proposed method will try different 
structures of the function and will chose the best one for the 
given input arrival times. If the precomputed library is good, 
the structure in Figure 1b will be found. The delay and area of 
the structure are 2, which are both better than SOP-balancing. 
Function F = !c*!(b*!a) is a small function, which appears 
often in the benchmarks. Similar situations may appear in other 
functions, resulting in logic structures with better delay than 
those found by SOP balancing. 

 

a : 0 b : 0 

c : 1 

a : 0 b : 0 c : 1 c : 1 

a.  SOP-Balancing b.  LMS  
Figure 1: An AIG subgraph found in benchmark s27.blif, 

where SOP balancing loses to the proposed approach. 

III. BACKGROUND 
A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and edges corresponding to 
wires connecting the gates. In this paper, we consider only 
combinational Boolean networks. 

A node n has zero or more fanins, i.e. nodes driving n, and 
zero or more fanouts, i.e. nodes driven by n. The primary 
inputs (PIs) are nodes without fanins in the current network. 
The primary outputs (POs) are a subset of nodes of the 
network, delivering the results to the environment. A fanin 
(fanout) cone of node n is a subset of all nodes of the network, 
reachable through the fanin (fanout) edges of the node. 

A combinational And-Invertor Graph (AIG) is a Boolean 
network composed of two-input ANDs and inverters. To 
derive an AIG, the SOPs of the nodes in a logic network are 
factored, the AND and OR operations of the factored forms 
are converted into two-input ANDs and inverters using 
DeMorgan’s rule, and these two-input ANDs are added to the 
AIG manager in a topological order. The size (area) of an AIG 
is the number of its nodes; the depth (delay) is the number of 
nodes on the longest path from the PIs to the POs. The goal of 
AIG minimization is to reduce both area and delay. 

Structural hashing of AIGs ensures that all constants are 
propagated and there is no two-input AND nodes with 
identical fanins (up to a permutation). Structural hashing is 
performed on-the-fly by hash-table lookups when AND nodes 
added to an AIG manager, which helps reduce the AIG size. 

A cut C of a node n is a set of nodes of the network, called 
leaves of the cut, such that each path from a PI to n passes 
through at least one leaf. Node n is called the root of cut C. 
The cut size is the number of its leaves. A trivial cut of a node 
is the cut composed of the node itself. A cut is K-feasible if 
the number of leaves in the cut does not exceed K. A cut is 
dominated if there is another cut of the same node, which is 
contained, set-theoretically, in the given cut. 

Volume (area) of a cut is the number of unique AIG nodes 
found on the paths between the root and the leaves, including 
the root and excluding the leaves. Level (delay) of a cut is the 
number of AIG nodes on the longest path between the root of 
the cut and a primary input of the AIG. The concepts of delay, 
depth, and logic level are used interchangeably in this paper. 

A delay profile of a cut is an ordered set of arrival times of 
each leaf of the cut. In this paper, delays are measured using 
the number of AIG logic levels from the primary inputs, and 
so delay profiles are arrays of non-negative integer numbers. 



A local function of an AIG node n, denoted fn(x), is a 
Boolean function of the logic cone rooted in n and expressed 
in terms of the leaves, x, of a cut of n.  

Two functions are NPN-equivalent if one of them can be 
obtained from the other by negation and/or permutation of the 
inputs and outputs. 

A positive minterm is a complete assignment of input 
variables, which makes the function evaluate to 1. 

LMS is an abbreviation for “lazy man’s logic synthesis”. 

IV. ALGORITHM 
This section introduces the proposed algorithm.  

A. Semi-canonical form 
LMS is based on collecting, storing, and re-using circuit 

structures of Boolean functions with 6-12 input variables. 
Since the total number of completely-specified Boolean 
functions of N variables is 2^(2^N), storing all of them is 
infeasible for N > 4. For larger values of N, only the functions 
occurring frequently in the benchmarks should be considered. 
We call such functions practical and give frequency statistics 
in the experimental results section.  

However, even the number of practical functions can be 
very large. To reduce this number and memory needed to store 
them in a library, they can be broken into equivalence classes 
using a canonical form. In this case, only representatives of 
equivalence classes are stored in the library. 

In the proposed approach to logic synthesis, the canonical 
form should be computed in two situations: (1) during 
construction of the library when Boolean functions are 
canonicized and circuit structures for each class are recorded, 
and (2) during LMS based on the pre-computed library when 
the canonical form is computed for a Boolean function to find 
its circuit structures in the library. 

Computing the complete NPN canonical form [9] may be 
too time-consuming, especially if this computation is used in 
the inner loop of an algorithm applied to a large number of 
functions of K-input cuts at each node during iterative 
optimization of logic networks. For this reason, in this paper, 
we propose to compute a semi-canonical form, which is more 
affordable than the NPN canonical form. 

The idea is to order the input variables and the polarities of 
inputs/outputs using the number of positive minterms in the 
function and its cofactors with respect to each variable. A 
similar method is proposed in [1] and implemented using 
BDDs. In this work, all functional manipulation is performed 
using truth tables. The choice of truth tables is motivated by 
the fact that they require affordable amount of memory for 
functions up to 16 inputs and make the functional 
manipulation fast enough to be applied in the inner loop of 
logic synthesis algorithms. 
 
 
 
 
 
 
 

truth table TruthSemiCanonicize( 
truth table F,     
unsigned  uCanonPhase, 
char * pCanonPerm ) 

{ 
    // canonize output 

count the number of 0s and 1s in the truth table of F; 
if ( number of 1s is more than number of 0s in F ) { 
    complement F; 
    record negation of the output in uCanonPhase; 
}  
// canonize variable phase 
count the number of 1s in the cofactors of F w.r.t. each variable; 
for each input variable of F  
    if ( more 1s in negative cofactor than in positive cofactor ){ 
        change the variable’s phase in F; 
        record the change of varible’s phase in uCanonPhase; 
    } 
// canonicize variable permutation 
sort input variables by the number of 1s in their negative cofactors; 
permute inputs variables in F accordingly and 
     record the resulting permutation in pCanonPerm; 
return F;    

} 
Figure 2: Generating semi-canonical form.  

 
The pseudo-code is given in Figure 2. The procedure takes 

the truth table of a Boolean function and transforms it into a 
semi-canonical form. This form is the Boolean function of the 
representative of the equivalence class, to which the given 
function belongs. First, the output of the function is 
complimented based on the number of 1s in it. Then, the phase 
of each variable is decided by the number of the 1s in the 
negative and positive cofactors. Lastly, the variable ordering is 
determined by sorting variables using the number of 1s in their 
cofactors. Variables uCanonPhase and pCanonPerm record the 
changes in the truth table. They are returned to the calling 
procedure and later used to determine how to unpermute the 
subgraphs stored in the library, when this subgraph is used to 
synthesize a given function.  

It was observed that, although the proposed semi-canonical 
form is less accurate than the complete NPN canonical form, it 
gives a reasonable trade-off between the speed of semi-
canonical form computation and the conciseness of the 
resulting library.  We estimated that computing the complete 
NPN canonical form for 12-variable functions would have 
increase the canonicization runtime by a factor of 10. 
Meanwhile, the memory footprint for the precomputed 
libraries would only be reduced by factor of 2.  

B. Library representation 
The pre-computed library of practical functions contains 

only non-redundant (often multiple) circuit structures 
collected for these functions. Although the number of practical 
functions can be large (say, one million), the number of 
precomputed structures can be an order of magnitude larger. 
This is why it is important to develop a compact memory 
model to store the precomputed structures. 

All the optimized structures are stored in the same AIG 
manager. A library of N-input functions contains also 



functions with less than N-inputs, but they are remapped to 
strucutures which depend on the variables with the smallest 
variable indexes. Each circuit structure stored in the AIG is 
identified by a separate primary output. 

When the library stored as an AIG, is loaded from file by the 
logic synthesis system, the following actions are performed: 
• a hash table is created to hash the circuit structure of each 

primary output by its function, which serves as the semi-
canonical form of the corresponding Boolean function; 

• for each structure, the area and input-to-output delays are 
computed and stored with each primary output; 

• optionally, areas and delays of structures belonging to the 
same equivalence class are compared and some of the 
structures are removed as dominated. 

Since delay is the key aspect used in many logic synthesis 
applications, the arrival time of the output of each structure is 
required during synthesis for different structures and input 
arrival time profiles. To avoid multiple recursive traversals of 
the logic structure, input-to-output delays are pre-computed 
for each structure when the library is loaded. In this case, the 
resulting arrival time of the output is found by adding the 
arrival times of the inputs to the input-to-output delays of the 
structure, and finding the largest one over all inputs. 

Figure 3 shows how input-to-output delays are computed 
when the library is loaded from file to accelerate the delay 
computation during synthesis. 

a : 2 b : 2 c : 2 

d : 3 e : 3 

f : 2 

g : 1 

 
Figure 3: An illustration of the use of input-to-output delays. 

 
The numbers in the figure show the delays from the 

corresponding input to the output of the structure, measured in 
terms of AIG nodes. Suppose the arrival time profile of the 
inputs listed from a to g, is {3, 2, 4, 5, 2, 3, 1}. Adding input-
to-output delays to the input arrival times, the following 
arrival times of the output with respect to each input can be 
computed: {5, 4, 6, 8, 5, 5, 2}. Obviously, 8 is the largest 
number representing the output arrival time in this case. 

C. Library construction 
LMS does not derive new circuit structures during logic 

synthesis.  Instead, it refers to a precomputed library and 
reuses the results generated by other synthesis tools.  This is 
why building a high-quality library is important for LMS. 

In this paper, we use the LUT mapper if in ABC as a 
structural cut browser to generate a fixed number of K-inputs 
cuts for each node in benchmark circuits. The circuits used for 
computing the library are the available benchmarks in their 
original form, as well as the same benchmarks after logic 
synthesis by a variety of tools and scripts. Using multiple 

snapshots of the same benchmark allows us to collect multiple 
circuit structures expressing the cut functions.  

Figure 4 shows the pseudo-code of the procedure used by 
LMS to record the circuit structure of a cut in the library. 
 
void AddCut(  cut C  )      
{ 

if ( cut C does not meet the requirements ) 
    return; 
compute Boolean function F of cut C as a truthtable; 
if ( F does not depend on some input variable of C ) 
    return; 
compute the semi-canonical form of F; 
find the corresponding functional class in the hash table; 
rebuild the structure of the cut in the library; 
if ( the structure already exists or is dominated ) 
    return; 
add a new primary output to store the structure in the hash table; 

} 
Figure 4: Adding structures to library. 

Procedure AddCut() is executed on every cut generated by 
the cut browser. As a preprocessing step, the procedure 
removes cuts that do not fit the requirements, such as the 
restriction on the cut size and volume.  If the structure of the 
cut has a redundancy or not every input variable appears in the 
support of the cut’s function, the circuit structure of the cut is 
not considered. 

When rebuilding the structure in the library, structurally 
isomorphic subgraphs are detected by structural hashing 
performed during AIG construction. 

When library computation is performed in the “trim mode”, 
the above procedure filters circuit structures using timing info. 
In this case, before the structure is inserted into the hash table, 
it is checked for dominance. A structure is dominated if its 
input-to-output delays are the same or larger, compared 
respectively to those of an existing structure.  If the new 
structure is dominated, it is not added. On the other hand, if it 
dominates others, they are deleted from the hash table. 

The data structure in the hash table keeps track of how often 
a semi-canonical form appeared during building libraries. If 
the user want to shrink the size of the library, a filtering can be 
applied, which deletes structures that appear infrequently. 

Here are the commands for library construction implemented 
in ABC as part of this work:   
• rec_start: Starts the LMS recorder. 
• rec_add: Explores cuts of the current network using the 

cut browser and add useful AIG structures to the library. 
• rec_filter: Removes those structures form the library, 

whose semi-canonical classes appear less frequently than 
the limit given by the user.  

• rec_merge: Merges two previously computed libraries, by 
combining their circuit structures without the cut browser. 

• rec_ps: Prints statistics for the currently loaded library. 
• rec_use: Transforms the internal library to the current 

network in ABC, so it can be written into a file. 
• rec_stop: Deletes the current library. Useful before the 

computation of a new library begins or when it is desirable 
to free the memory used by the currently stored library. 



D. A case study of LMS: AIG level mininization 
AIG level minimization is an important problem because 

AIGs are often used to represent logic networks during 
technology-independent logic synthesis. 

Previous work on AIG level minimization [21] has shown 
that the reduction in AIG levels correlates well with the 
reduction of delay after technology mapping for both standard 
cells and LUT-based FPGAs. 

In the same work [21] it was shown that AIG level can be 
optimized by applying SOP balancing to K-feasible cuts of 
each node. In this case, SOPs of the cut functions are 
computed and decomposed using the arrival times of cut 
leaves in order to minimize the arrival time of the cut root. 

This case study demonstrates that the results produced by 
SOP balancing can be substantially improved when circuit 
restructuring is performed using a precomputed LMS library. 
The reasons for this are the following: 
• SOP balancing uses only one AIG structure derived from 

an SOP of the function, while LMS has multiple structures 
to choose from, including those derived by SOP balancing, 
if these were harvested during library computation. 

• LMS scales to larger functions (up to 12 inputs and more), 
while SOP balancing works in practice only when the 
number of variables does not exceed 8. 

In our experiments, both LMS and SOP balancing have been 
performed using 6-input functions. It means that currently 
only the first reason account for the improved results. 

 
aig PerformAIGLevelMinimizationUsingLMS ( 
      aig G,     // G is an And-Inverter Graph 
      int K,     // K is the cut size 
      int C )   // C is the number of cuts at each node 
{ 

for each node n in G, in a topological order { 
compute C structural K-input cuts of n; 

for each cut { 
compute Boolean function of the cut as a truth table; 
find the best structure in the library; 
if ( there is no structure for this function ) 

mark the cut to ensure it is not selected as best cut for n; 
else if ( the cut leads to smaller AIG level than the best cut ) 
    save the cut as the best cut; 

        } 
for each node n in G, in a topological order {   
    if ( root node AIG level is reduced using the best cut ) 

     replace current AIG structure of node n by the delay-optimal 
           AIG structure found for the best cut in the library; 

    return G; 
} 

Figure 5: Perform LMS on subject graph. 
 
The pseudo-code in Figure 5 shows the use of LMS for AIG 

level minimization. Structural K-feasible cuts are enumerated 
and restructuring is applied to each cut. If an AIG structure 
found in the library can improve the logic level of the root 
node, this structure is used to rewrite the AIG of the node.  

V. EXPERIMENTAL RESULTS  
The LMS algorithm is implemented in ABC [2][7]. The 

LUT mapper if [20] in ABC is used (a) as a cut browser for 
computing the libraries and (b) as a mapper in the case study 
on AIG level minimization. 

To derive the libraries, benchmarks from MCNC [8], ISCAS 
[28], ITC [11], Altera [23], and other public sets are used. 

The experimental results are divided into three categories: 
• Library coverage for 12-input functions 
• Library construction for 6-input functions 
• Delay optimization for 4-LUT and 6-LUT mapping 

A. Library coverage 
This experiment was performed to show that LMS has 

practical memory requirements for functions whose support 
size is limited by 12 inputs. In this experiment, semi-canonical 
classes of all functions appearing in the cuts of the benchmark 
circuits without synthesis, were collected and the frequency of 
their appearance was recorded. It took about two days to 
collect these results on one computer. 

The results which contain the truth tables and their 
frequencies in the benchmarks are publicly available at [31]. 

The results are shown in Table 1 and, schematically, in 
Figure 6.  For example, to achieve 90% coverage for 12-input 
functions appearing in the benchmarks, the library should 
include 738,239 semi-canonical classes whose truth tables 
take 369MBytes of storage. 
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Figure 6: The number of equivalence classes needed to 
represent the given percentage of the most frequently 

occurring functions in the benchmark circuits. 
 
In practice, having 90% coverage is enough for logic 

optimization because the remaining functions may be seen as 
composed of smaller functions included in the library.  

In a separate experiment shown in Table 2, semi-canonical 
classes of functions with support size limited by 12, appearing 
in the cuts of the benchmark circuits before and after synthesis, 
were collected and their occurrences were counted. 

The table shows that the number of classes has increased 
approximately 10x as a result of applying the ABC script 
shown in the next section. We conjecture that much of the 
observed increase is because AIG-based synthesis performs 
unnecessarily aggressive circuit restructuring. This motivates 
developing AIG-transformations based on a richer set of 
primitives, for example, multi-input ANDs, multi-input XORs, 
MUXes, and majority gates. 



It can also be noted that the additional structures generated 
by synthesis, compared to those present in the original 
benchmarks circuits, are not required if LMS is applied before 
synthesis, as in the case-study of Section IV-D. 

B. Constructing library for 6-input functions  
The goal of this experiment is to derive a 6-input library used 

in the case study described in Section IVD with results reported 
in Section VC. Before the experiment, rec_start is called. After 
the experiment, rec_use is called, followed by writing the 
library into a file. The following script is used to collect circuit 
structures generated by logic synthesis in ABC: 
• read file; st;  rec_add; // add the original AIG structures 
• dc2; rec_add;              // add structures derived by dc2 
• if -K 8; bidec; st; rec_add; 
• if -K 8; mfs; st; rec_add; 
• if -K 8; bidec; st; rec_add; 
• if -g -K 6; st; rec_add;// add structures created by SOP balancing 
• if -g -K 6; st; rec_add;  
To keep the library compact, trim mode of LMS is turned on. 

As a result, circuit structures whose input-to-output delays are 
dominated by those of other structures are filtered out. In the 
end, classes appearing less than 3 times are filtered, too. The 
library is also publicly available at [31]. 

Table 3 shows statistics of the resulting library, containing 
5,687,661 AIG structures classified into 1,249,229 semi-
canonical equivalence classes. The AIGER file containing this 
library takes 77.85MBytes. The computation took several days 
needed to apply the above script to the available benchmarks.  

It should be noted that the large number of structures 
included is the library is because our current implementation 
of the library construction does not handle multi-input gates. 
As a result, different tree decompositions of each such gate are 
recorded as separate subgraphs. This limitation will be 
addressed by future work. 

To get an even wider spectrum of circuit structures, other 
synthesis tools, besides ABC, can also be used, for example 
SIS [26], BDS [27], FBDD [30], etc.  The resulting circuits 
can be added to the library by reading them into ABC during 
library computation, followed by commands st; rec_add. 

C. Using LMS to optimize delay after LUT mapping 
The delay optimization experiments reported in this section 

were run on a workstation with Intel Xeon Quad Core CPU 
and 256 GBytes RAM. The resulting networks were verified 
by the SAT-based CEC engine [18] (command cec in ABC). 

 The algorithm for AIG level minimization from Section 
IVD is implemented as command  if –y –K <num> -C<num>. 
Command line switches used in this experiment are:  
• if is the priority-cut-based LUT mapper [20]; 
• -g enables delay optimization by SOP balancing [21]; 
• -y enables delay optimization by LMS (the present work); 
• -K <num> specifies the cut size; 
• -C <num> is the number of cuts used at each node. 
The input of the command is the current AIG in ABC. The 

output is a delay-optimized mapped network. 

Two sets of benchmarks are used in this paper: 20 large 
MCNC benchmarks [8] and 10 large Altera benchmarks [23]. 

LUT mapping was performed by the following scripts: 
• Map: st; resyn2; if -K 4 or 6 
• MapC: st; resyn2; dch -f; if -K 4 or 6 
• SOPBC: st; if -gm -K 6; st; resyn2; dch -f; if -K 4 or 6 
• LMSC: st; if -ym -K 6; st; resyn2; dch -f; if -K 4 or 6 
The first script (Map) is a typical synthesis and mapping 

flow in ABC. It begins by deriving an AIG, applying delay-
oriented script resyn2, which performs technology-
independent synthesis without increasing the AIG logic level, 
followed by mapping into either 4-LUTs or 6-LUTs. MapC is 
similar to Map but it additionally computes structural choices 
using dch. SOPBC and LMSC use SOP balancing and LMS, 
respectively, to optimize the AIG before MapC is applied. 

In the scripts, the cut size of both SOP balancing and LMS is 
set to 6. This way any difference in the results of mapping is 
due to different logic structures used by these algorithms. 

The results for Altera benchmarks are reported in Tables 4-5 
by measuring LUT level and LUT count. When compared 
against traditional mapping (Map), LMS reduced delay by 
37% (26%) with the same area increase of 13% for 4-LUTs 
(6-LUTs). When compared against mapping with choices 
(MapC), LMS reduced delay by 9% (7%) with area increase of 
9% (6%) for 4-LUTs (6-LUTs). When compared against SOP 
balancing, in both cases the delay gain is close to 17% with an 
area increase of 2% (5%).  

Tables 6-7 show the results of applying LMS to MCNC 
benchmarks. The delay improvements in this case are similar 
to those for industrial designs, but the area penalty was higher. 

The runtime of if –y is similar to that of if –g and exceeds the 
runtime of regular LUT mapping (if) roughly by a factor of 3.  
The runtime of the whole script, such as MapC, is not 
substantially different when if –y and if –g are used as a 
preprocessing step because the runtime in this case is 
dominated by computing structural choices (command dch). 

VI. CONCLUSIONS  
In the existing logic synthesis tools, useful circuit structures 

are derived by applying dedicated algorithms at runtime. In 
contrast, we harvest and re-use circuit structures produced by 
different tools working on a variety of benchmarks. 

The “lazy” approach to logic synthesis is made practical by  
• mapping functions into semi-canonical equivalence classes 

with isomorphic sets of optimal circuit structures; 
• relying on AIGs with structural hashing to compactly store 

precomputed libraries in memory and on disk; 
• using truth tables to manipulate Boolean functions during 

both library construction and circuit restructuring. 
As a case-study, the proposed approach was applied to AIG 

level minimization as a way to improve delay after FPGA 
mapping.  For industrial benchmarks, the delay after LUT 
mapping was reduced by 17% (18%) for LUT4 (LUT6) with 
the area penalty of 2% (5%), compared to the recent work on 
SOP balancing [21]. This is a remarkable result, given the fact 
that SOP balancing is a high-effort delay-optimization 



algorithm. It clearly shows that the “lazy” approach often 
finds better logic structures than SOP balancing.  

Future work may include: 
• finding better tradeoffs between delay and area (currently, 

delay improvement comes at a cost of an increase in area, 
which is not acceptable in some design flows); 

• extending the approach to work for multi-input gates 
(currently, only two-input AND gates are used); 

• performing AIG level optimization with larger cuts 
(currently, only 6-input cuts are used while the proposed 
approach is shown to be practical up to 12 inputs at least). 
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Table 1: The number of equivalence classes of N-input functions needed to represent the given percentage of the most-frequently 

appearing functions in the benchmark circuits without synthesis. 

Inputs 
Percentage 20% 25% 50% 75% 90% 95% 100% 
2 1 1 1 1 2 2 3 
3 1 1 2 4 6 8 21 
4 2 2 5 19 65 114 1478 
5 6 8 38 177 659 1481 27523 
6 14 23 177 1172 5713 14203 125725 
7 46 93 885 6859 36383 84165 329630 
8 76 157 1686 14551 73739 155383 506497 
9 46 130 3602 34697 158466 302800 778698 
10 156 365 5807 48748 218515 409054 897730 
11 353 861 14231 119713 434679 717726 1332731 
12 793 1786 27104 223943 738239 1128006 1907484 



Table 2: The same as Table 1, except the benchmarks were synthesized by an ABC script. 

Inputs 
Percentage 20% 25% 50% 75% 90% 95% 100% 
2       1        1        1        1        1        2        3 
3       1        1        2        3        6        8       21 
4       2        2        4       17       46       86     1703 
5       6        8       36      160      920     2593   248581 
6      19       28      209     2112    19475    75428  2755032 
7      77      150     2254    31453   337943  1293513  8677854 
8     187      431     9660   188108  2092479  5890862 17485043 
9     453     1192    41216   859287  6887725 14086676 28687179 
10     747     2054   120198  3218612 16669810 29203415 44814184 
11    2471     7332   425701  8607987 32104100 50026675 67949249 
12    7379   22789 1358918 19991157 60917017 83584641 106252265 

 
Table 3: Statistics of the precomputed 6-input library of semi-canonical classes. 

Inputs Semi-canonical 
Forms Structures Ratio 

2 3 3 1.00 
3 32 88 2.75 
4 2430 12673 5.22 
5 98208 471973 4.81 
6 1148556 5202924 4.53 

Total 1249229 5687661 4.55 
 

Table 4: The results of delay optimization after LUT mapping for Altera benchmarks (4-LUTs). 
Design 4-LUT levels 4-LUT count 

 Map MapC SOPBC LMSC Map MapC SOPBC LMSC 
carpat.blif 68 68 53 40 38856 39842 42092 42371 
fp_operators.blif 119 116 88 76 17902 17401 18538 18800 
oc_video_compression_systems_dct_opt.blif 19 19 19 14 8995 9114 12221 11158 
oc_video_compression_systems_jpeg_opt.blif 20 19 17 13 10967 10940 14590 14321 
radar20_opt.blif 39 38 23 16 16834 17216 17717 20663 
screen_saver_cyclone.blif 18 18 16 17 35627 35183 35614 35900 
sudoku_check.blif 11 11 10 10 20998 20774 21094 21286 
top_rs_decode.blif 43 43 31 24 31381 30729 30798 30926 
umass_weather.blif 38 38 25 17 15821 15734 18250 18292 
uoft_raytracer.blif 70 69 58 30 33294 33852 37118 40147 

Ratio 1.00 0.99  0.80 0.63  1.00  1.00  1.11  1.13  
 

Table 5: The results of delay optimization after LUT mapping for Altera benchmarks (6-LUTs). 
Design 6-LUT levels 6-LUT count 

 Map MapC SOPBC LMSC Map MapC SOPBC LMSC 
carpat.blif 35 35 35 27 29826 31098 32243 33321 
fp_operators.blif 67 66 57 50 10541 11118 12005 11982 
oc_video_compression_systems_dct_opt.blif 10 10 12 9 7349 7566 8816 8606 
oc_video_compression_systems_jpeg_opt.blif 10 10 12 9 7796 7822 8365 9537 
radar20_opt.blif 20 20 13 10 12351 12705 12871 14964 
screen_saver_cyclone.blif 13 12 12 12 27129 27113 27503 27373 
sudoku_check.blif 7 7 7 7 14542 14355 14707 15501 
top_rs_decode.blif 24 24 20 16 21271 21324 21668 21615 
umass_weather.blif 24 24 16 10 12196 11990 13287 14123 
uoft_raytracer.blif 36 35 31 19 26128 26666 29802 31356 

Ratio 1.00  0.99  0.92  0.74  1.00  1.02  1.08  1.13  



 
Table 6: The results of delay optimization after LUT mapping for MCNC benchmarks (4-LUTs). 

Design 4-LUT level 4-LUT count 
 Map MapC SOPBC LMSC Map MapC SOPBC LMSC 
alu4.blif 7 7 7 7 1137 1117 1149 1145 
apex2.blif 8 7 7 7 1295 1325 1319 1373 
apex4.blif 6 6 6 6 1028 1016 1041 1030 
bigkey.blif 3 3 3 4 1259 1256 1592 1443 
clma.blif 15 14 13 12 4447 3995 4498 4989 
des.blif 6 6 6 6 1215 1211 1265 1240 
diffeq.blif 14 14 12 9 841 908 911 945 
dsip.blif 3 3 4 3 925 1109 929 1132 
elliptic.blif 18 18 15 10 2020 2150 2125 2327 
ex1010.blif 7 7 7 7 3481 3317 3427 3384 
ex5p.blif 6 6 6 6 827 795 905 880 
frisc.blif 23 23 18 14 2234 2182 2293 2349 
misex3.blif 6 6 6 6 1093 1053 1060 1041 
pdc.blif 9 9 8 8 2953 2839 2839 2836 
s298.blif 12 11 11 11 904 897 896 881 
s38417.blif 10 9 9 9 3450 3402 3512 3398 
s38584.1.blif 9 9 8 7 3829 3686 3701 3590 
seq.blif 6 6 6 6 1219 1198 1199 1219 
spla.blif 8 8 8 8 2628 2529 2535 2390 
tseng.blif 13 13 10 10 756 800 801 826 

Raito 1.00  0.98  0.95  0.90  1.00  1.00  1.03  1.04  
 

Table 7: The results of delay optimization after LUT mapping for MCNC benchmarks (6-LUTs). 
Design 6-LUT level 6-LUT count 

 Map MapC SOPBC LMSC Map MapC SOPBC LMSC 
alu4.blif 6 5 5 5 802 853 892 901 
apex2.blif 6 6 6 6 1023 1008 1007 1091 
apex4.blif 5 5 5 5 784 771 801 800 
bigkey.blif 3 3 3 3 579 579 689 692 
clma.blif 10 10 9 9 3363 3049 3575 3722 
des.blif 5 4 5 4 855 888 880 946 
diffeq.blif 8 8 8 6 637 667 648 725 
dsip.blif 3 3 3 3 689 689 689 901 
elliptic.blif 10 10 9 7 1796 1941 1886 2094 
ex1010.blif 6 6 6 6 2555 2520 2608 2625 
ex5p.blif 5 5 5 5 560 543 685 685 
frisc.blif 13 13 12 9 1743 1723 1797 1834 
misex3.blif 5 5 5 5 810 786 793 777 
pdc.blif 7 7 7 7 2175 2086 2081 2028 
s298.blif 9 8 8 8 648 655 645 651 
s38417.blif 7 7 7 6 2629 2622 2621 2668 
s38584.1.blif 6 6 6 6 2371 2428 2394 2414 
seq.blif 5 5 5 5 888 876 893 935 
spla.blif 6 6 6 6 1910 1853 1860 1794 
tseng.blif 8 8 6 6 648 694 689 748 

Raito 1.00  0.98  0.96  0.91  1.00  1.00  1.04  1.08  
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