
Lazy Man’s Logic Synthesis

Wenlong Yang Lingli Wang
State Key Lab of ASIC and System
Fudan University, Shanghai, China

{allanwin@hotmail.com, llwang@fudan.edu.cn}

Alan Mishchenko
Department of EECS

University of California, Berkeley
alanmi@eecs.berkeley.edu

Abstract— Deriving a circuit for a Boolean function or improving
an available circuit are typical tasks solved by logic synthesis.
Numerous algorithms in this area have been proposed and
implemented over the last 50 years. This paper presents a "lazy”
approach to logic synthesis based on the following observations:
(a) optimal or near-optimal circuits for many practical functions
are already derived by the tools, making it unnecessary to
implement new algorithms or even run the old ones repeatedly;
(b) larger circuits are composed of smaller ones, which are often
isomorphic up to a permutation/negation of inputs/outputs.
Experiments confirm these observations. Moreover, a case-study
shows that logic level minimization using lazy man’s synthesis
improves delay after LUT mapping into 4- and 6-input LUTs,
compared to earlier work on high-effort delay optimization.

I. INTRODUCTION
Multi-level logic synthesis [6][29] derives a multi-level logic

circuit for a given Boolean function. Originally, the function is
given as a truth table, Sum-of-Product (SOP), Binary Decision
Diagram (BDD), etc, or a circuit of poor or unknown quality.
The goal is to find a new circuit with the same functionality
but smaller area, delay, power consumption etc., which can be
efficiently mapped into standard cells or lookup tables, placed
and routed, and realized as a high-quality hardware device.

For example, when logic synthesis is applied to a Boolean
function represented as a BDD, we may first derive its SOP
[15], next factor the SOP [5], and finally convert the factored
form into a circuit. If the function is given as a circuit with a
large number of inputs and outputs, the circuit can be
restructured using circuit rewriting [4][17], resubstitution [19],
logic sharing extraction [24], etc.

Different tools perform logic synthesis in different ways
resulting in different circuit structures. These differences
occur because implementations use heuristics and pursue
different optimization goals. As a result, there is no “best”
circuit structure for a given function. Sometimes even a
suboptimal structure may be useful. For example, the result of
technology mapping depends on the initial circuit structure
[10]. In some cases, a suboptimal circuit before mapping leads
to a better result after mapping.

This is why, in many applications, it is desirable to have
multiple structural representations of each function. Hence, it
is necessary to run different tools and different scripts and
produce several structural snapshots of the same design.
However, maintaining multiple tools or routinely applying
multiple synthesis scripts is expensive and inefficient.

The proposed approach named “lazy man’s logic synthesis”
learns from the output of different tools applied to various

designs and creates a library of AIG structures. When these
structures are available and compactly recorded, there is no
need to perform traditional logic synthesis. It is enough to
check whether a function is already present in the library. The
process of looking up is made fast by hashing functions using
an affordable semi-canonical form described in this paper.

Consider trying to decompose a 6-input function into a
network of 2-input gates. This may be done in many ways,
especially when the function is non-trivial. Instead of
implementing and running different decomposition methods
[3][5][16], deriving several circuit structures and comparing
them to choose the optimal one, we assume that this circuit
structure is already present in some design before synthesis or
is derived by some tool when it is applied to some design. It is
not necessary to run that tool again or to try to find the design
where the given function occurs. Instead, we rely on the fact
that the “optimal” structure was available when the library was
created and therefore it must be present in the library.

We analyzed several suites of public benchmarks and
industrial designs and found that the number of semi-canonical
classes of K-input functions (K ≤ 12) appearing in these
designs is large, but not prohibitively large. To perform this
analysis, we computed K-input cuts [22] and collected semi-
canonical classes of functions describing the output of each cut
in terms of its inputs. We hashed the classes and counted how
often they appear in the benchmarks before, during, and after
synthesis using different logic synthesis scripts.

The reader may refer to the experimental results for a detailed
description of this experiment. Here we mention only that, to
cover 90% of the most frequently appearing 12-input functions,
we need to maintain a library with 738,239 functional classes,
whose truth tables take roughly 369 MBytes. This number is an
underestimation, since for each functional class, several circuit
structures need to be stored. However, it can be shown that for
functions larger than 10 inputs, truth tables dominate memory
requirements, which are realistic for modern workstations.

The contributions of this paper are:
• A new way of performing logic synthesis. Instead of

deriving new circuit structures during runtime of a logic
synthesis algorithm, the structure is retrieved from a
precomputed library.

• A new way of accumulating circuit structures in a library
and hashing them using a semi-canonical form, which
trades speed of computation for reduced memory.

• Analysis of the logic synthesis benchmarks to show the
number of frequently occurring semi-canonical classes of
12-input functions and how much memory is needed to
represent a realistic library of these functions.

• Promising results of delay optimization after FPGA
mapping into 4-LUTs and 6-LUTs, obtained using the
proposed approach to logic synthesis.

The rest of the paper is organized as follows. Section 2
reviews previous work. Section 3 describes some background.
Section 4 describes the algorithm. Section 5 represents the
experimental results. Section 6 concludes the paper and
outlines future work.

II. PREVIOUS WORK
Precomputing 4-LUT structures for FPGA mapping is

proposed in [12]. A method for caching decomposable
functions to up 16 inputs is used in [25] to speed up FPGA
mapping. Both approaches precompute logic structures in
terms of LUTs, rather than AIGs, as in the present work.

Technology-independent synthesis based on precomputed
AIG structures is proposed in the following papers: [4] (4-input
two-level structures), [17] (4-input cuts), [14] (5-input cuts).
However, these methods do not use preexisting benchmarks or
tools to generate useful structures, as in the present work.
Moreover, they look only at 4- and 5-input functions, while the
present work is geared to functions with 6-16 inputs.

Other methods of computing multiple logic structures useful
for technology mapping were proposed, which led to the use of
structural choices [13][10]. The difference here is that the
number of choices used in [13][10] is relatively small (only one
out of five nodes, on average, has structural choices in [10])
and the structures generated are of limited nature (only a small
number of algebraic decompositions are considered in [13]).

On the application side, a closely related work is that on SOP
balancing [21], which has the goal of reducing the AIG level
count, as a preprocessing step before technology mapping into
standard cells or LUTs. Both types of mapping have been tried
in [21] with substantial delay improvements.

However, SOP balancing has several known limitations: for
each cut, it considers only one logic structure derived by
applying a delay-driven decomposition to the AND-gates and
the OR-gates contained in the SOP. In contrast, the proposed
approach is more general. It precomputes multiple circuit
structures, including those not found by SOP balancing.
Moreover, it scales to larger functions, compared to SOP
balancing, which only works well for functions up to 8 inputs.

The following example illustrates the limitations of SOP-
balancing. Consider function F = !c*!(b*!a) whose input arrival
times are {0, 0, 1}. Figure 1a shows the structure found by
SOP-balancing. Clearly, delay and area of the structure is 3 and
3, respectively. The proposed method will try different
structures of the function and will chose the best one for the
given input arrival times. If the precomputed library is good,
the structure in Figure 1b will be found. The delay and area of
the structure are 2, which are both better than SOP-balancing.
Function F = !c*!(b*!a) is a small function, which appears
often in the benchmarks. Similar situations may appear in other
functions, resulting in logic structures with better delay than
those found by SOP balancing.

a : 0 b : 0

c : 1

a : 0 b : 0 c : 1 c : 1

a. SOP-Balancing b. LMS
Figure 1: An AIG subgraph found in benchmark s27.blif,

where SOP balancing loses to the proposed approach.

III. BACKGROUND
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and edges corresponding to
wires connecting the gates. In this paper, we consider only
combinational Boolean networks.

A node n has zero or more fanins, i.e. nodes driving n, and
zero or more fanouts, i.e. nodes driven by n. The primary
inputs (PIs) are nodes without fanins in the current network.
The primary outputs (POs) are a subset of nodes of the
network, delivering the results to the environment. A fanin
(fanout) cone of node n is a subset of all nodes of the network,
reachable through the fanin (fanout) edges of the node.

A combinational And-Invertor Graph (AIG) is a Boolean
network composed of two-input ANDs and inverters. To
derive an AIG, the SOPs of the nodes in a logic network are
factored, the AND and OR operations of the factored forms
are converted into two-input ANDs and inverters using
DeMorgan’s rule, and these two-input ANDs are added to the
AIG manager in a topological order. The size (area) of an AIG
is the number of its nodes; the depth (delay) is the number of
nodes on the longest path from the PIs to the POs. The goal of
AIG minimization is to reduce both area and delay.

Structural hashing of AIGs ensures that all constants are
propagated and there is no two-input AND nodes with
identical fanins (up to a permutation). Structural hashing is
performed on-the-fly by hash-table lookups when AND nodes
added to an AIG manager, which helps reduce the AIG size.

A cut C of a node n is a set of nodes of the network, called
leaves of the cut, such that each path from a PI to n passes
through at least one leaf. Node n is called the root of cut C.
The cut size is the number of its leaves. A trivial cut of a node
is the cut composed of the node itself. A cut is K-feasible if
the number of leaves in the cut does not exceed K. A cut is
dominated if there is another cut of the same node, which is
contained, set-theoretically, in the given cut.

Volume (area) of a cut is the number of unique AIG nodes
found on the paths between the root and the leaves, including
the root and excluding the leaves. Level (delay) of a cut is the
number of AIG nodes on the longest path between the root of
the cut and a primary input of the AIG. The concepts of delay,
depth, and logic level are used interchangeably in this paper.

A delay profile of a cut is an ordered set of arrival times of
each leaf of the cut. In this paper, delays are measured using
the number of AIG logic levels from the primary inputs, and
so delay profiles are arrays of non-negative integer numbers.

A local function of an AIG node n, denoted fn(x), is a
Boolean function of the logic cone rooted in n and expressed
in terms of the leaves, x, of a cut of n.

Two functions are NPN-equivalent if one of them can be
obtained from the other by negation and/or permutation of the
inputs and outputs.

A positive minterm is a complete assignment of input
variables, which makes the function evaluate to 1.

LMS is an abbreviation for “lazy man’s logic synthesis”.

IV. ALGORITHM
This section introduces the proposed algorithm.

A. Semi-canonical form
LMS is based on collecting, storing, and re-using circuit

structures of Boolean functions with 6-12 input variables.
Since the total number of completely-specified Boolean
functions of N variables is 2^(2^N), storing all of them is
infeasible for N > 4. For larger values of N, only the functions
occurring frequently in the benchmarks should be considered.
We call such functions practical and give frequency statistics
in the experimental results section.

However, even the number of practical functions can be
very large. To reduce this number and memory needed to store
them in a library, they can be broken into equivalence classes
using a canonical form. In this case, only representatives of
equivalence classes are stored in the library.

In the proposed approach to logic synthesis, the canonical
form should be computed in two situations: (1) during
construction of the library when Boolean functions are
canonicized and circuit structures for each class are recorded,
and (2) during LMS based on the pre-computed library when
the canonical form is computed for a Boolean function to find
its circuit structures in the library.

Computing the complete NPN canonical form [9] may be
too time-consuming, especially if this computation is used in
the inner loop of an algorithm applied to a large number of
functions of K-input cuts at each node during iterative
optimization of logic networks. For this reason, in this paper,
we propose to compute a semi-canonical form, which is more
affordable than the NPN canonical form.

The idea is to order the input variables and the polarities of
inputs/outputs using the number of positive minterms in the
function and its cofactors with respect to each variable. A
similar method is proposed in [1] and implemented using
BDDs. In this work, all functional manipulation is performed
using truth tables. The choice of truth tables is motivated by
the fact that they require affordable amount of memory for
functions up to 16 inputs and make the functional
manipulation fast enough to be applied in the inner loop of
logic synthesis algorithms.

truth table TruthSemiCanonicize(
truth table F,
unsigned uCanonPhase,
char * pCanonPerm)

{
 // canonize output

count the number of 0s and 1s in the truth table of F;
if (number of 1s is more than number of 0s in F) {
 complement F;
 record negation of the output in uCanonPhase;
}
// canonize variable phase
count the number of 1s in the cofactors of F w.r.t. each variable;
for each input variable of F
 if (more 1s in negative cofactor than in positive cofactor){
 change the variable’s phase in F;
 record the change of varible’s phase in uCanonPhase;
 }
// canonicize variable permutation
sort input variables by the number of 1s in their negative cofactors;
permute inputs variables in F accordingly and
 record the resulting permutation in pCanonPerm;
return F;

}
Figure 2: Generating semi-canonical form.

The pseudo-code is given in Figure 2. The procedure takes

the truth table of a Boolean function and transforms it into a
semi-canonical form. This form is the Boolean function of the
representative of the equivalence class, to which the given
function belongs. First, the output of the function is
complimented based on the number of 1s in it. Then, the phase
of each variable is decided by the number of the 1s in the
negative and positive cofactors. Lastly, the variable ordering is
determined by sorting variables using the number of 1s in their
cofactors. Variables uCanonPhase and pCanonPerm record the
changes in the truth table. They are returned to the calling
procedure and later used to determine how to unpermute the
subgraphs stored in the library, when this subgraph is used to
synthesize a given function.

It was observed that, although the proposed semi-canonical
form is less accurate than the complete NPN canonical form, it
gives a reasonable trade-off between the speed of semi-
canonical form computation and the conciseness of the
resulting library. We estimated that computing the complete
NPN canonical form for 12-variable functions would have
increase the canonicization runtime by a factor of 10.
Meanwhile, the memory footprint for the precomputed
libraries would only be reduced by factor of 2.

B. Library representation
The pre-computed library of practical functions contains

only non-redundant (often multiple) circuit structures
collected for these functions. Although the number of practical
functions can be large (say, one million), the number of
precomputed structures can be an order of magnitude larger.
This is why it is important to develop a compact memory
model to store the precomputed structures.

All the optimized structures are stored in the same AIG
manager. A library of N-input functions contains also

functions with less than N-inputs, but they are remapped to
strucutures which depend on the variables with the smallest
variable indexes. Each circuit structure stored in the AIG is
identified by a separate primary output.

When the library stored as an AIG, is loaded from file by the
logic synthesis system, the following actions are performed:
• a hash table is created to hash the circuit structure of each

primary output by its function, which serves as the semi-
canonical form of the corresponding Boolean function;

• for each structure, the area and input-to-output delays are
computed and stored with each primary output;

• optionally, areas and delays of structures belonging to the
same equivalence class are compared and some of the
structures are removed as dominated.

Since delay is the key aspect used in many logic synthesis
applications, the arrival time of the output of each structure is
required during synthesis for different structures and input
arrival time profiles. To avoid multiple recursive traversals of
the logic structure, input-to-output delays are pre-computed
for each structure when the library is loaded. In this case, the
resulting arrival time of the output is found by adding the
arrival times of the inputs to the input-to-output delays of the
structure, and finding the largest one over all inputs.

Figure 3 shows how input-to-output delays are computed
when the library is loaded from file to accelerate the delay
computation during synthesis.

a : 2 b : 2 c : 2

d : 3 e : 3

f : 2

g : 1

Figure 3: An illustration of the use of input-to-output delays.

The numbers in the figure show the delays from the

corresponding input to the output of the structure, measured in
terms of AIG nodes. Suppose the arrival time profile of the
inputs listed from a to g, is {3, 2, 4, 5, 2, 3, 1}. Adding input-
to-output delays to the input arrival times, the following
arrival times of the output with respect to each input can be
computed: {5, 4, 6, 8, 5, 5, 2}. Obviously, 8 is the largest
number representing the output arrival time in this case.

C. Library construction
LMS does not derive new circuit structures during logic

synthesis. Instead, it refers to a precomputed library and
reuses the results generated by other synthesis tools. This is
why building a high-quality library is important for LMS.

In this paper, we use the LUT mapper if in ABC as a
structural cut browser to generate a fixed number of K-inputs
cuts for each node in benchmark circuits. The circuits used for
computing the library are the available benchmarks in their
original form, as well as the same benchmarks after logic
synthesis by a variety of tools and scripts. Using multiple

snapshots of the same benchmark allows us to collect multiple
circuit structures expressing the cut functions.

Figure 4 shows the pseudo-code of the procedure used by
LMS to record the circuit structure of a cut in the library.

void AddCut(cut C)
{

if (cut C does not meet the requirements)
 return;
compute Boolean function F of cut C as a truthtable;
if (F does not depend on some input variable of C)
 return;
compute the semi-canonical form of F;
find the corresponding functional class in the hash table;
rebuild the structure of the cut in the library;
if (the structure already exists or is dominated)
 return;
add a new primary output to store the structure in the hash table;

}
Figure 4: Adding structures to library.

Procedure AddCut() is executed on every cut generated by
the cut browser. As a preprocessing step, the procedure
removes cuts that do not fit the requirements, such as the
restriction on the cut size and volume. If the structure of the
cut has a redundancy or not every input variable appears in the
support of the cut’s function, the circuit structure of the cut is
not considered.

When rebuilding the structure in the library, structurally
isomorphic subgraphs are detected by structural hashing
performed during AIG construction.

When library computation is performed in the “trim mode”,
the above procedure filters circuit structures using timing info.
In this case, before the structure is inserted into the hash table,
it is checked for dominance. A structure is dominated if its
input-to-output delays are the same or larger, compared
respectively to those of an existing structure. If the new
structure is dominated, it is not added. On the other hand, if it
dominates others, they are deleted from the hash table.

The data structure in the hash table keeps track of how often
a semi-canonical form appeared during building libraries. If
the user want to shrink the size of the library, a filtering can be
applied, which deletes structures that appear infrequently.

Here are the commands for library construction implemented
in ABC as part of this work:
• rec_start: Starts the LMS recorder.
• rec_add: Explores cuts of the current network using the

cut browser and add useful AIG structures to the library.
• rec_filter: Removes those structures form the library,

whose semi-canonical classes appear less frequently than
the limit given by the user.

• rec_merge: Merges two previously computed libraries, by
combining their circuit structures without the cut browser.

• rec_ps: Prints statistics for the currently loaded library.
• rec_use: Transforms the internal library to the current

network in ABC, so it can be written into a file.
• rec_stop: Deletes the current library. Useful before the

computation of a new library begins or when it is desirable
to free the memory used by the currently stored library.

D. A case study of LMS: AIG level mininization
AIG level minimization is an important problem because

AIGs are often used to represent logic networks during
technology-independent logic synthesis.

Previous work on AIG level minimization [21] has shown
that the reduction in AIG levels correlates well with the
reduction of delay after technology mapping for both standard
cells and LUT-based FPGAs.

In the same work [21] it was shown that AIG level can be
optimized by applying SOP balancing to K-feasible cuts of
each node. In this case, SOPs of the cut functions are
computed and decomposed using the arrival times of cut
leaves in order to minimize the arrival time of the cut root.

This case study demonstrates that the results produced by
SOP balancing can be substantially improved when circuit
restructuring is performed using a precomputed LMS library.
The reasons for this are the following:
• SOP balancing uses only one AIG structure derived from

an SOP of the function, while LMS has multiple structures
to choose from, including those derived by SOP balancing,
if these were harvested during library computation.

• LMS scales to larger functions (up to 12 inputs and more),
while SOP balancing works in practice only when the
number of variables does not exceed 8.

In our experiments, both LMS and SOP balancing have been
performed using 6-input functions. It means that currently
only the first reason account for the improved results.

aig PerformAIGLevelMinimizationUsingLMS (
 aig G, // G is an And-Inverter Graph
 int K, // K is the cut size
 int C) // C is the number of cuts at each node
{

for each node n in G, in a topological order {
compute C structural K-input cuts of n;

for each cut {
compute Boolean function of the cut as a truth table;
find the best structure in the library;
if (there is no structure for this function)

mark the cut to ensure it is not selected as best cut for n;
else if (the cut leads to smaller AIG level than the best cut)
 save the cut as the best cut;

 }
for each node n in G, in a topological order {
 if (root node AIG level is reduced using the best cut)

 replace current AIG structure of node n by the delay-optimal
 AIG structure found for the best cut in the library;

 return G;
}

Figure 5: Perform LMS on subject graph.

The pseudo-code in Figure 5 shows the use of LMS for AIG

level minimization. Structural K-feasible cuts are enumerated
and restructuring is applied to each cut. If an AIG structure
found in the library can improve the logic level of the root
node, this structure is used to rewrite the AIG of the node.

V. EXPERIMENTAL RESULTS
The LMS algorithm is implemented in ABC [2][7]. The

LUT mapper if [20] in ABC is used (a) as a cut browser for
computing the libraries and (b) as a mapper in the case study
on AIG level minimization.

To derive the libraries, benchmarks from MCNC [8], ISCAS
[28], ITC [11], Altera [23], and other public sets are used.

The experimental results are divided into three categories:
• Library coverage for 12-input functions
• Library construction for 6-input functions
• Delay optimization for 4-LUT and 6-LUT mapping

A. Library coverage
This experiment was performed to show that LMS has

practical memory requirements for functions whose support
size is limited by 12 inputs. In this experiment, semi-canonical
classes of all functions appearing in the cuts of the benchmark
circuits without synthesis, were collected and the frequency of
their appearance was recorded. It took about two days to
collect these results on one computer.

The results which contain the truth tables and their
frequencies in the benchmarks are publicly available at [31].

The results are shown in Table 1 and, schematically, in
Figure 6. For example, to achieve 90% coverage for 12-input
functions appearing in the benchmarks, the library should
include 738,239 semi-canonical classes whose truth tables
take 369MBytes of storage.

0

500000

1000000

1500000

2000000

25% 50% 75% 90% 95% 100%

N

Figure 6: The number of equivalence classes needed to
represent the given percentage of the most frequently

occurring functions in the benchmark circuits.

In practice, having 90% coverage is enough for logic

optimization because the remaining functions may be seen as
composed of smaller functions included in the library.

In a separate experiment shown in Table 2, semi-canonical
classes of functions with support size limited by 12, appearing
in the cuts of the benchmark circuits before and after synthesis,
were collected and their occurrences were counted.

The table shows that the number of classes has increased
approximately 10x as a result of applying the ABC script
shown in the next section. We conjecture that much of the
observed increase is because AIG-based synthesis performs
unnecessarily aggressive circuit restructuring. This motivates
developing AIG-transformations based on a richer set of
primitives, for example, multi-input ANDs, multi-input XORs,
MUXes, and majority gates.

It can also be noted that the additional structures generated
by synthesis, compared to those present in the original
benchmarks circuits, are not required if LMS is applied before
synthesis, as in the case-study of Section IV-D.

B. Constructing library for 6-input functions
The goal of this experiment is to derive a 6-input library used

in the case study described in Section IVD with results reported
in Section VC. Before the experiment, rec_start is called. After
the experiment, rec_use is called, followed by writing the
library into a file. The following script is used to collect circuit
structures generated by logic synthesis in ABC:
• read file; st; rec_add; // add the original AIG structures
• dc2; rec_add; // add structures derived by dc2
• if -K 8; bidec; st; rec_add;
• if -K 8; mfs; st; rec_add;
• if -K 8; bidec; st; rec_add;
• if -g -K 6; st; rec_add;// add structures created by SOP balancing
• if -g -K 6; st; rec_add;
To keep the library compact, trim mode of LMS is turned on.

As a result, circuit structures whose input-to-output delays are
dominated by those of other structures are filtered out. In the
end, classes appearing less than 3 times are filtered, too. The
library is also publicly available at [31].

Table 3 shows statistics of the resulting library, containing
5,687,661 AIG structures classified into 1,249,229 semi-
canonical equivalence classes. The AIGER file containing this
library takes 77.85MBytes. The computation took several days
needed to apply the above script to the available benchmarks.

It should be noted that the large number of structures
included is the library is because our current implementation
of the library construction does not handle multi-input gates.
As a result, different tree decompositions of each such gate are
recorded as separate subgraphs. This limitation will be
addressed by future work.

To get an even wider spectrum of circuit structures, other
synthesis tools, besides ABC, can also be used, for example
SIS [26], BDS [27], FBDD [30], etc. The resulting circuits
can be added to the library by reading them into ABC during
library computation, followed by commands st; rec_add.

C. Using LMS to optimize delay after LUT mapping
The delay optimization experiments reported in this section

were run on a workstation with Intel Xeon Quad Core CPU
and 256 GBytes RAM. The resulting networks were verified
by the SAT-based CEC engine [18] (command cec in ABC).

 The algorithm for AIG level minimization from Section
IVD is implemented as command if –y –K <num> -C<num>.
Command line switches used in this experiment are:
• if is the priority-cut-based LUT mapper [20];
• -g enables delay optimization by SOP balancing [21];
• -y enables delay optimization by LMS (the present work);
• -K <num> specifies the cut size;
• -C <num> is the number of cuts used at each node.
The input of the command is the current AIG in ABC. The

output is a delay-optimized mapped network.

Two sets of benchmarks are used in this paper: 20 large
MCNC benchmarks [8] and 10 large Altera benchmarks [23].

LUT mapping was performed by the following scripts:
• Map: st; resyn2; if -K 4 or 6
• MapC: st; resyn2; dch -f; if -K 4 or 6
• SOPBC: st; if -gm -K 6; st; resyn2; dch -f; if -K 4 or 6
• LMSC: st; if -ym -K 6; st; resyn2; dch -f; if -K 4 or 6
The first script (Map) is a typical synthesis and mapping

flow in ABC. It begins by deriving an AIG, applying delay-
oriented script resyn2, which performs technology-
independent synthesis without increasing the AIG logic level,
followed by mapping into either 4-LUTs or 6-LUTs. MapC is
similar to Map but it additionally computes structural choices
using dch. SOPBC and LMSC use SOP balancing and LMS,
respectively, to optimize the AIG before MapC is applied.

In the scripts, the cut size of both SOP balancing and LMS is
set to 6. This way any difference in the results of mapping is
due to different logic structures used by these algorithms.

The results for Altera benchmarks are reported in Tables 4-5
by measuring LUT level and LUT count. When compared
against traditional mapping (Map), LMS reduced delay by
37% (26%) with the same area increase of 13% for 4-LUTs
(6-LUTs). When compared against mapping with choices
(MapC), LMS reduced delay by 9% (7%) with area increase of
9% (6%) for 4-LUTs (6-LUTs). When compared against SOP
balancing, in both cases the delay gain is close to 17% with an
area increase of 2% (5%).

Tables 6-7 show the results of applying LMS to MCNC
benchmarks. The delay improvements in this case are similar
to those for industrial designs, but the area penalty was higher.

The runtime of if –y is similar to that of if –g and exceeds the
runtime of regular LUT mapping (if) roughly by a factor of 3.
The runtime of the whole script, such as MapC, is not
substantially different when if –y and if –g are used as a
preprocessing step because the runtime in this case is
dominated by computing structural choices (command dch).

VI. CONCLUSIONS
In the existing logic synthesis tools, useful circuit structures

are derived by applying dedicated algorithms at runtime. In
contrast, we harvest and re-use circuit structures produced by
different tools working on a variety of benchmarks.

The “lazy” approach to logic synthesis is made practical by
• mapping functions into semi-canonical equivalence classes

with isomorphic sets of optimal circuit structures;
• relying on AIGs with structural hashing to compactly store

precomputed libraries in memory and on disk;
• using truth tables to manipulate Boolean functions during

both library construction and circuit restructuring.
As a case-study, the proposed approach was applied to AIG

level minimization as a way to improve delay after FPGA
mapping. For industrial benchmarks, the delay after LUT
mapping was reduced by 17% (18%) for LUT4 (LUT6) with
the area penalty of 2% (5%), compared to the recent work on
SOP balancing [21]. This is a remarkable result, given the fact
that SOP balancing is a high-effort delay-optimization

algorithm. It clearly shows that the “lazy” approach often
finds better logic structures than SOP balancing.

Future work may include:
• finding better tradeoffs between delay and area (currently,

delay improvement comes at a cost of an increase in area,
which is not acceptable in some design flows);

• extending the approach to work for multi-input gates
(currently, only two-input AND gates are used);

• performing AIG level optimization with larger cuts
(currently, only 6-input cuts are used while the proposed
approach is shown to be practical up to 12 inputs at least).

ACKNOWLEDGMENTS
This work has been supported by
• National Natural Science Foundation of China, under

grants 61131001 and 61171011.
• National High Technology Research and Development

Program 863, China, under grant 2009AA012201.
• Fudan University Key Laboratory Senior Visiting

Scholarship program.
• Contacts from Semiconductor Research Corporation and

industrial sponsors: Altera, Atrenta, Cadence, Calypto,
IBM, Intel, Jasper, Microsemi, Oasys, Real Intent,
Synopsys, Tabula, and Verific.

REFERENCES
[1] A. Abdollahi and M. Pedram, “A new canonical form for fast boolean

matching in logic synthesis and verification”. Proc. DAC’05, 379-384.
[2] Berkeley Logic Synthesis and Verification Group. ABC: A System for

Sequential Synthesis and Verification. http://www-
cad.eecs.berkeley.edu/~alanmi/abc

[3] V. Bertacco and M. Damiani. "The disjunctive decomposition of logic
functions". Proc. ICCAD '97, pp. 78-82.

[4] P. Bjesse and A. Boralv, "DAG-aware circuit compression for formal
verification", Proc. ICCAD ’04, pp. 42-49.

[5] R. Brayton and C. McMullen, “The decomposition and factorization of
Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[6] R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, “Multilevel logic
synthesis”, Proc. IEEE, Vol. 78, Feb.1990.

[7] R. Brayton and A. Mishchenko, "ABC: An academic industrial-strength
verification tool", Proc. CAV'10, LNCS 6174, pp. 24-40.

[8] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” Proc. ISCAS ’89, pp. 1929-1934.

[9] D. Chai and A. Kuehlmann, “Building a better Boolean matcher and
symmetry detector”. Proc. DATE 2006, pp. 1079-1084.

[10] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
"Reducing structural bias in technology mapping", IEEE TCAD’06, Vol.
25(12), pp. 2894-2903.

[11] ITC ’99 Benchmarks. http://www.cad.polito.it/tools/itc99.html
[12] A. Kennings, A. Mishchenko, K. Vorwerk, V. Pevzner, and A. Kundu,

"Generating efficient libraries for use in FPGA resynthesis algorithms".
Proc. IWLS'10, pp. 147-154.

[13] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD, Vol.
16(8), Aug. 1997, pp. 813-833.

[14] N. Li and E. Dubrova, “AIG rewriting using 5-input cuts”, Proc.
IWLS’11.

[15] S. Minato: "Fast generation of prime-irredundant covers from binary
decision diagrams," IEICE Trans. Fundamentals, Vol. E76-A, No. 6, pp.
967-973, June 1993.

[16] A. Mishchenko, B. Steinbach, and M. A. Perkowski, "An algorithm for
bi-decomposition of logic functions", Proc. DAC '01, 103-108.

[17] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG
rewriting: A fresh look at combinational logic synthesis", Proc. DAC '06,
pp. 532-536.

[18] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, "Improvements
to combinational equivalence checking", Proc. ICCAD '06, pp. 836-843.

[19] A. Mishchenko and R. K. Brayton, "Scalable logic synthesis using a
simple circuit structure", Proc. IWLS '06, pp. 15-22.

[20] A. Mishchenko, S. Cho, S. Chatterjee, R. Brayton, “Combinational and
sequential mapping with priority cuts”, Proc. ICCAD ’07, pp. 354-361.

[21] A. Mishchenko, R. Brayton, S. Jang, and V. Kravets, "Delay
optimization using SOP balancing", Proc. ICCAD'11, pp. 375 - 382.

[22] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs,” Proc. FPGA’98, pp. 35-42.

[23] J. Pistorius, M. Hutton, A. Mishchenko, and R. Brayton. "Benchmarking
method and designs targeting logic synthesis for FPGAs", Proc. IWLS
'07, pp. 230-237.

[24] J. Rajski and J. Vasudevamurthy, “The testability-preserving concurrent
decomposition and factorization of Boolean expressions”. IEEE
TCAD’92, vol. 11(6), pp. 778-793.

[25] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen,
“Mapping into LUT structures”, Proc. DATE’12.

[26] E. Sentovich et al, “SIS: A system for sequential circuit synthesis”, Tech.
Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, Univ. of California,
Berkeley, 1992.

[27] C. Yang and M. Ciesielski. ”BDS: a BDD-based logic optimization
system”, IEEE TCAD’02, vol. 21(7), pp. 866–876.

[28] S. Yang. “Logic synthesis and optimization benchmarks”. Version 3.0.
Tech. Report. Microelectronics Center of North Carolina, 1991.

[29] L. Wang, and A. E. A. Almaini, “Multilevel logic simplification based
on containment recursive paradigm”, IEE Proceedings Computers and
Digital Techniques, 2003, Vol.150, No.4, pp, 218-226.

[30] D. Wu and J. Zhu, “FBDD: a folded logic synthesis system”, Proc.
DAC’05, pp. 746-751.

[31] https://skydrive.live.com/redir.aspx?cid=76d4b8991df82cf3&resid=76D
4B8991DF82CF3!152&parid=root

Table 1: The number of equivalence classes of N-input functions needed to represent the given percentage of the most-frequently

appearing functions in the benchmark circuits without synthesis.

Inputs
Percentage 20% 25% 50% 75% 90% 95% 100%
2 1 1 1 1 2 2 3
3 1 1 2 4 6 8 21
4 2 2 5 19 65 114 1478
5 6 8 38 177 659 1481 27523
6 14 23 177 1172 5713 14203 125725
7 46 93 885 6859 36383 84165 329630
8 76 157 1686 14551 73739 155383 506497
9 46 130 3602 34697 158466 302800 778698
10 156 365 5807 48748 218515 409054 897730
11 353 861 14231 119713 434679 717726 1332731
12 793 1786 27104 223943 738239 1128006 1907484

Table 2: The same as Table 1, except the benchmarks were synthesized by an ABC script.

Inputs
Percentage 20% 25% 50% 75% 90% 95% 100%
2 1 1 1 1 1 2 3
3 1 1 2 3 6 8 21
4 2 2 4 17 46 86 1703
5 6 8 36 160 920 2593 248581
6 19 28 209 2112 19475 75428 2755032
7 77 150 2254 31453 337943 1293513 8677854
8 187 431 9660 188108 2092479 5890862 17485043
9 453 1192 41216 859287 6887725 14086676 28687179
10 747 2054 120198 3218612 16669810 29203415 44814184
11 2471 7332 425701 8607987 32104100 50026675 67949249
12 7379 22789 1358918 19991157 60917017 83584641 106252265

Table 3: Statistics of the precomputed 6-input library of semi-canonical classes.

Inputs Semi-canonical
Forms Structures Ratio

2 3 3 1.00
3 32 88 2.75
4 2430 12673 5.22
5 98208 471973 4.81
6 1148556 5202924 4.53

Total 1249229 5687661 4.55

Table 4: The results of delay optimization after LUT mapping for Altera benchmarks (4-LUTs).
Design 4-LUT levels 4-LUT count

 Map MapC SOPBC LMSC Map MapC SOPBC LMSC
carpat.blif 68 68 53 40 38856 39842 42092 42371
fp_operators.blif 119 116 88 76 17902 17401 18538 18800
oc_video_compression_systems_dct_opt.blif 19 19 19 14 8995 9114 12221 11158
oc_video_compression_systems_jpeg_opt.blif 20 19 17 13 10967 10940 14590 14321
radar20_opt.blif 39 38 23 16 16834 17216 17717 20663
screen_saver_cyclone.blif 18 18 16 17 35627 35183 35614 35900
sudoku_check.blif 11 11 10 10 20998 20774 21094 21286
top_rs_decode.blif 43 43 31 24 31381 30729 30798 30926
umass_weather.blif 38 38 25 17 15821 15734 18250 18292
uoft_raytracer.blif 70 69 58 30 33294 33852 37118 40147

Ratio 1.00 0.99 0.80 0.63 1.00 1.00 1.11 1.13

Table 5: The results of delay optimization after LUT mapping for Altera benchmarks (6-LUTs).
Design 6-LUT levels 6-LUT count

 Map MapC SOPBC LMSC Map MapC SOPBC LMSC
carpat.blif 35 35 35 27 29826 31098 32243 33321
fp_operators.blif 67 66 57 50 10541 11118 12005 11982
oc_video_compression_systems_dct_opt.blif 10 10 12 9 7349 7566 8816 8606
oc_video_compression_systems_jpeg_opt.blif 10 10 12 9 7796 7822 8365 9537
radar20_opt.blif 20 20 13 10 12351 12705 12871 14964
screen_saver_cyclone.blif 13 12 12 12 27129 27113 27503 27373
sudoku_check.blif 7 7 7 7 14542 14355 14707 15501
top_rs_decode.blif 24 24 20 16 21271 21324 21668 21615
umass_weather.blif 24 24 16 10 12196 11990 13287 14123
uoft_raytracer.blif 36 35 31 19 26128 26666 29802 31356

Ratio 1.00 0.99 0.92 0.74 1.00 1.02 1.08 1.13

Table 6: The results of delay optimization after LUT mapping for MCNC benchmarks (4-LUTs).

Design 4-LUT level 4-LUT count
 Map MapC SOPBC LMSC Map MapC SOPBC LMSC
alu4.blif 7 7 7 7 1137 1117 1149 1145
apex2.blif 8 7 7 7 1295 1325 1319 1373
apex4.blif 6 6 6 6 1028 1016 1041 1030
bigkey.blif 3 3 3 4 1259 1256 1592 1443
clma.blif 15 14 13 12 4447 3995 4498 4989
des.blif 6 6 6 6 1215 1211 1265 1240
diffeq.blif 14 14 12 9 841 908 911 945
dsip.blif 3 3 4 3 925 1109 929 1132
elliptic.blif 18 18 15 10 2020 2150 2125 2327
ex1010.blif 7 7 7 7 3481 3317 3427 3384
ex5p.blif 6 6 6 6 827 795 905 880
frisc.blif 23 23 18 14 2234 2182 2293 2349
misex3.blif 6 6 6 6 1093 1053 1060 1041
pdc.blif 9 9 8 8 2953 2839 2839 2836
s298.blif 12 11 11 11 904 897 896 881
s38417.blif 10 9 9 9 3450 3402 3512 3398
s38584.1.blif 9 9 8 7 3829 3686 3701 3590
seq.blif 6 6 6 6 1219 1198 1199 1219
spla.blif 8 8 8 8 2628 2529 2535 2390
tseng.blif 13 13 10 10 756 800 801 826

Raito 1.00 0.98 0.95 0.90 1.00 1.00 1.03 1.04

Table 7: The results of delay optimization after LUT mapping for MCNC benchmarks (6-LUTs).
Design 6-LUT level 6-LUT count

 Map MapC SOPBC LMSC Map MapC SOPBC LMSC
alu4.blif 6 5 5 5 802 853 892 901
apex2.blif 6 6 6 6 1023 1008 1007 1091
apex4.blif 5 5 5 5 784 771 801 800
bigkey.blif 3 3 3 3 579 579 689 692
clma.blif 10 10 9 9 3363 3049 3575 3722
des.blif 5 4 5 4 855 888 880 946
diffeq.blif 8 8 8 6 637 667 648 725
dsip.blif 3 3 3 3 689 689 689 901
elliptic.blif 10 10 9 7 1796 1941 1886 2094
ex1010.blif 6 6 6 6 2555 2520 2608 2625
ex5p.blif 5 5 5 5 560 543 685 685
frisc.blif 13 13 12 9 1743 1723 1797 1834
misex3.blif 5 5 5 5 810 786 793 777
pdc.blif 7 7 7 7 2175 2086 2081 2028
s298.blif 9 8 8 8 648 655 645 651
s38417.blif 7 7 7 6 2629 2622 2621 2668
s38584.1.blif 6 6 6 6 2371 2428 2394 2414
seq.blif 5 5 5 5 888 876 893 935
spla.blif 6 6 6 6 1910 1853 1860 1794
tseng.blif 8 8 6 6 648 694 689 748

Raito 1.00 0.98 0.96 0.91 1.00 1.00 1.04 1.08

	I. Introduction
	II. previous work
	III. Background
	IV. Algorithm
	A. Semi-canonical form
	B. Library representation
	C. Library construction
	D. A case study of LMS: AIG level mininization

	V. experimental results
	A. Library coverage
	B. Constructing library for 6-input functions
	C. Using LMS to optimize delay after LUT mapping

	VI. Conclusions
	Acknowledgments
	References

