Scalable and Scalably-Verifiable Sequential Synthesis
Alan Mishchenko Michael Case Robert Brayton Stephen Jang

 Department of EECS Xilinx Inc.

 University of California, Berkeley San Jose, CA

 {alanmi, casem, brayton}@eecs.berkeley.edu sjang@xilinx.com
Abstract

This paper describes an efficient implementation of sequential synthesis that uses induction to detect and merge sequentially-equivalent nodes. State-encoding, scan chains, and test vectors are essentially preserved. Moreover, the sequential synthesis results are sequentially verifiable using an independent inductive prover similar to that used for synthesis, with guaranteed completeness. Experiments with this sequential synthesis show effectiveness. When applied to a set of 20 industrial benchmarks ranging up to 26K registers and up to 53K 6-LUTs, average reductions in register and area are 12.9% and 13.1% respectively while delay is reduced by 1.4%. When applied to the largest academic benchmarks, an average reduction in both registers and area is more than 30%. The associated sequential verification is also scalable and runs about 2x slower than synthesis. The implementation is available in the synthesis and verification system ABC.
1 Introduction

Given a circuit with registers initialized to a given state, the set of reachable states includes any state that can be reached from the initial state. Sequential equivalence requires that the two circuits produce identical sequences at the primary outputs (POs) for the same primary input (PI) sequence, starting at the initial states. A sufficient condition for this is that they are combinationally equivalent on the reachable states.
Combinational synthesis (CS) involves changing the combinational logic of the circuit with no knowledge of its reachable states. As a result, the Boolean functions of the POs and register inputs are preserved for any state of the registers. CS methods allow some flexibility in modifying the circuit structure and can be easily verified using state-of-the-art combinational equivalence checkers (CEC). However, they have limited optimization power since reachable state information is not used.

In contrast, traditional sequential synthesis (TSS) can modify the circuit while preserving behavior on the reachable states allowing arbitrary changes on the unreachable states. Thus after TSS, the POs and register inputs can differ as combinational functions expressed in terms of the register outputs and PIs, but the resulting circuit is sequentially-equivalent to the original one. Since many practical circuits have a small fraction of the state space reachable, TSS can result in significant logic restructuring, compared to CS. Thus, when the CS methods reach their limits, TSS becomes the next thing to try. This is happening now because design teams that used only CS are turning to sequential synthesis for additional delay minimization and power reduction.

SIS [25] offers several non-scalable sequential operations, such as extracting the reachable states and using their complement as don’t cares. The scalable sequential synthesis used in SIS is predominantly structural. It performs register sweep, which merges stuck-at-constant registers, and register retiming, which moves registers over combinational nodes while preserving the sequential behavior of the POs. In addition to its limited nature, a significant drawback is that it changes state encoding and hence may invalidate initialization sequences and functional test-vectors developed for the original design. Also, it was shown that if retiming is interleaved with CS, then proving sequential equivalence is, in general, PSPACE-complete [12].
Thus, sequential synthesis based on register sweeping and retiming, although scalable, has limited optimization power, invalidates state-encoding, initialization-sequences and test-benches, and may be hard to verify.
This paper is concerned with a type of scalable sequential synthesis based on identifying pairs of sequentially-equivalent nodes (i.e., signals having the same or opposite values in all reachable states). Such equivalent nodes can be merged without changing the sequential behavior of the circuit, leading to a substantial reduction of the circuit, e.g. some pieces of logic can be discarded because they no longer affect the POs. Simple induction [10] and k‑step induction [5]

 REF _Ref178785193 \r \h
 * MERGEFORMAT [23]

 REF _Ref178785175 \r \h
 * MERGEFORMAT [17] can be used to compute pairs of sequentially-equivalent nodes. This technique subsumes several methods to detect equivalent registers [15]

 REF _Ref195932152 \r \h
 * MERGEFORMAT [26].
We call this kind of synthesis, verifiable sequential synthesis (VSS) and show that it mitigates most of the drawbacks listed above for TSS. Although VSS is quite restrictive compared to TSS, it is scalable and powerful, as can be seen from the experimental results. Unlike retiming, VSS requires only minor systematic changes to the state-encoding, initialization-sequences, and test-benches, only involving dropping the state-bits of the removed registers. Also, it is significant that, unlike verifying after TSS, the results of VSS are straight-forward to verify. We prove in Section 4 and confirm experimentally in Section 5 that, the runtime of verification after VSS can be faster than VSS itself.

The contributions of this paper are:
· a new efficient method for partitioned register-correspondence and partitioned signal-correspondence,

· an efficient scalable implementation of k-step induction (primarily due to speculative reduction and partitioning),

· an efficient and scalable sequential synthesis flow, resulting in significant reductions in registers and area over CS (demonstrated over a large set of industrial designs and the largest available academic benchmarks), and
· a theoretical result (supported by experiments) that inductive sequential equivalence checking (ISEC) is scalable and complete after VSS.
The rest of the paper is organized as follows. Section 2 describes the background. Section 3 describes the algorithms of VSS. Section 4 discusses verification after VSS. Section 5 reports experimental results. Section 6 concludes the paper and outlines possible future work.

2 Background

A Boolean network is a directed acyclic graph (DAG) with nodes corresponding to logic gates and directed edges corresponding to wires connecting the gates. The terms Boolean network and circuit are used interchangeably in this paper. If the network is sequential, the memory elements are assumed to be D‑flip-flops with initial states. The terms memory elements, flop-flops, and registers are used interchangeably in this paper.
A node n has zero or more fanins, i.e. nodes that are driving n, and zero or more fanouts, i.e. nodes driven by n. The primary inputs (PIs) are nodes without fanins in the current network. The primary outputs (POs) are a subset of nodes of the network. If the network is sequential, it contains registers whose inputs and output are treated as additional PIs/POs in combinational optimization and mapping. It is assumed that each node has a unique integer called its node ID.

A fanin (fanout) cone of node n is a subset of all nodes of the network, reachable through the fanin (fanout) edges from the given node. A maximum fanout free cone (MFFC) of node n is a subset of the fanin cone, such that every path from a node in the MFFC to the POs passes through n. Informally, the MFFC of a node contains all the logic used exclusively by the node. If a node is removed, its MFFC can also be removed.

Merging node n onto node m is a structural transformation of a network that (1) transfers the fanouts of n to m and (2) removes n and its MFFC. Merging is often applied to a set of nodes that are proved to be equivalent. In this case, one node is denoted as the representative of an equivalence class, and all other nodes of the class are merged onto the representative. The representative can be any node of the class such that its fanin cone does not contain any other node of the same class. In this work, the representative is a node of the class that appears first in given topological order.
SAT sweeping is a technique for detecting and merging equivalent nodes in a combinational network [16][14][19][20]. SAT sweeping is based on a combination of simulation and Boolean satisfiability. Random simulation is used to divide the nodes into candidate equivalence classes. Next, each pair of nodes in each class is considered in a topological order. A SAT solver is invoked to prove or disprove their equivalence. If the equivalence is disproved, a counter-example is used to simulate the circuit, which may result in disproving other candidate equivalences. SAT sweeping is used as a robust combinational equivalence checking technique and as a building block in VSS.
Bounded model checking (BMC) [4] uses Boolean satisfiability to prove a property true for all states reachable from the initial state in a fixed number of transitions (BMC depth). In the context of equivalence checking, BMC checks pair-wise equivalence of the outputs of two circuits under verification. A timeframe (or frame) of a sequential circuit is one copy of combinational logic used in the circuit. When the circuit is unrolled for k frames, its combinational logic is duplicated k times and the registers between the frames are removed. BMC is typically implemented by applying SAT sweeping to the unrolled frames of the circuit.
3 Sequential synthesis

This section gives an overview of the steps used in VSS.

3.1 Register sweep

The idea of register sweep is to look for registers that are stuck-at constant, depending on the initial state. Initial x-values are allowed. Structural register sweep iterates the procedure in Figure 3.1 as long as there is a reduction in the number of registers.
This procedure starts with the assumption that all registers have the 0 initial state. If a registers has a 1 initial state, it is transformed by adding a pair of inverters at the output of the register and retiming the register forward over the first inverter. If a register has a don’t-care initial state, it is transformed by adding a new PI and a MUX controlled by a special register that produces 0 in the first frame and 1 afterwards.

Detection of stuck-at-constant registers using ternary simulation is based on the algorithm given in [6]. This assigns the initial values to the registers and simulates the circuit using x-valued primary inputs. The ternary states reached at the registers are collected. Simulation stops when a new ternary state is equal to a previously seen ternary state. At this point, if some register has the same constant value in every reachable ternary state, this register is declared stuck-at-constant.

aig runStructuralRegisterSweep(aig N)

{

 // start the set of equivalent register pairs

 set of node subsets Classes = (;

 // detect registers with combinationally-equivalent inputs

for each register r1 in aig N
 if (there is register r2 in aig N with the same driver as r1)

 Classes = Classes ({r1, r2};

 // detect registers that are stuck-at-constant

 analyzeRegistersUsingTernarySimulation(N);

 for each register r1 in aig N
 if (register r1 is stuck-at-constant c)

 Classes = Classes ({c, r1};

 // use the equivalences to reconstruct the aig

 aig N1 = mergeEquivalences(N, Classes);

 return N1;

}

Figure 3.1. Structural register sweep.

3.2 Signal-correspondence

Signal-correspondence is a computation of a set of classes of sequentially-equivalent nodes using induction. The classes are k‑step-inductive in the following sense:
· Base Case - they hold for all inputs in the first k frames starting from the initial state, and
· Inductive Case - if they are assumed to be true in the first k frames starting from any state, they hold in the k+1st frame.
Our implementation of signal-correspondence follows previous work in [10]

 REF _Ref178785170 \r \h
 * MERGEFORMAT [5]

 REF _Ref178785193 \r \h
 * MERGEFORMAT [23]

 REF _Ref178785175 \r \h
 * MERGEFORMAT [17]. The pseudo-code is given in Figure 3.2.
It was found that the scalability of signal-correspondence hinges on the way the candidate equivalences are assumed before they are proved in the k+1st frame of the inductive case. We use a technique known as speculative reduction, pioneered in [23]. A similar approach was proposed and used in [17].

Speculative reduction merges any node of an equivalence class in each of the first k time frames onto its representative. After merging, the non-representative node is not removed, because a constraint is added to assert that this node and its representative are equal. Merging facilitates logic reduction in the fanout cone of the node. For example, an AND gate with inputs a and b can be removed if b has been merged onto a. Propagating these changes can make downstream merges trivial and many corresponding constraints redundant. Experiments confirm a dramatic decrease in the number of constraints added to the SAT solver. The gain in runtime due to speculative reduction can be several orders of magnitude for large designs.
aig runSignalCorrespondence(aig N, int k)

{

 // detect candidate equivalences using random simulation

 set of node subsets Classes = randomSimulation(N);

 // refine equivalences by BMC from the initial state for depth k-1
 // (this corresponds to the base case)
 refineClassesUsingBMC(N, k-1, Classes);

 // perform iterative refinement of candidate equivalence classes

 // (this corresponds to the inductive case)
 do {

 // do speculative reduction of k-1 uninitialized frames

 network NR = speculativeReduction(N, k-1, Classes);

 // derive SAT solver containing CNF of the reduced frames

 solver S = transformAIGintoCNF(NR);

 // check candidate equivalences in k-th frame

 performSatSweepingWithConstraints(S, Classes);

 }

 while (Classes are refined during SAT sweeping);

 // merge computed equivalences

 aig N1 = mergeEquivalences(N, Classes);

 return N1;

}

Figure 3.2. Signal-correspodence using k-step induction.

3.3 Partitioned register-correspondence

Register-correspondence is a special case of signal-correspondence, when candidate equivalences are limited to register outputs. There are two key insights here. One is that for the k = 1 case, it is enough to consider one time-frame of the circuit, while signal-correspondence requires at least two time-frames. This is because the inductive case can look at the register outputs in the first time frame.
set of node subsets partitionOutputs(aig N, parameters Pars)

{

 // for each PO, compute its structural support in terms of PIs

 set of node subsets Supps = findStructuralSupps(N);

 // start the output partitions

 set of node subsets Partitions = (;

 // add each PO to one of the partitions

 for each PO n of aig N in a degreasing order of support sizes {

 node subset p = findMinCostPartition(n, Partitions, Pars);

 if (p != NONE)

 p = p ({n};

 else

 Partitions = Partitions ({{n}};

 }

 // merge small partitions

 compactPartitions(Partitions, Pars);

 return Partitions;

}

Figure 3.3.1. Output-partitioning for induction.

The second insight is that using only one timeframe allows partitioning to be effective. Verification of the equivalences can be done by partitioning the registers and proving each partition separately. Each partition must include its transitive fanin, which for one frame can be a small fraction of the circuit, but for two or more time frames can become nearly the whole circuit. A side benefit is that this is obviously parallelizable.

It is typical that some of the speculated equivalences do not hold, so refinement is needed. Since partitioning is fast, repartitioning can be done during each refinement iteration. This leads to improved performance, compared to using an initial partition across multiple refinements.

The idea of partitioning was motivated by observing that most of the runtime of signal-correspondence for large designs was spent in Boolean constraint propagation during the satisfiable SAT runs plus simulation of the resulting counter-examples. Partitioning allows the inductive problem to be solved independently by several instances of a SAT solver, without impacting the completeness of equivalences proved.

Our partitioning algorithm is shown in Figure 3.3.1. The partitions found by the algorithm are used in the procedure performSatSweepingWithConstraints of Figure 3.2, which does register-correspondence by limiting candidates to register outputs.

The partitioning algorithm in Figure 3.3.1 takes a combinational AIG and a set of parameters, e.g. bounds on the partition sizes. The structural supports for all outputs (these are the register inputs for the single time frame) are computed in one sweep over the network. These are sorted by support size. The outputs are added to the partitions in decreasing order of their support sizes. The procedure that determines the partition to which an output is added, considers the cost of adding the output to each of the partitions. The cost used is a linear combination of attraction (proportional to the number of common variables) and repulsion (proportional to the number of new variables introduced in the partition if the given output is added). The coefficients of the linear combination were found experimentally. In addition to the cost considerations, a partition is not allowed to grow above a given limit. If the best cost of adding an output exceeds another limit, NONE is returned. In this case, the calling procedure starts a new partition. In the end, some partitions are merged if their sizes are below a given minimum.
The following observations are used when creating a partition:

· All nodes in a candidate class are added to one partition (allows for proving the largest set of register equivalences).
· Constant candidates can be added to any partition.
· Candidates are merged at the PIs and proved at the POs.
· After solving all partitions, the classes are refined if counterexamples are found.

[image: image1]
Figure 3.3.2. Illustration of output partitioning for induction.

An example in Figure 3.3.2 illustrates partitioning for induction with two candidate equivalence classes of registers, {A, B} and {C, D}, which are added to different partitions. Note that the equivalences A = B and C = D are assumed in both partitions.

3.4 Partitioned signal-correspondence

Partitioning for register-correspondence is efficient and does not degrade the quality of results. In other words, a register equivalence found by register-correspondence without partitioning can also be found using the partitioned approach.
We investigated a similar lossless partitioning approach for signal-correspondence. In this case, two time-frames of the designs are to be partitioned so that the resulting partitions contain all relevant constraints. Because the total number of constraints is typically in the tens of thousands and the number of constraints affecting one property (a candidate equivalence) is typically in the hundreds, the partitions for signal-correspondence are harder to compute. Moreover, experiments have shown that this approach tends to create partitions with thousands of registers. In some cases, the only way to ensure losslessness, is to perform signal-correspondence on the whole design.
When it was found that the lossless partitioning is not feasible for signal-correspondence, we developed a fast lossy approach. The idea is to divide registers into groups while minimizing dependencies between the groups. Each register group together with logic feeding into it becomes a partition. If a partition depends on external registers, they are replaced by free variables.
Now when signal-correspondence is applied to the resulting partitions, it computes a conservative approximation. We experimented with several ways of grouping registers and found a simple approach that works. The registers are divided into groups, each containing a given number of them, by considering registers in the order in which they are specified in the design. This approach is used in the experimental results reported below.
4 Sequential equivalence checking (SEC) and scalability
SEC starts with construction of the sequential miter between the two circuits to be compared. The pseudo-code for a form of SEC, based on induction, is shown in Figure 4.1. This is denoted ISEC in this paper. The sequence of transformations applied by the integrated ISEC command in ABC (command dsec) illustrates how synthesis is used in verification. The procedure stops as soon as the sequential miter is reduced to a constant zero, or a counter-example is found. Termination conditions are checked after any command; e.g., after register sweeping or after signal-correspondence (not shown in the pseudo-code). Names of the corresponding stand-alone commands in ABC are given to the right of procedure calls in pseudo-code of Figure 4.1. Note that a major part of ISEC is the synthesis operations from Section 3.

The main verification result of this paper is related to the scalability of sequential verification after VSS.

Theorem. Let N be a sequential circuit with a given initial state. Suppose some signals in N are proved sequentially-equivalent using VSS with k-step induction and merged by replacing each signal by the representative of its equivalence class. Assume that the logic is not further restructured and denote the resulting circuit by N’. Let M be the miter of N and N’. Then the equivalences of the corresponding POs of N and N’ can be proved by k-step induction, where k is the same as used in VSS.

Figure 4.2 illustrates the theorem. Synthesis based on k-step induction (shown on the left) transforms circuit N into circuit N’. Verification based on k-step induction (shown on the right) is applied to miter M, derived from N and N’. When all pairs of outputs of N and N’ are proved equivalent, the output of the miter is proved identical to the constant-0 Boolean function.
Proof: Consider circuit N and nodes a and b proved equivalent using k-step induction. When circuit N’ is derived from N by merging equivalent nodes, node a’ in N’ is created to represent both nodes a and b in N. By construction node a’ in N’ is sequentially equivalent to nodes a and b in N. Since the logic was not further restructured after synthesis, miter M contains the nodes of both circuits N and N’. Since nodes a, b, and a’ are sequentially equivalent, they fall into the same equivalence class of M. This is illustrated in Figure 4.2.
sequentialEquivalenceChecker(network N1, network N2)

{

// convert networks to AIG; pair PIs/POs by name;
// transform registers to have constant-0 initial state
aig M = createSequentialMiter(N1, N2);// command “miter -c”
// remove logic that does not fanout into POs

runSequentialSweep(M); // command “scl”
// remove stuck-at and combinationally-equivalent registers

runStructuralRegisterSweep(M); // command “scl -l”

// move all registers forward and compute new initial state;
// this command can be disabled by switch “–r”, e.g. “dsec –r”

runForwardRetiming(M); // command “retime –M 1”

// merge sequential equivalent registers

// (this completely solves SEC if only retiming was performed)

runPartitionedRegisterCorrespondence(M); // com. “lcorr”
// merge comb. equivalence before trying signal-correspondence

runCombinationalSatSweeping(M); // command “fraig”
for (k = 1; k (64; k = k * 2) {
// merge sequential equivalences by k-step induction

runSignalCorrespondence(M, k); // command “ssw –K”
 // minimize and restructure speculated combinational logic

 runAIGrewriting(M); // command “drw”
 // move registers forward after logic restructuring

 runForwardRetiming(M); // command “retime –M 1”
 // target satisfiable SAT instances

 runSequentialAIGsimulation(M); // command “sim”
}

// if miter is still unsolved, save it for future research

dumpSequentialMiter(M); // command “write_aiger”
}

Figure 4.1. ISEC - Integrated inductive SEC in ABC.

A feedback edge set S is a set of nodes in a sequential circuit C such that all sequential loops of C are broken by a node in S. According to [13], for the equivalence of two sequential circuits, C and C’, to be inductive, it is sufficient to find two feedback edge sets, S and S’, in C and C’, respectively, such that for every node in S, there exists an equivalent node in S’, and vice versa. In this case, the set of equivalence classes of nodes in the sequential miter constructed for C and C’ contains classes that combine, for each node of S, a node from S’, and vice versa.

[image: image2]
Figure 4.2. Illustration for the proof of the theorem.

Now recall the discussion illustrated in Figure 4.2. It was shown that, among the equivalence classes of miter M, there are classes containing nodes a and b from N, and node a’ from N’. For each node a’ of N’, there exists a sequentially-equivalent node a in N. Similarly, for each node a or b in N, there exists a sequentially-equivalent node a’ in N’. Since the set of all nodes of a circuit is a trivial feedback edge set, both N and N’ have feedback edge sets satisfying the above condition. According to [13], equivalence of N and N’ is inductive.

Moreover, sequential synthesis used k-step induction to prove equivalences in circuit N, which resulted in circuit N’. When k‑step induction is applied to the miter composed of N and N’, the circuit structure of M has the same inductive properties as that of N, while N’ is structurally a subset of N. Therefore, equivalence classes of M can be proved by induction with depth k. Q.E.D.

In the above theorem it is important that there is no further logic restructuring after VSS. Otherwise, equivalent points common to both networks may be lost, resulting in the loss of the ability to prove equivalence inductively [13]. It is also important that when ISEC is applied to the results of VSS, retiming is disabled during verification (use command dsec –r).

However, for ISEC not specific to VSS, it was found experimentally that applying the most-forward retiming to the sequential miter before k-step induction often leads to substantial speed-ups - but only if some form of retiming was applied during synthesis! In the VSS experiments (Section 5), retiming is not used and it was found helpful to skip retiming when verifying the results of VSS. The intuition is that as a result of merging nodes in VSS, structural changes in the circuit allow registers to travel to different locations after the most-forward retiming. When this happens, alignment of the register locations across the original and the final circuit may be lost. On the other hand, if retiming is used as part of synthesis, then applying the most-forward retiming during verification facilitates alignment of the registers in both copies of the design. This alignment is perfect if retiming was the only transformation during synthesis. In this case, register-correspondence using simple induction is enough to solve the verification problem [13]. But even if some logic restructuring was done before or after retiming, the most-forward retiming during verification tends to increase the number of matches of register locations. This tends to speed up verification and help solve difficult instances by making them inductive.
5 Experimental results

The synthesis and verification algorithms are implemented in ABC [3] as commands scl, lcorr, ssw and dsec. The SAT solver used is a modified version of MiniSat-C_v1.14.1 [9]. The experiments targeting FPGA mapping into 6-input LUTs were run on an Intel Xeon 2-CPU 4-core computer with 8Gb of RAM. The resulting networks are verified by ISEC.
The experiments were performed on 20 industrial sequential designs. For multi-clock designs, only the logic belonging to the most active clock domain was extracted and used. The registers of the remaining clock domains were treated as additional PIs and POs. The registers with asynchronous sets/resets were also treated as additional PIs and POs. The synchronous logic for set/reset and clock enable signals was converted to be part of the design logic. The original initial states of the registers were preserved. If a register has a don’t-care initial state, it was replaced by the zero initial state for the sake of synthesis. The results of sequential synthesis after this transformation are conservative.
The profile of all benchmarks is shown in the first left part of Table 2. The columns “PI”, “PO”, and “Reg” show the number of primary inputs, primary outputs, and registers in the designs after preprocessing described above.

The following ABC commands were included in the scripts used to collect the experimental results:

· resyn is a CS script that performs 5 iterations of AIG rewriting [22]
· resyn2 is a CS script that performs 10 iterations of AIG rewriting that are more diverse than those of resyn
· choice is a CS script that allows for accumulation of structural choices [7]; choice runs resyn followed by resyn2 and collects three snapshots of the network: the original, the final, and the intermediate one saved after resyn
· if is a structural FPGA mapper with priority cuts [21], area recovery, and support of mapping with structural choices [7] (the mapper computes and stores at most eight 6-input priority cuts at each node; it performs five iterations of area recovery, three with area flow and two with exact local area)

· scl is a structural register sweep (Section 3.1)
· lcorr is a partitioned register-correspondence computation using simple induction (k = 1) (Section 3.3)

· ssw is a signal-correspondence computation using k-step induction (Section 3.2)

· dsec is an ISEC command (Section 4)

Four experimental runs are reported in Table 1:

· The baseline (columns “if”) corresponds to a typical run of high-effort technology-independent CS and technology mapping with structural choices for FPGA architectures with 6-LUTs. Script baseline is defined as five iterations of commands (choice; if –C 12 –F 2), followed by choosing the best result produced at the end of any iteration.
· The structural register sweep (columns “scl”) stands for merging registers with identical combinational drivers and sweeping stuck-at-constant registers detected by ternary simulation [6], followed by baseline, i.e., five iterations of mapping with structural choices.
· The register-correspondence (columns “lcorr”) consists of register sweep and partitioned register-correspondence followed by baseline.
· Signal-correspondence (columns “ssw”) consists of register sweep, partitioned register-correspondence, and signal-correspondence followed by baseline. In signal-correspondence, the simple induction is used (k = 1).
The row “Geomean” in Table 1 lists the geometric averages of the parameters after the corresponding runs. The rows “Ratio” shows the ratios of the averages across sections of the table.
Synthesis results

The quality of results reported in Table 1 is summarized in Figure 5.1. In this figure, the blue, dark red, and rose (gray, black, and white) bars show the reductions after structural register sweep, register-correspondence, and signal-correspondence, respectively. A substantial reduction over the baseline (about 13%) is achieved on the industrial designs in both registers and area, while the delay is reduced by about 1%.

An additional experiment was performed on 25 academic benchmarks. The breakdown of results for these benchmarks (registers, area, delay, and runtime) can be found online [27]. Another experiment was run on 9 industrial benchmarks from IBM. On this set, the reduction in registers and LUTs after signal-correspondence is 14% and 9%, respectively.
The savings in registers and area may have several sources:

· Tools deriving logic netlists from HDLs may create identical or equivalent registers.

· Designers writing RTL may attempt logic duplication early in the design flow.

· Some circuits are over-designed (available functionality is unreachable when the design starts from its initial state).
[image: image3.emf]QoR Comparison

-14.00%

-12.00%

-10.00%

-8.00%

-6.00%

-4.00%

-2.00%

0.00%

Scl Lcorr Ssw

Scl

-4.59% -3.45% -1.07%

Lcorr

-12.26% -9.36% -0.10%

Ssw

-12.94% -13.12% -1.52%

Lat Lut Lev

Improvement (negative is good)

Figure 5.1. Quality of results comparison of different methods..

Partitioned signal-correspondence

Table 3 shows the results of signal-correspondence with design partitioning. The purpose of this experiment is to show the runtime/performance trade-off when the lossy partitioning is used, as described in Section 3.4. In this experiment, 8 out of 20 designs with more than 9000 registers are run with two flows:

The flow without partitioning:
 ○ scl; lcorr
 ○ ssw
 ○ 5x (choice; if –C 12 –F 2)

 ○ pick the best among the results produced by 5 runs.

The flow with partitioning:
 ○ scl; lcorr
 ○ ssw –P 9000 // partition size is 9000
 ○ 5x (choice;if –C 12 –F 2)

 ○ pick the best among the results produced by 5 runs.
After partitioning, the runtime of signal-correspondence (Columns “Time1”) is reduced by 45.9% (1705 seconds vs. 922 seconds) and the runtime of the entire flow (columns “Time2”) is reduced by 40.9% (1898 seconds vs. 1122 seconds). The register count is 0.3% worse, the LUT count is 0.4% worse, while the level count does not change.
Verification results

The geometric averages of synthesis and verification runtimes (column “dsec” in Table 2) for the industrial benchmarks are close to 150 sec and 220 sec, respectively.

We also tried applying ISEC to several sets of industrial problems, which had not been synthesized by VSS. These problems ranged in size from less than a hundred to several thousand registers. Most were solved successfully in several minutes, much faster than using the existing SEC algorithms, but on some ISEC gave up after attempting k-step induction up to a predefined limit of k = 32. The detailed results are not reported in this paper because the type of synthesis is unknown and therefore these results are not relevant to VSS. However, the results do suggest that ISEC is applicable to general-case SEC.

Scalability of verification

To confirm the importance of preserving logic structure after VSS before ISEC (stated in the theorem of Section 4), two additional experiments were performed on the academic benchmarks: (1) ISEC was applied to the results of VSS followed by CS, (2) ISEC was applied to the results of VSS followed by minimum-delay retiming and CS. In both cases, CS was the same as in the baseline flow reported in columns “if” of Table 1. The geometric mean runtime of ISEC in these two experiments increased by 2.5x and 14x, respectively. In the second experiments that included retiming, timeouts at 5000 seconds were observed in 6 out of 25 academic benchmarks used.

The breakdown of runtimes for the academic benchmarks in the two additional experiments can be found online [27].

6 Conclusions and future work

This paper presents a sequential synthesis method and implementation (VSS) and a corresponding scalable approach to ISEC that can efficiently validate the VSS results. The algorithms have the following salient features:

· efficient implementation using partitioned inductive solving,
· savings in registers and area without increasing the delay,
· minimum modification to state encoding, scan chains, and functional test vectors after synthesis,
· scalable sequential verification by an inductive prover comparable in runtime to that used for scalable synthesis.

The experimental results on both academic and industrial benchmarks confirm the practicality of the proposed synthesis and show affordable runtimes of unbounded SEC after VSS. Although we used the same code to synthesize and verify the results, we note that the verification phase should use an independent inductive prover for insurance purposes. Of course, such a prover can use the ideas of this paper for efficient implementation.
In practice, CS should be run after VSS to take full advantage of the VSS results. However, in this case, we can’t guarantee scalable verification and demonstrated this with some additional experiments when both CS and retiming were used. One possibility to guarantee verifiability would be save the initial circuit C0, apply CS (say, script baseline) and store the result as circuit C1. Then, run VSS and store the result as circuit C2. Finally, confine all synthesis after this to CS, resulting in circuit C3. Then, a scalable SEC verification would involve the sequence CEC(C0, C1), ISEC(C1,C2), CEC(C2, C3). This approach can be implemented in commercial tools, resulting in a scalable sequential verification methodology.
Future work in this area will include:

· Tuning the inductive prover for scalability (for example, using unique-state constraints, lazy simulation, etc).
· Developing additional sequential engines (interpolation [18], phase abstraction [6], localization, target enlargement, etc).
· Extending the proposed form of sequential synthesis to include (a) on-the-fly retiming [1], (b) logic restructuring using unreachable states as external don’t-cares, (c) iterative processing similar to that of combinational synthesis [22].
We also plan to make our implementation of VSS applicable to sequential circuits with multiple clock domains and different register types. For this, registers will be grouped into classes. Each class will include registers of the same type clocked by the same clock. Merging of registers will be allowed if they belong to the same class. Merging of combinational nodes will be allowed if they are in the cone of influence of registers of the same class.

Acknowledgements

This work was supported in part by SRC contracts 1361.001 and 1444.001, NSF grant CCF-0702668 entitled "Sequentially Transparent Synthesis", and the California MICRO Program with industrial sponsors Actel, Altera, Calypto, IBM, Intel, Intrinsity, Magma, Synopsys, Synplicity, Tabula, and Xilinx. The authors are indebted to Jin Zhang for her careful reading and useful suggestions in revising the manuscript.

References

[1] J. Baumgartner and A. Kuehlmann, “Min-area retiming on flexible circuit structures”, Proc. ICCAD’01, pp. 176-182

[2] J. Baumgartner, H. Mony, V. Paruthi, R. Kanzelman, and G. Janssen. “Scalable sequential equivalence checking across arbitrary design transformations”. Proc. ICCD’06.

[3] Berkeley Logic Synthesis and Verification Group. ABC: A System for Sequential Synthesis and Verification. Release 70930. http://www-cad.eecs.berkeley.edu/~alanmi/abc

[4] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic model checking without BDDs”. Proc. TACAS ‘99, pp. 193-207.

[5] P. Bjesse and K. Claessen. “SAT-based verification without state space traversal”. Proc. FMCAD'00. LNCS, Vol. 1954, pp. 372-389.

[6] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction for formal verification”, Proc. ICCAD’06, pp. 1076-1082.

[7] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam, “Reducing structural bias in technology mapping”, Proc. ICCAD '05, pp. 519-526.

[8] J. Cong and Y. Ding, “FlowMap: An optimal technology mapping algorithm for delay optimization in lookup-table based FPGA designs”, IEEE Trans. CAD, vol. 13(1), January 1994, pp. 1-12.

[9] N. Een and N. Sörensson, “An extensible SAT-solver”. SAT ‘03. http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat
[10] C. A. J. van Eijk. Sequential equivalence checking based on structural similarities, IEEE TCAD, 19(7), July 2000, pp. 814-819.

[11] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html

[12] J.-H. Jiang and R.Brayton, “Retiming and resynthesis: A complexity perspective”. IEEE TCAD, Vol. 25 (12), Dec. 2006, pp. 2674-2686.

[13] J.-H. Jiang and W.-L. Hung, “Inductive equivalence checking under retiming and resynthesis”, Proc. ICCAD’07, pp. 326-333
[14] A. Kuehlmann, “Dynamic transition relation simplification for bounded property checking”. Proc. ICCAD ’04, pp. 50-57.

[15] B. Lin and A. R. Newton, "Exact removal of redundant state registers using Binary Decision Diagrams," Proc. IFIP TC 10/WG 10.5 Intl Conf. VLSI ‘91, Edinburgh, Scotland, pp. 277-286.

[16] F. Lu, L. Wang, K. Cheng, J. Moondanos, and Z. Hanna, “A signal correlation guided ATPG solver and its applications for solving difficult industrial cases," Proc. DAC `03, pp. 668-673.

[17] F. Lu and T. Cheng. “IChecker: An efficient checker for inductive invariants”. Proc. HLDVT ’06, pp. 176-180.
[18] K. L. McMillan. “Interpolation and SAT-Based model checking”. Proc. CAV’03, pp. 1-13

[19] A. Mishchenko, S. Chatterjee, R. Jiang, and R. Brayton, “FRAIGs: A unifying representation for logic synthesis and verification”, ERL Technical Report, EECS Dept., U. C. Berkeley, March 2005.

[20] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een, "Improvements to combinational equivalence checking", Proc. ICCAD '06, pp. 836-843

[21] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational and sequential mapping with priority cuts”, Proc. ICCAD ’07.
[22] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG rewriting: A fresh look at combinational logic synthesis", Proc. DAC '06, pp. 532-536.
[23] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman. “Exploiting suspected redundancy without proving it”. Proc. DAC’05.

[24] P. Pan and C.-C. Lin, “A new retiming-based technology mapping algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42.

[25] E. Sentovich et al. “SIS: A system for sequential circuit synthesis”. Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, UC Berkeley, 1992.

[26] E. M. Sentovich, H. Toma, and G. Berry, “Efficient latch optimization using exclusive sets”, Proc. DAC’97, pp. 8-11.

[27] http://www.eecs.berkeley.edu/~alanmi/publications/other/vss.pdf
Table 1. Register count, area, and logic level after VSS for industrial benchmarks.
	Example
	Register count
	6-LUT
	Logic level

	
	if
	scl
	lcorr
	ssw
	if
	scl
	lcorr
	ssw
	if
	scl
	lcorr
	ssw

	Ex 1
	16864
	16864
	13984
	13984
	24832
	24832
	21952
	21952
	3
	3
	3
	3

	Ex 2
	26246
	12771
	12487
	11976
	38594
	22699
	22376
	21611
	8
	7
	8
	8

	Ex 3
	892
	790
	773
	749
	1832
	1707
	1651
	1156
	5
	5
	5
	4

	Ex 4
	5886
	5886
	5847
	5779
	11749
	11749
	11557
	11170
	12
	12
	13
	12

	Ex 5
	12730
	12728
	12032
	12013
	18416
	18350
	17638
	17570
	6
	6
	6
	6

	Ex 6
	8081
	7922
	5140
	5140
	11387
	11220
	7477
	7483
	9
	9
	9
	9

	Ex 7
	265
	265
	265
	265
	2759
	2759
	2736
	2587
	4
	4
	4
	4

	Ex 8
	3003
	2984
	2460
	2460
	10767
	10753
	10197
	10140
	11
	10
	11
	12

	Ex 9
	5215
	5215
	4839
	4839
	10345
	10345
	9314
	9132
	7
	7
	7
	7

	Ex 10
	41657
	41566
	38663
	38553
	34226
	34116
	31238
	31098
	8
	8
	8
	8

	Ex 11
	11441
	11404
	10443
	10383
	24954
	24964
	23932
	23831
	16
	16
	15
	16

	Ex 12
	2784
	2774
	2642
	2608
	5900
	5862
	5516
	5233
	12
	12
	12
	13

	Ex 13
	2786
	2780
	2768
	2766
	8406
	8353
	8325
	7628
	7
	7
	8
	7

	Ex 14
	722
	722
	721
	721
	4312
	4356
	4329
	3939
	5
	5
	5
	5

	Ex 15
	20223
	20186
	17950
	17634
	52954
	52595
	47706
	46603
	11
	10
	10
	10

	Ex 16
	2154
	2154
	2107
	2087
	4312
	4299
	4182
	4073
	7
	6
	6
	6

	Ex 17
	13263
	13185
	12790
	12790
	23097
	22694
	21992
	21916
	5
	6
	5
	5

	Ex 18
	7019
	7019
	6864
	6857
	5973
	5969
	5830
	5799
	7
	7
	7
	7

	Ex 19
	2540
	2540
	1935
	1935
	6260
	6260
	5765
	5786
	7
	7
	7
	7

	Ex 20
	23517
	22316
	22276
	21865
	34012
	32410
	32386
	31188
	12
	13
	13
	12

Table 1. Register count, area, and logic level after VSS for industrial benchmarks (continued).
	Example
	Register count
	6-LUT
	Logic level

	
	if
	scl
	lcorr
	ssw
	if
	scl
	lcorr
	ssw
	if
	scl
	lcorr
	ssw

	Geomean
	5500
	5248
	4826
	4788
	11497
	11100
	10421
	9989
	7.47
	7.39
	7.46
	7.355

	Ratio
	1
	0.954
	0.877
	0.871
	1
	0.965
	0.906
	0.869
	1
	0.989
	0.999
	0.985

	Ratio
	
	1
	0.920
	0.912
	
	1
	0.939
	0.900
	
	1
	1.010
	0.996

	Ratio
	
	
	1
	0.992
	
	
	1
	0.959
	
	
	1
	0.986

Table 2. Runtime of VSS for industrial benchmarks.
	Example
	Profile
	Runtime Distribution

	
	PI
	PO
	Reg
	scl
	lcorr
	ssw
	dsec
	mapping

	Ex 1
	135
	128
	16864
	1.47
	43.50
	931.42
	2062.74
	102.12

	Ex 2
	8927
	10761
	26246
	3.00
	44.19
	1018.85
	1343.87
	67.01

	Ex 3
	2042
	485
	892
	0.17
	0.27
	0.94
	1.31
	4.23

	Ex 4
	665
	780
	5886
	0.73
	10.48
	515.06
	612.06
	110.72

	Ex 5
	966
	1432
	12730
	1.55
	218.10
	1005.17
	1909.29
	85.20

	Ex 6
	4143
	6625
	8081
	1.14
	1.79
	16.79
	10.83
	57.16

	Ex 7
	68
	64
	265
	0.14
	0.04
	5.66
	10.31
	12.29

	Ex 8
	6481
	5864
	3003
	0.60
	13.85
	38.58
	43.53
	42.89

	Ex 9
	53
	49
	5215
	0.59
	6.52
	310.02
	376.20
	90.40

	Ex 10
	2905
	3608
	41657
	8.91
	2517.73
	4972.89
	10210.98
	159.79

	Ex 11
	13204
	10913
	11441
	1.76
	58.83
	270.19
	418.84
	129.33

	Ex 12
	164
	104
	2784
	0.35
	3.31
	34.64
	52.70
	56.07

	Ex 13
	25
	329
	2786
	0.40
	3.76
	61.85
	132.50
	98.30

	Ex 14
	67
	43
	722
	0.20
	0.11
	11.86
	20.50
	23.18

	Ex 15
	4822
	4101
	20223
	4.90
	918.94
	3582.97
	6176.54
	415.22

	Ex 16
	113
	224
	2154
	0.22
	4.19
	32.05
	60.59
	19.00

	Ex 17
	1903
	2077
	13263
	1.37
	127.37
	1216.43
	2529.66
	216.86

	Ex 18
	1976
	1880
	7019
	0.69
	4.01
	59.12
	134.31
	33.45

	Ex 19
	141
	165
	2540
	0.34
	1.94
	28.49
	34.17
	47.59

	Ex 20
	3783
	4188
	23517
	3.75
	471.20
	3255.21
	4520.64
	165.88

	Geomean
	
	
	
	0.84
	11.81
	143.51
	223.10
	62.72

Table 3. Comparison of monolithic and partitioned VSS.
	
	Profile
	scl + lcorr + ssw + if
	scl + lcorr + ssw -P 9000 + if

	
	PI
	PO
	Reg
	Time1, s
	Time2, s
	Reg
	LUT
	Level
	Time1, s
	Time2, s
	Reg
	LUT
	Level

	Ex 1
	135
	128
	16864
	976.39
	1078.51
	13984
	21952
	3
	606.91
	706.83
	13984
	21952
	3

	Ex 2
	8927
	10761
	26246
	1066.04
	1133.05
	11976
	21611
	8
	503.51
	580.19
	11976
	21683
	8

	Ex 5
	966
	1432
	12730
	1224.82
	1310.02
	12013
	17570
	6
	919.78
	1023.01
	12017
	17609
	6

	Ex 10
	2905
	3608
	41657
	7499.53
	7659.32
	38553
	31098
	8
	3290.8
	3519.19
	38553
	31146
	8

	Ex 11
	13204
	10913
	11441
	330.78
	460.11
	10383
	23831
	16
	175.47
	316.49
	10383
	23859
	16

	Ex 15
	4822
	4101
	20223
	4506.81
	4922.03
	17634
	46603
	10
	2767.12
	3224.00
	17689
	46746
	10

	Ex 17
	1903
	2077
	13263
	1345.17
	1562.03
	12790
	21916
	5
	902.86
	1126.70
	12790
	22010
	5

	Ex 20
	3783
	4188
	23517
	3730.16
	3896.04
	21865
	31188
	12
	1292.08
	1484.73
	22242
	31810
	12

	Geomean
	
	
	
	1705.30
	1898.81
	15844
	25807
	7.59
	922.38
	1122.48
	15885
	25922
	7.59

	Ratio
	
	
	
	1
	1
	1
	1
	1
	0.541
	0.591
	1.003
	1.004
	1.000

Verification

Const 0

M

Synthesis

a’

a b

a b a’

k-step induction

(

k-step induction

N’

N

(

POs

PIs

?

=

?

=

=

=

=

=

D’

C’

B’

A’

D

C

B

A

D’

C’

D

C

B

A

B’

A’

D

C

B

A

1

