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Abstract 

This paper presents a new way of computing inductive invariants 

in sequential designs.  The invariants are useful for strengthening 

inductive proofs in difficult unbounded model checking instances.  

Candidate invariants are derived from a set of m-feasible cuts in 

the logic network and proved by induction.  Thus, the proposed 

computation is very scalable, and it is possible to flexibly trade 

computational effort for the expressiveness of the proved 

invariants. Experimental results on several benchmark families 

show that the proposed strengthening proves many hard 

properties that are unsolved by other model checkers. The 

implementation is publicly available in the synthesis and 

verification system ABC.  

1 Introduction 

Model checking [11][28] safety and liveness properties involves 

proving that a safety property holds on all reachable states [2]. 

Many safety properties can be verified by proving the property on 

an inductive superset of reachable states. If the superset can be 

represented compactly, then such a method is easier and more 

scalable than deriving the exact set of reachable states. Finding 

such an inductive superset is called inductive strengthening. 

This paper introduces a new way of deriving and proving an 

additional inductive property, or invariant, that (1) can be 

effective for inductive strengthening and (2) leads to a flexible 

and scalable computation that can trade computational effort for 

increased expressive power of the invariant derived. As a 

byproduct, the same invariant can be used as a source of external 

don’t cares for circuit restructuring in sequential logic synthesis. 

The proposed invariant consists of a set of clauses derived using 

m-input cuts of nodes in the sequential circuit. A cut is a boundary 

separating the node from the primary inputs and register outputs. 

Therefore the invariant is expressed in terms of groups of adjacent 

nodes in the network.  

This computation illustrates the synergy between logic synthesis 

and verification [8]. In the past, external don’t cares for logic 

synthesis were obtained by computing the set of unreachable 

states characterized by a function of the register outputs. 

However, even if these can be computed, scalability motivates the 

use of windowing where the computation is temporarily restricted 

to a node being optimized and a group of surrounding nodes. To 

use the external don’t cares they must be projected onto the inputs 

of the window.  The useful unreachable states have nontrivial 

projections onto the inputs of the windows, which form cuts in the 

network. The new idea is to skip computing the unreachable states 

and directly compute its projections onto various cuts. Although 

motivated by logic synthesis, we find these invariants to be useful 

for inductive strengthening in unbounded verification as well.  

Induction [15][5][12] is a practical model checking method, 

applicable to large designs whose size and logic complexity often 

cause other methods (such as BDD-based reachability, 

interpolation, localization, etc) to fail. A property is inductive if it 

satisfies two conditions: (base case) it holds in the design’s initial 

state(s), and (inductive case) if it holds in a particular state, then it 

holds in all states reachable from that state in one transition. 

Induction is scalable because both the base and inductive cases 

can be formulated as incremental instances of Boolean 

satisfiability (SAT) [12], which can be solved efficiently using 

modern SAT solvers [13].   

In our method, the properties are clauses plus a target property, 

and the groups of variables participating in the clauses are derived 

using efficient m-cut computation, which is adopted from LUT-

based technology mapping [24]. It avoids exhaustive cut 

enumeration [27] and computes only a small subset of useful cuts 

using priority heuristics similar to those in [14].  

The initial set of candidate clauses is detected using two types 

of random simulation, combinational and sequential. Minterms at 

a cut that appear under combinational but never under sequential 

simulation are recorded. A candidate clause is the complement of 

such a minterm.  The set of candidates is iteratively refined using 

SAT-based induction, and if the greatest fixed-point also satisfies 

the inductive base case then the conjunction of all clauses in the 

fixed point set yields the proposed inductive invariant, an over-

approximation of the reachable states. 

To make this computation efficient, a flexible framework has 

been developed for trading the number and expressiveness of the 

candidate invariant clauses for computation time. The clauses are 

proved in batches, each of which successively refines the already 

computed approximation of the reachable states. The process is 

stopped when the target property becomes inductive, or when the 

number of clauses successfully proved is sufficient for the calling 

application. 

Scalability is achieved by using heuristics for candidate clause 

generation and filtering. One heuristic limits clauses to those 

derived for cuts a few logic levels from the register outputs. 

Inductive proofs for such shallow clauses can be processed 

efficiently by partitioning the design and solving partitions in 

parallel without compromising the completeness of the result. A 

similar approach was used in [25] to partition inductive proofs for 

register correspondence.  

The rest of the paper is organized as follows. Section 2 

describes further background and relations with previous work. 

Section 3 describes the algorithms used for inductive 

strengthening. Section 4 discusses application to logic synthesis. 

Section 5 reports experimental results. Section 6 concludes the 

paper and outlines future work. 



2 Background and Related Research 

A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 

corresponding to wires connecting the gates. The terms Boolean 

network, design and circuit are used interchangeably in this paper.  

A node n has zero or more fanins, i.e. nodes that are driving n, 

and zero or more fanouts, i.e. nodes driven by n. The primary 

inputs (PIs) are nodes without fanins in the current network. 

 A fanin (fanout) cone of node n is a subset of all nodes of the 

network, reachable through the fanin (fanout) edges from the 

given node. A topological order of nodes in the network is any 

order in which any node appears later in the order than any of its 

fanins.  

If the network is sequential, the memory elements are assumed 

to be D-flip-flops. The terms memory elements, flip-flops, and 

registers are used interchangeably in this paper. The registers are 

assumed to have a fixed binary initial state. If a register has an 

unknown or a don’t-care initial state, it can be transformed to 

have 0-initial state by adding a new PI and a MUX controlled by a 

special register that produces 0 in the first frame and 1 afterwards. 

So without loss of generality, we consider only registers with a 0 

initial state. The set of reachable states includes the initial state 

and all the states reachable from it by any input sequence.  

An And-Inverter Graph (AIG) is a Boolean network composed 

of two-input ANDs and inverters represented as complemented 

attributes on the edges. 

A cut C of node n, called root, is a set of nodes of the network, 

called leaves, such that each path from a PI to n passes through at 

least one leaf. A cut is m-feasible if its size does not exceed m and 

is dominated if it contains a cut of the same root.   

A literal of a Boolean variable is the variable or its complement. 

Given a set of variables x (e.g. the set of leaves of cut C), 

a minterm is a product of literals, one for each variable in the set. 

The complement of a minterm is a clause. A product of clauses is 

a Conjunctive Normal Form (CNF). Boolean satisfiability (SAT) 

is the problem of determining whether a variable assignment 

exists that will cause a CNF to evaluate to 1.  A SAT-based 

method is a method that reduces a given problem to SAT and 

solves it using a SAT solver. 

Simulation is a way of computing node values in a circuit under 

given input values. Random simulation uses random or biased 

random input values. Simulation assigns values at the inputs and 

evaluates the internal nodes in a topological order. Simulation is 

typically performed bitwise, where 32 or 64 input patterns are 

evaluated using a single machine operation. Simulation 

information of a node is stored in a bit-string composed of many 

machine words. It is computed by a sequence of bitwise 

operations using the simulation information of the node’s fanins. 

A combinational invariant is a relation among arbitrary signals 

in the network that holds in all states. A sequential invariant is a 

relation that holds in all reachable states, but possibly fails in one 

or more unreachable states. A sequential invariant can be seen as a 

characterization of a set of states for which it holds, a set that 

includes the set of reachable states and possibly some unreachable 

states. An example sequential invariant is equality among two 

registers outputs that does not hold combinationally (in all states) 

but holds sequentially (in all reachable states).  

A candidate sequential invariant is an invariant that has not yet 

been proved (e.g. by induction or interpolation) but is suspected 

to hold (e.g. after several rounds of simulation). Such invariants 

express properties that should be proved, e.g. mutual exclusion of 

the values at two primary outputs. Model checking focuses on 

proving user-specified properties.  

Induction is often used to prove sequential invariants. Its use for 

sequential designs was pioneered in [15] and further developed in 

[5][26][17]. A sequential invariant is inductive when: (base case) 

it holds in the initial state, and (inductive case) if it holds in a 

state, then it holds in all states reachable from that state in one 

transition.  An invariant provable by induction is known as an 

inductive invariant. 

In an efficient implementation of induction, the base and the 

inductive cases are formulated as SAT instances and solved by a 

SAT solver. The solution is incremental because while each 

property in the invariant is checked independently, the same 

solver instance can be used in all the checks. This can be done 

efficiently using an incremental interface of a modern SAT solver 

[13]. More details on SAT-based induction can be found in [25]. 

The set of all reachable states is an inductive sequential 

invariant. However, not every sequential invariant is inductive. 

For example, consider an unreachable state s that has a transition 

into it from state t. The complement of the minterm composed of 

register variables representing s is a sequential invariant because it 

holds in all reachable states. This invariant is not inductive 

because it holds in t but not in s. The state failing the inductive 

case (in this case t) is called an induction leak.  

Several ways of strengthening induction are known: 

• Extending simple induction to k-step induction (k > 1) [15]. 

• Using unique-state constraints [12]. 

• Using equivalences expressed over register outputs (register 

correspondence) or over arbitrary signals in the network 

(signal correspondence) [15][26][17][25]. 

• Applying signal correspondence after timeframe expansion, 

hoping this will capture additional equivalences among 

signals across different timeframes in the original design. 

• Using implications of signals in the network [5][9][10]. 

• Using p-th invariants, that is, invariants that hold starting 

from frame p from the initial state (p > 1) [16]. 

• Incrementally computing inductive clauses in terms of 

register variables using counter-examples to induction [7]. 

 We propose using inductive strengthening based on generating 

an invariant in the form of a set of m-literal clauses. The method is 

a generalization of [9], [10], and [7], as shown in Section 3.4.  

3 Computing inductive invariants 

This section presents a new algorithm for computing inductive 

invariants in a sequential network. The algorithm is presented for 

AIGs but it is equally applicable to general logic networks.  

The overall pseudo-code of the algorithm is shown in Figure 3. 

Details are given in the subsections listed in the parentheses.  

The computation starts by enumerating for each node a subset 

of m-cuts using procedure aigEnumerateCuts (Section 3.1).  

Next, two rounds of simulation are performed. For each cut of 

size m, all 2m value assignments of the cut leaves give a set of 

minterms that will be tested with simulation.  Simulation 

information is used to determine if each minterm is likely to 

appear only under unreachable states, and for minterms that likely 

only hold in unreachable states, the complement gives a candidate 

invariant clauses.  A number of candidate clauses are collected 

and filtered using simulation information in the procedure 

aigComputeCandidates (Section 3.2).    

A set of clauses representing the candidate invariant is checked 

by the base case and then by an iterative refinement procedure 

performInductiveCase, similar to that of van Eijk [15]. When 

this procedure terminates, the conjunction of the set of remaining 



clauses, if it is non-empty, represents an inductive invariant. If 

strengthening is not sufficient (determined by procedure 

checkSufficient whose definition is application-specific), another 

round of invariant computation is performed where the candidates 

considered are those not contained in the already proved set. As a 

result, new invariants that are proved provide ever tighter 

approximations of the state space (Section 3.3). 

Figure 3.1 gives the top-level pseudocode for our proposed 

procedure, and Figure 3.2 illustrates the discovery of candidate 

sequential invariants on an example circuit. 

 
set of clauses  computeInvariants( aig N, parameters P ) 

{ 

         // compute m-cuts for all nodes 

         set of cuts Cuts = EnumerateCuts( N, P ); 
          

         // perform two rounds of simulation  

         simulation patterns Comb = SimulateComb( N, P ); 

         simulation patterns Seq = SimulateSeq( N, P ); 
          

         // iterate while the set of clauses is not sufficient 

         set of clauses S = ∅; 

while ( !checkSufficient( S ) ) { 
             

                // compute candidate clauses 

                clauses C = ComputeCandidates( N, P, Cuts, Comb, Seq ); 
             

                // refine the candidates using the base case 

                C = PerformBaseCase( C, N, P ); 
                

                // refine the candidates using van Eijk’s loop 

      do { 

                        C = PerformInductiveCase( C, N, P ); 

       } while ( CheckChanges( C ) ); 
             

                 // add newly proved invariant to the set 

                 S = S ∪∪∪∪ C; 

} 

         return S; 

} 

Figure 3.1. Pseudo-code for computing inductive invariants. 
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Figure 3.2. Example candidate sequential invariant derivation.  

On the sample AIG, all nodes are AND gates and marks denote 

complemented edges. 

 

 

3.1 Cut computation 

For two sets of size m or less cuts A and B,  the operation A ◊ B 

is defined as:  

A ◊ B = { u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ m }. 

Let Φ(n) denote the set of m-feasible cuts of node n. If n is an 

AND node, let n1 and n2 denote its fanins. Φ(n) is computed using 

the sets of cuts of its fanins:  

1 2

{{ }} : PI
( )

{{ }} ( ) ( ) : otherwise

n n
n

n n n

∈ 
Φ =  

∪ Φ ◊Φ 
. 

Performing cut computation for the nodes in a topological order 

guarantees that the fanin cuts, Φ(n1) and Φ(n2), are available 

when the node cuts, Φ(n), are computed. The set of computed cuts 

is filtered by removing dominated cuts. This reduces runtime and 

memory without sacrifiying the expressiveness of cuts computed. 

The above complete cut enumeration [25] is practical for small 

m (m < 6) because the number of cuts is approximately linear in 

the size of the circuit. For larger m, the above procedure can be 

supplemented with a method to compute a subset of all m-cuts 

meeting some criteria. These cuts are called priority cuts [24]. The 

criterion used to prioritize the cuts for invariant computation is to 

prefer cuts with a larger average number of fanouts of the leaves 

of a cut. A similar criterion was used in [14].  

In our implementation, m is parameterizable in order to give the 

user control over the expressiveness and the number of the m-

feasible cuts.  For all benchmarks discussed in Section 5, we find 

m=4 to be sufficient. 

In the example of Figure 3.2, an example AIG is shown along 

with two sample cuts for the node a. 

3.2 Collecting candidates 

To help form candidate invariants from cuts, two rounds of 

simulation are performed: combinational and sequential. 

Combinational simulation assumes random values at the primary 

inputs and register outputs, which are treated as additional 

primary inputs. Sequential simulation assumes random values at 

the primary inputs while the register outputs are set to the initial 

state. This sequential simulation iterates over the circuit several 

times, setting the register outputs to the register inputs computed 

on the previous step, thereby accumulating simulation data for 

many reachable states. The combinational and sequential 

simulation differ in the assignments that are made to the registers; 

combinational simulation produces values under any state while 

sequential produces values under reachable states. 

Candidate clauses are collected by considering the m-cuts of all 

nodes in the AIG. Each node has two types of simulated 

minterms. A cut is analyzed to determine what values appear at 

the cut inputs. Suppose assignment 
0 1 1

...
m

x x x
−

% % %  appears N times at 

the cut inputs under combinational simulation but does not appear 

under sequential simulation. This indicates that this assignment 

may be produced at least N states and the assignment is likely not 

produced in any reachable states. Thus, the complement of this 

assignment, the clause 
0 1 1

...
m

x x x
−

∨ ∨ ∨% % % , excludes many 

unreachable states and is likely true for all reachable states. All 

such clauses are accumulated and used as candidates.  

An example of this method is illustrated in Figure 3.2.  For the 

cuts {b, c} and {e, f, g} the assignments cb  and efg  were seen to 

occur in combinational simulation and hence are not vacuous.  

The same assignments were not seen in the sequential simulation 

and likely cannot be produced on the reachable states.  

Complementing these assignments gives two candidate clauses. 

It should be noted that neither the combinational or sequential 

simulation includes all possible states.  Because the combinational 

simulation is not exhaustive, some minterms may incorrectly be 

classified as vacuous and excluded from the set of candidate 



clauses.  This affects the number of clauses we can prove, but it 

does not affect the correctness of the overall method.  Moreover, 

since such minterms do not readily appear under combinational 

simulation, they are not likely to substantially refine the 

characterization of the state space. Likewise, the sequential 

simulation is also not exhaustive.  This causes minterms to be 

promoted to candidate clauses while they may not hold for all 

reachable states.  This is not a problem because the candidate 

clauses will be refined with induction.  

Except for small circuits and small cut sizes, the number of 

candidate clauses can be large. For example, on a circuit with 1K 

registers and 15K AIG nodes, there may be 50K candidate clauses 

computed using the set of all 4-cuts. In such cases, the invariants 

can be filtered by the following heuristic: if a candidate clause is 

falsified by a large number of vectors in the combinational 

simulation then it is likely to characterize a large number of 

unreachable states.  The number of combinational simulation 

vectors that can falsify a clause determine its score, and our 

implementation has a user-controlled parameter which limits the 

number of the highest-scoring clauses considered. This heuristic 

plays an important role in selecting useful candidates.  In our 

experiments it was sufficient to limit the candidates to the 5000 

highest-scoring. 

The set of candidate clauses can lead to a stronger inductive 

invariant if it is supplemented with the candidate clauses 

expressing one-hotness conditions. These conditions are two-

literal clauses involving register outputs and can be easily 

computed using sequential simulation information. Most of these 

additional clauses cannot be collected as candidates using cuts 

because cuts include literals in the vicinity of a particular node, 

while one-hotness, if applicable, can relate registers that are far 

apart.  We found that adding the candidate one-hotness conditions 

often improves the performance of the algorithm. One reason for 

this is that many industrial designs use one-hot encoding for at 

least some of the registers. 

3.3 Proving candidates 

The well-known van Eijk procedure [15] is used to process the 

candidates and prove some of them. First, those candidates that do 

not satisfy the base case are removed. Second, the inductive case 

is performed by asserting the clauses in the first frame and 

checking them in the next frame. The counter-examples are used 

to refine the remaining candidate invariants. The failing clauses 

are removed and refinement is iterated until a fixed point is 

reached.  If non-empty, the conjunction of the clauses in this fixed 

point represents an inductive invariant.  

To derive a sufficiently tight invariant, the van Eijk procedure 

can be sequentially applied to several different sets of candidate 

invariants. An invariant proved in a run is assumed in the next 

run. Since the proved clauses form an invariant, there is no need 

to re-prove them; only new clauses need to be proved. This results 

in accumulating clauses, which increasingly refine the invariant. 

New candidate clauses are collected only if they refine the current 

invariant. If cuts of the given size do not yield additional clauses, 

the cut size can be increased to find new candidates to continue 

refining the invariant. This strengthening enhances van Eijk’s 

procedure and allows tighter invariants to be found efficiently. 

The “sufficiency” of the resulting invariant depends on the 

application. In model checking, it is sufficient if the invariant 

implies the target property. In logic synthesis, it is sufficient if it 

contains “enough” flexibility to do substantial logic restructuring.  

In model checking, the procedure can stop as soon as the proved  

invariant implies the target property. For this, the target property 

is added to the set of candidate clauses. If the property remains in 

the fixed point, it is proved. Otherwise, a new set of clauses is 

considered that provides a tighter approximation of the reached 

state set and has a better chance to prove the target property. 

3.4 Comparison with previous work 

For a description of other SAT-based approaches to model 

checking, refer to [28] and for an overview of recent work in 

induction strengthening refer to [10][7]. 

The proposed approach can be seen as a generalization of three 

previous approaches [9][10][7]. The following is a comparison: 

• Computation of m-cuts scales better than that of Boolean 

implications between signal pairs because priority cuts [24] 

only take linear-time in circuit size to compute while 

computing implications takes quadratic-time [10]. 

• The m-literal clauses have more expressive power than the 

Boolean implications of [9][10] which are essentially are 

two-literal clauses. 

• Our flexible framework for inductively proving groups of 

m-literal clauses is similar to [9], with novel heuristics to 

prioritize clauses according to their expressive power. 

• The m-clauses are computed in terms of internal variables 

rather than register outputs as done in [7], which increases 

the expressive power of the invariants. 

• The m-clause candidates are computed by simulation rather 

than from counter-examples as done in [7], which is less 

time-consuming and avoids the risk of not having inductive 

sub-clauses. 

• The inductive proof for m-clauses, with the cuts limited to a 

few levels from the register outputs, can use partitioning 

similar to [25] which increases the possibility that the 

proposed approach works for designs of any size. 

• Adding signal-correspondence and one-hotness invariants, 

which was not used in [9][10][7] gives additional strength to 

the proposed approach.  

4 Application to Logic Synthesis 

The inductive invariants proved by this method compactly 

represent unreachable state information useful as flexibility in 

circuit restructuring during logic synthesis with don’t-cares [21]. 

The following are advantages of this approach compared to 

using other types of sequential flexibility: 

• Complete set of unreachable states 

Except for small circuits, the reachable state set is hard or 

impossible to obtain. BDD-based methods for computing this 

set mostly fail on circuits with more than a 50-100 registers. 

Another disadvantage is that, if the unreachable state 

information represented with BDDs is used in sequential 

synthesis, sequential equivalence checking (SEC) is very hard 

because it doubles the number of registers. In contrast, when the 

proposed invariants are used, sequential verification tends to be 

easier because the inductive nature of the invariants tends to 

increase inductiveness of the associated SEC problems.  

• Equivalences in terms of internal signals 

Signal equivalences in terms of internal signals (signal 

correspondences) have been shown to be a powerful vehicle for 

capturing sequential flexibility. Sequential synthesis based on 

this flexibility can lead to substantial reductions in area and 

register count [25]. However, the best use of this flexibility for 

circuit restructuring, is to collapse the equivalent nodes into a 

single node and remove the others. This reduces the circuit but 

does not allow for a more fine-grain circuit restructuring 



afforded by the m-cut invariants. This is why signal equivalence 

should be computed and used as a preprocessing step before 

using the proposed inductive invariant. 

• Implications in terms of internal signals 

Signal implications among internal signals provide additional 

expressive power, compared to signal equivalences and can be 

useful in logic synthesis [9]. Detection of implications can be 

done similarly to the proposed invariants, using simulation 

information. However, m-literal clauses are more expressive 

compared to implications (2-literal clauses). In addition, 

collecting implications is harder and may require a procedure 

quadratic in the number of nodes, while collecting m-literal 

clauses is linear when priority cuts are used.   

5 Experimental Results 

The proposed algorithms are implemented in ABC [1] as 

command indcut. The SAT solver is a modified version of 

MiniSat-C_v1.14.1 [13]. The workstation used has two dual-core 

AMD Opteron 2218 CPUs with 16GB RAM, and runs x86_64 

GNU/Linux. Only one core was used in the experiments. 

Experiments were performed using two suites of model 

checking benchmarks: a set of PicoJava II benchmarks [19] and 

the TIP benchmarks [12]. Other benchmark suites from the model 

checking competition [4] were also evaluated: (a) the TIP 

benchmarks, (b) the AMBA benchmarks (all unsat), and (c) the 

L2S benchmarks (9 unsat cases). The unsat cases from the latter 

two suites could be solved easily using signal correspondence 

(ABC command ssw) [25] after combinational synthesis (ABC 

command dcompress2). Since the proposed algorithm is 

developed as a method to be applied when other methods fail, we 

do not report its performance on the AMBA and L2S suites. 

Before using the proposed algorithm to solve the properties, the 

benchmarks were first heavily synthesized: 1) sequentially 

constant or structurally redundant latches were removed, 2) 

combinational synthesis, 3) removal of redundant latches via latch 

correlation analysis, 4) combinational synthesis, 5) sequential 

signal correspondence, 6) combinational synthesis, 7) inductive 

cut computation + sequential don’t-care based resynthesis.  This 

set of synthesis operations was necessary to reduce the design 

complexity and aid our later proof. 

ABC command indcut was used in all reported experiments 

with the following default set of parameters: induction depth (K = 

1), cut size (M = 4), the limit on the number of candidate clauses 

collected (C = 5000), the maximum level of the nodes whose cuts 

are considered (L = 8), the number of times invariant computation 

was iterated (B  = 1). 

5.1 PicoJava benchmarks 

The complete set of PicoJava benchmarks includes 20 unsat 

problems. After the preprocessing steps outlined above, 9 out 20 

problems were already solved. 

 The remaining benchmarks were preprocessed and then solved 

by command indcut. Design statistics both before and after 

preprocessing are shown in the columns “Original Design” and 

“Preprocessed Design,” respectively.  “Clauses Proved” gives the 

total number of clauses proved by induct.  No more than 5000 

clauses can be proved because this was the imposed limit on the 

number of candidates.  Finally, the column “Runtime” gives the 

time in seconds needed to prove the property with induct. 

Table 5.1 shows that on average 75% of the 5000 candidate 

invariants are proved by induct. Although the set of proved 

clauses is incomplete, it was sufficient to imply the target property 

for all of the considered problems.  

5.2 TIP benchmarks 

These benchmarks are among the smallest and the most well-

studied model checking benchmarks [12]. The original set of 158 

testcases includes both sat and unsat problems. First, this set was 

filtered by removing all problems provable by signal 

correspondence with induction depth K = 4 (ABC command ssw -

F 4) or disproved by BMC of depth 100 (ABC command bmc –F 

100). This led to a subset containing 51 “hard” TIP problems.  

Applying indcut with default settings these 51 problems solved 

41 of them, with runtime for each benchmark not exceeding 1 

second. Interestingly, some of the benchmarks solved by indcut 

could also be proved by signal correspondence with very large 

induction depth. Thus, cmu_periodic_N could be proved by 

ssw -F 96 (K = 96) in 30 sec, while indcut solved it in 0.2 sec.  

The 10 remaining benchmarks not solved by indcut are: 

cmu_dme1_B, cmu_dme2_B, irst_dme4_B, irst_dme5_B, 

irst_dme6_B, nusmv_dme1-16_B, nusmv_dme2-16_B, 

texas_two_proc_6_E, vis_coherence_3_E, vis_coherence_4_E. 

These benchmarks could not be solved by indcut even when we 

modified the default set of parameters. In all cases, a subset of 

clauses was proved inductively, but the resulting invariant was not 

sufficient to imply the target property, while other candidate 

clauses implying it were not inductive. We believe that none of 

the model checkers submitted to the model checking competition 

[4] were able to solve these 10 benchmarks. 

6 Conclusions and Future Work 

This paper proposes a new method for inductively strengthening 

the model checking of safety properties. The method supplements 

existing methods and is useful for proving hard unsat problems. 

In combination with other synthesis and verification algorithms 

implemented in ABC, the proposed method solved 334 of the 344 

benchmarks from the model checking competition [4]. The 

remaining 10, plus another 27 of the 344 problems solved by the 

proposed method, were not solved by any of the entrants in the 15 

minutes allowed for each example. The hardest PicoJava example 

took less than 7 seconds.  

In summary, the contributions of this paper are:  

• A new efficient method for expressing candidate invariants 

using m-clauses formulated for the nodes in the circuit. 

• A scalable hierarchical approach to proving the candidate 

invariants, which trades off computational effort for the 

number and expressiveness of invariants generated. 

• Experiments using several benchmark suites to show that 

the proposed method can solve many difficult problems. 

Future work will include: 

• Further experiments and fine tuning using benchmarks 

contributed by industrial collaborators. 

• Integrating the induction strengthening engine into robust 

equivalence and model checkers. 

• Using the computed invariant clause sets as don’t-cares for 

circuit restructuring in logic synthesis. 

• Performing direct comparison with industrial model 

checkers. 
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Table 5.1. Experimental results for proving unsatisfiability on the PicoJava benchmarks [19]. 

Original Design Preprocessed Design Indcut Performance 
Example 

PI Reg AIG PI Reg AIG 
Clauses 

Proved 

Runtime, 

sec 

pj006 1277 703 17542 1277 332 16160 4732 5.11 

pj007 396 314 7224 396 108 6040 1183 2.60 

pj008 446 338 7555 446 139 6142 4659 2.90 

pj009 336 269 6844 336 76 5566 2555 3.25 

pj010 366 295 7493 366 89 6705 3261 2.53 

pj015 1322 775 18964 1322 370 18607 4338 6.78 

pj016 1190 671 17000 1190 303 16149 4675 5.11 

pj019 476 383 10467 476 64 7884 4311 4.48 

 


