
Cut-Based Inductive Invariant Computation

Michael Case1,2 Alan Mishchenko1 Robert Brayton1

1
 Department of EECS, University of California, Berkeley, CA

2
 IBM Systems and Technology Group, Austin, TX

{casem, alanmi, brayton}@eecs.berkeley.edu

Abstract

This paper presents a new way of computing inductive invariants

in sequential designs. The invariants are useful for strengthening

inductive proofs in difficult unbounded model checking instances.

Candidate invariants are derived from a set of m-feasible cuts in

the logic network and proved by induction. Thus, the proposed

computation is very scalable, and it is possible to flexibly trade

computational effort for the expressiveness of the proved

invariants. Experimental results on several benchmark families

show that the proposed strengthening proves many hard

properties that are unsolved by other model checkers. The

implementation is publicly available in the synthesis and

verification system ABC.

1 Introduction

Model checking [11][28] safety and liveness properties involves

proving that a safety property holds on all reachable states [2].

Many safety properties can be verified by proving the property on

an inductive superset of reachable states. If the superset can be

represented compactly, then such a method is easier and more

scalable than deriving the exact set of reachable states. Finding

such an inductive superset is called inductive strengthening.

This paper introduces a new way of deriving and proving an

additional inductive property, or invariant, that (1) can be

effective for inductive strengthening and (2) leads to a flexible

and scalable computation that can trade computational effort for

increased expressive power of the invariant derived. As a

byproduct, the same invariant can be used as a source of external

don’t cares for circuit restructuring in sequential logic synthesis.

The proposed invariant consists of a set of clauses derived using

m-input cuts of nodes in the sequential circuit. A cut is a boundary

separating the node from the primary inputs and register outputs.

Therefore the invariant is expressed in terms of groups of adjacent

nodes in the network.

This computation illustrates the synergy between logic synthesis

and verification [8]. In the past, external don’t cares for logic

synthesis were obtained by computing the set of unreachable

states characterized by a function of the register outputs.

However, even if these can be computed, scalability motivates the

use of windowing where the computation is temporarily restricted

to a node being optimized and a group of surrounding nodes. To

use the external don’t cares they must be projected onto the inputs

of the window. The useful unreachable states have nontrivial

projections onto the inputs of the windows, which form cuts in the

network. The new idea is to skip computing the unreachable states

and directly compute its projections onto various cuts. Although

motivated by logic synthesis, we find these invariants to be useful

for inductive strengthening in unbounded verification as well.

Induction [15][5][12] is a practical model checking method,

applicable to large designs whose size and logic complexity often

cause other methods (such as BDD-based reachability,

interpolation, localization, etc) to fail. A property is inductive if it

satisfies two conditions: (base case) it holds in the design’s initial

state(s), and (inductive case) if it holds in a particular state, then it

holds in all states reachable from that state in one transition.

Induction is scalable because both the base and inductive cases

can be formulated as incremental instances of Boolean

satisfiability (SAT) [12], which can be solved efficiently using

modern SAT solvers [13].

In our method, the properties are clauses plus a target property,

and the groups of variables participating in the clauses are derived

using efficient m-cut computation, which is adopted from LUT-

based technology mapping [24]. It avoids exhaustive cut

enumeration [27] and computes only a small subset of useful cuts

using priority heuristics similar to those in [14].

The initial set of candidate clauses is detected using two types

of random simulation, combinational and sequential. Minterms at

a cut that appear under combinational but never under sequential

simulation are recorded. A candidate clause is the complement of

such a minterm. The set of candidates is iteratively refined using

SAT-based induction, and if the greatest fixed-point also satisfies

the inductive base case then the conjunction of all clauses in the

fixed point set yields the proposed inductive invariant, an over-

approximation of the reachable states.

To make this computation efficient, a flexible framework has

been developed for trading the number and expressiveness of the

candidate invariant clauses for computation time. The clauses are

proved in batches, each of which successively refines the already

computed approximation of the reachable states. The process is

stopped when the target property becomes inductive, or when the

number of clauses successfully proved is sufficient for the calling

application.

Scalability is achieved by using heuristics for candidate clause

generation and filtering. One heuristic limits clauses to those

derived for cuts a few logic levels from the register outputs.

Inductive proofs for such shallow clauses can be processed

efficiently by partitioning the design and solving partitions in

parallel without compromising the completeness of the result. A

similar approach was used in [25] to partition inductive proofs for

register correspondence.

The rest of the paper is organized as follows. Section 2

describes further background and relations with previous work.

Section 3 describes the algorithms used for inductive

strengthening. Section 4 discusses application to logic synthesis.

Section 5 reports experimental results. Section 6 concludes the

paper and outlines future work.

2 Background and Related Research

A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges

corresponding to wires connecting the gates. The terms Boolean

network, design and circuit are used interchangeably in this paper.

A node n has zero or more fanins, i.e. nodes that are driving n,

and zero or more fanouts, i.e. nodes driven by n. The primary

inputs (PIs) are nodes without fanins in the current network.

 A fanin (fanout) cone of node n is a subset of all nodes of the

network, reachable through the fanin (fanout) edges from the

given node. A topological order of nodes in the network is any

order in which any node appears later in the order than any of its

fanins.

If the network is sequential, the memory elements are assumed

to be D-flip-flops. The terms memory elements, flip-flops, and

registers are used interchangeably in this paper. The registers are

assumed to have a fixed binary initial state. If a register has an

unknown or a don’t-care initial state, it can be transformed to

have 0-initial state by adding a new PI and a MUX controlled by a

special register that produces 0 in the first frame and 1 afterwards.

So without loss of generality, we consider only registers with a 0

initial state. The set of reachable states includes the initial state

and all the states reachable from it by any input sequence.

An And-Inverter Graph (AIG) is a Boolean network composed

of two-input ANDs and inverters represented as complemented

attributes on the edges.

A cut C of node n, called root, is a set of nodes of the network,

called leaves, such that each path from a PI to n passes through at

least one leaf. A cut is m-feasible if its size does not exceed m and

is dominated if it contains a cut of the same root.

A literal of a Boolean variable is the variable or its complement.

Given a set of variables x (e.g. the set of leaves of cut C),

a minterm is a product of literals, one for each variable in the set.

The complement of a minterm is a clause. A product of clauses is

a Conjunctive Normal Form (CNF). Boolean satisfiability (SAT)

is the problem of determining whether a variable assignment

exists that will cause a CNF to evaluate to 1. A SAT-based

method is a method that reduces a given problem to SAT and

solves it using a SAT solver.

Simulation is a way of computing node values in a circuit under

given input values. Random simulation uses random or biased

random input values. Simulation assigns values at the inputs and

evaluates the internal nodes in a topological order. Simulation is

typically performed bitwise, where 32 or 64 input patterns are

evaluated using a single machine operation. Simulation

information of a node is stored in a bit-string composed of many

machine words. It is computed by a sequence of bitwise

operations using the simulation information of the node’s fanins.

A combinational invariant is a relation among arbitrary signals

in the network that holds in all states. A sequential invariant is a

relation that holds in all reachable states, but possibly fails in one

or more unreachable states. A sequential invariant can be seen as a

characterization of a set of states for which it holds, a set that

includes the set of reachable states and possibly some unreachable

states. An example sequential invariant is equality among two

registers outputs that does not hold combinationally (in all states)

but holds sequentially (in all reachable states).

A candidate sequential invariant is an invariant that has not yet

been proved (e.g. by induction or interpolation) but is suspected

to hold (e.g. after several rounds of simulation). Such invariants

express properties that should be proved, e.g. mutual exclusion of

the values at two primary outputs. Model checking focuses on

proving user-specified properties.

Induction is often used to prove sequential invariants. Its use for

sequential designs was pioneered in [15] and further developed in

[5][26][17]. A sequential invariant is inductive when: (base case)

it holds in the initial state, and (inductive case) if it holds in a

state, then it holds in all states reachable from that state in one

transition. An invariant provable by induction is known as an

inductive invariant.

In an efficient implementation of induction, the base and the

inductive cases are formulated as SAT instances and solved by a

SAT solver. The solution is incremental because while each

property in the invariant is checked independently, the same

solver instance can be used in all the checks. This can be done

efficiently using an incremental interface of a modern SAT solver

[13]. More details on SAT-based induction can be found in [25].

The set of all reachable states is an inductive sequential

invariant. However, not every sequential invariant is inductive.

For example, consider an unreachable state s that has a transition

into it from state t. The complement of the minterm composed of

register variables representing s is a sequential invariant because it

holds in all reachable states. This invariant is not inductive

because it holds in t but not in s. The state failing the inductive

case (in this case t) is called an induction leak.

Several ways of strengthening induction are known:

• Extending simple induction to k-step induction (k > 1) [15].

• Using unique-state constraints [12].

• Using equivalences expressed over register outputs (register

correspondence) or over arbitrary signals in the network

(signal correspondence) [15][26][17][25].

• Applying signal correspondence after timeframe expansion,

hoping this will capture additional equivalences among

signals across different timeframes in the original design.

• Using implications of signals in the network [5][9][10].

• Using p-th invariants, that is, invariants that hold starting

from frame p from the initial state (p > 1) [16].

• Incrementally computing inductive clauses in terms of

register variables using counter-examples to induction [7].

 We propose using inductive strengthening based on generating

an invariant in the form of a set of m-literal clauses. The method is

a generalization of [9], [10], and [7], as shown in Section 3.4.

3 Computing inductive invariants

This section presents a new algorithm for computing inductive

invariants in a sequential network. The algorithm is presented for

AIGs but it is equally applicable to general logic networks.

The overall pseudo-code of the algorithm is shown in Figure 3.

Details are given in the subsections listed in the parentheses.

The computation starts by enumerating for each node a subset

of m-cuts using procedure aigEnumerateCuts (Section 3.1).

Next, two rounds of simulation are performed. For each cut of

size m, all 2m value assignments of the cut leaves give a set of

minterms that will be tested with simulation. Simulation

information is used to determine if each minterm is likely to

appear only under unreachable states, and for minterms that likely

only hold in unreachable states, the complement gives a candidate

invariant clauses. A number of candidate clauses are collected

and filtered using simulation information in the procedure

aigComputeCandidates (Section 3.2).

A set of clauses representing the candidate invariant is checked

by the base case and then by an iterative refinement procedure

performInductiveCase, similar to that of van Eijk [15]. When

this procedure terminates, the conjunction of the set of remaining

clauses, if it is non-empty, represents an inductive invariant. If

strengthening is not sufficient (determined by procedure

checkSufficient whose definition is application-specific), another

round of invariant computation is performed where the candidates

considered are those not contained in the already proved set. As a

result, new invariants that are proved provide ever tighter

approximations of the state space (Section 3.3).

Figure 3.1 gives the top-level pseudocode for our proposed

procedure, and Figure 3.2 illustrates the discovery of candidate

sequential invariants on an example circuit.

set of clauses computeInvariants(aig N, parameters P)

{

 // compute m-cuts for all nodes

 set of cuts Cuts = EnumerateCuts(N, P);

 // perform two rounds of simulation

 simulation patterns Comb = SimulateComb(N, P);

 simulation patterns Seq = SimulateSeq(N, P);

 // iterate while the set of clauses is not sufficient

 set of clauses S = ∅;

while (!checkSufficient(S)) {

 // compute candidate clauses

 clauses C = ComputeCandidates(N, P, Cuts, Comb, Seq);

 // refine the candidates using the base case

 C = PerformBaseCase(C, N, P);

 // refine the candidates using van Eijk’s loop

 do {

 C = PerformInductiveCase(C, N, P);

 } while (CheckChanges(C));

 // add newly proved invariant to the set

 S = S ∪∪∪∪ C;

}

 return S;

}

Figure 3.1. Pseudo-code for computing inductive invariants.

a

b c

d

g

f

…

efg

efg

e+f+gefg{e, f, g}

…

b+cbc

bc{b, c}

Candidate
Seq. Invariant

Appears in
Seq. Sim.

Appears in
Comb. Sim.

Cut
Assignments

Cuts of a

…

efg

efg

e+f+gefg{e, f, g}

…

b+cbc

bc{b, c}

Candidate
Seq. Invariant

Appears in
Seq. Sim.

Appears in
Comb. Sim.

Cut
Assignments

Cuts of a

0

0

0

1

0

g

010001

011010

100011

111110

101111

fedcba

0

0

0

1

0

g

010001

011010

100011

111110

101111

fedcba

Combinational
Simulation Data

0

1

0

1

0

g

100001

010101

010111

100110

011110

fedcba

0

1

0

1

0

g

100001

010101

010111

100110

011110

fedcba

Sequential
Simulation Data

e

Figure 3.2. Example candidate sequential invariant derivation.

On the sample AIG, all nodes are AND gates and marks denote

complemented edges.

3.1 Cut computation

For two sets of size m or less cuts A and B, the operation A ◊ B

is defined as:

A ◊ B = { u ∪ v | u ∈ A, v ∈ B, |u ∪ v| ≤ m }.

Let Φ(n) denote the set of m-feasible cuts of node n. If n is an

AND node, let n1 and n2 denote its fanins. Φ(n) is computed using

the sets of cuts of its fanins:

1 2

{{ }} : PI
()

{{ }} () () : otherwise

n n
n

n n n

∈ 
Φ =  

∪ Φ ◊Φ 
.

Performing cut computation for the nodes in a topological order

guarantees that the fanin cuts, Φ(n1) and Φ(n2), are available

when the node cuts, Φ(n), are computed. The set of computed cuts

is filtered by removing dominated cuts. This reduces runtime and

memory without sacrifiying the expressiveness of cuts computed.

The above complete cut enumeration [25] is practical for small

m (m < 6) because the number of cuts is approximately linear in

the size of the circuit. For larger m, the above procedure can be

supplemented with a method to compute a subset of all m-cuts

meeting some criteria. These cuts are called priority cuts [24]. The

criterion used to prioritize the cuts for invariant computation is to

prefer cuts with a larger average number of fanouts of the leaves

of a cut. A similar criterion was used in [14].

In our implementation, m is parameterizable in order to give the

user control over the expressiveness and the number of the m-

feasible cuts. For all benchmarks discussed in Section 5, we find

m=4 to be sufficient.

In the example of Figure 3.2, an example AIG is shown along

with two sample cuts for the node a.

3.2 Collecting candidates

To help form candidate invariants from cuts, two rounds of

simulation are performed: combinational and sequential.

Combinational simulation assumes random values at the primary

inputs and register outputs, which are treated as additional

primary inputs. Sequential simulation assumes random values at

the primary inputs while the register outputs are set to the initial

state. This sequential simulation iterates over the circuit several

times, setting the register outputs to the register inputs computed

on the previous step, thereby accumulating simulation data for

many reachable states. The combinational and sequential

simulation differ in the assignments that are made to the registers;

combinational simulation produces values under any state while

sequential produces values under reachable states.

Candidate clauses are collected by considering the m-cuts of all

nodes in the AIG. Each node has two types of simulated

minterms. A cut is analyzed to determine what values appear at

the cut inputs. Suppose assignment
0 1 1

...
m

x x x
−

% % % appears N times at

the cut inputs under combinational simulation but does not appear

under sequential simulation. This indicates that this assignment

may be produced at least N states and the assignment is likely not

produced in any reachable states. Thus, the complement of this

assignment, the clause
0 1 1

...
m

x x x
−

∨ ∨ ∨% % % , excludes many

unreachable states and is likely true for all reachable states. All

such clauses are accumulated and used as candidates.

An example of this method is illustrated in Figure 3.2. For the

cuts {b, c} and {e, f, g} the assignments cb and efg were seen to

occur in combinational simulation and hence are not vacuous.

The same assignments were not seen in the sequential simulation

and likely cannot be produced on the reachable states.

Complementing these assignments gives two candidate clauses.

It should be noted that neither the combinational or sequential

simulation includes all possible states. Because the combinational

simulation is not exhaustive, some minterms may incorrectly be

classified as vacuous and excluded from the set of candidate

clauses. This affects the number of clauses we can prove, but it

does not affect the correctness of the overall method. Moreover,

since such minterms do not readily appear under combinational

simulation, they are not likely to substantially refine the

characterization of the state space. Likewise, the sequential

simulation is also not exhaustive. This causes minterms to be

promoted to candidate clauses while they may not hold for all

reachable states. This is not a problem because the candidate

clauses will be refined with induction.

Except for small circuits and small cut sizes, the number of

candidate clauses can be large. For example, on a circuit with 1K

registers and 15K AIG nodes, there may be 50K candidate clauses

computed using the set of all 4-cuts. In such cases, the invariants

can be filtered by the following heuristic: if a candidate clause is

falsified by a large number of vectors in the combinational

simulation then it is likely to characterize a large number of

unreachable states. The number of combinational simulation

vectors that can falsify a clause determine its score, and our

implementation has a user-controlled parameter which limits the

number of the highest-scoring clauses considered. This heuristic

plays an important role in selecting useful candidates. In our

experiments it was sufficient to limit the candidates to the 5000

highest-scoring.

The set of candidate clauses can lead to a stronger inductive

invariant if it is supplemented with the candidate clauses

expressing one-hotness conditions. These conditions are two-

literal clauses involving register outputs and can be easily

computed using sequential simulation information. Most of these

additional clauses cannot be collected as candidates using cuts

because cuts include literals in the vicinity of a particular node,

while one-hotness, if applicable, can relate registers that are far

apart. We found that adding the candidate one-hotness conditions

often improves the performance of the algorithm. One reason for

this is that many industrial designs use one-hot encoding for at

least some of the registers.

3.3 Proving candidates

The well-known van Eijk procedure [15] is used to process the

candidates and prove some of them. First, those candidates that do

not satisfy the base case are removed. Second, the inductive case

is performed by asserting the clauses in the first frame and

checking them in the next frame. The counter-examples are used

to refine the remaining candidate invariants. The failing clauses

are removed and refinement is iterated until a fixed point is

reached. If non-empty, the conjunction of the clauses in this fixed

point represents an inductive invariant.

To derive a sufficiently tight invariant, the van Eijk procedure

can be sequentially applied to several different sets of candidate

invariants. An invariant proved in a run is assumed in the next

run. Since the proved clauses form an invariant, there is no need

to re-prove them; only new clauses need to be proved. This results

in accumulating clauses, which increasingly refine the invariant.

New candidate clauses are collected only if they refine the current

invariant. If cuts of the given size do not yield additional clauses,

the cut size can be increased to find new candidates to continue

refining the invariant. This strengthening enhances van Eijk’s

procedure and allows tighter invariants to be found efficiently.

The “sufficiency” of the resulting invariant depends on the

application. In model checking, it is sufficient if the invariant

implies the target property. In logic synthesis, it is sufficient if it

contains “enough” flexibility to do substantial logic restructuring.

In model checking, the procedure can stop as soon as the proved

invariant implies the target property. For this, the target property

is added to the set of candidate clauses. If the property remains in

the fixed point, it is proved. Otherwise, a new set of clauses is

considered that provides a tighter approximation of the reached

state set and has a better chance to prove the target property.

3.4 Comparison with previous work

For a description of other SAT-based approaches to model

checking, refer to [28] and for an overview of recent work in

induction strengthening refer to [10][7].

The proposed approach can be seen as a generalization of three

previous approaches [9][10][7]. The following is a comparison:

• Computation of m-cuts scales better than that of Boolean

implications between signal pairs because priority cuts [24]

only take linear-time in circuit size to compute while

computing implications takes quadratic-time [10].

• The m-literal clauses have more expressive power than the

Boolean implications of [9][10] which are essentially are

two-literal clauses.

• Our flexible framework for inductively proving groups of

m-literal clauses is similar to [9], with novel heuristics to

prioritize clauses according to their expressive power.

• The m-clauses are computed in terms of internal variables

rather than register outputs as done in [7], which increases

the expressive power of the invariants.

• The m-clause candidates are computed by simulation rather

than from counter-examples as done in [7], which is less

time-consuming and avoids the risk of not having inductive

sub-clauses.

• The inductive proof for m-clauses, with the cuts limited to a

few levels from the register outputs, can use partitioning

similar to [25] which increases the possibility that the

proposed approach works for designs of any size.

• Adding signal-correspondence and one-hotness invariants,

which was not used in [9][10][7] gives additional strength to

the proposed approach.

4 Application to Logic Synthesis

The inductive invariants proved by this method compactly

represent unreachable state information useful as flexibility in

circuit restructuring during logic synthesis with don’t-cares [21].

The following are advantages of this approach compared to

using other types of sequential flexibility:

• Complete set of unreachable states

Except for small circuits, the reachable state set is hard or

impossible to obtain. BDD-based methods for computing this

set mostly fail on circuits with more than a 50-100 registers.

Another disadvantage is that, if the unreachable state

information represented with BDDs is used in sequential

synthesis, sequential equivalence checking (SEC) is very hard

because it doubles the number of registers. In contrast, when the

proposed invariants are used, sequential verification tends to be

easier because the inductive nature of the invariants tends to

increase inductiveness of the associated SEC problems.

• Equivalences in terms of internal signals

Signal equivalences in terms of internal signals (signal

correspondences) have been shown to be a powerful vehicle for

capturing sequential flexibility. Sequential synthesis based on

this flexibility can lead to substantial reductions in area and

register count [25]. However, the best use of this flexibility for

circuit restructuring, is to collapse the equivalent nodes into a

single node and remove the others. This reduces the circuit but

does not allow for a more fine-grain circuit restructuring

afforded by the m-cut invariants. This is why signal equivalence

should be computed and used as a preprocessing step before

using the proposed inductive invariant.

• Implications in terms of internal signals

Signal implications among internal signals provide additional

expressive power, compared to signal equivalences and can be

useful in logic synthesis [9]. Detection of implications can be

done similarly to the proposed invariants, using simulation

information. However, m-literal clauses are more expressive

compared to implications (2-literal clauses). In addition,

collecting implications is harder and may require a procedure

quadratic in the number of nodes, while collecting m-literal

clauses is linear when priority cuts are used.

5 Experimental Results

The proposed algorithms are implemented in ABC [1] as

command indcut. The SAT solver is a modified version of

MiniSat-C_v1.14.1 [13]. The workstation used has two dual-core

AMD Opteron 2218 CPUs with 16GB RAM, and runs x86_64

GNU/Linux. Only one core was used in the experiments.

Experiments were performed using two suites of model

checking benchmarks: a set of PicoJava II benchmarks [19] and

the TIP benchmarks [12]. Other benchmark suites from the model

checking competition [4] were also evaluated: (a) the TIP

benchmarks, (b) the AMBA benchmarks (all unsat), and (c) the

L2S benchmarks (9 unsat cases). The unsat cases from the latter

two suites could be solved easily using signal correspondence

(ABC command ssw) [25] after combinational synthesis (ABC

command dcompress2). Since the proposed algorithm is

developed as a method to be applied when other methods fail, we

do not report its performance on the AMBA and L2S suites.

Before using the proposed algorithm to solve the properties, the

benchmarks were first heavily synthesized: 1) sequentially

constant or structurally redundant latches were removed, 2)

combinational synthesis, 3) removal of redundant latches via latch

correlation analysis, 4) combinational synthesis, 5) sequential

signal correspondence, 6) combinational synthesis, 7) inductive

cut computation + sequential don’t-care based resynthesis. This

set of synthesis operations was necessary to reduce the design

complexity and aid our later proof.

ABC command indcut was used in all reported experiments

with the following default set of parameters: induction depth (K =

1), cut size (M = 4), the limit on the number of candidate clauses

collected (C = 5000), the maximum level of the nodes whose cuts

are considered (L = 8), the number of times invariant computation

was iterated (B = 1).

5.1 PicoJava benchmarks

The complete set of PicoJava benchmarks includes 20 unsat

problems. After the preprocessing steps outlined above, 9 out 20

problems were already solved.

 The remaining benchmarks were preprocessed and then solved

by command indcut. Design statistics both before and after

preprocessing are shown in the columns “Original Design” and

“Preprocessed Design,” respectively. “Clauses Proved” gives the

total number of clauses proved by induct. No more than 5000

clauses can be proved because this was the imposed limit on the

number of candidates. Finally, the column “Runtime” gives the

time in seconds needed to prove the property with induct.

Table 5.1 shows that on average 75% of the 5000 candidate

invariants are proved by induct. Although the set of proved

clauses is incomplete, it was sufficient to imply the target property

for all of the considered problems.

5.2 TIP benchmarks

These benchmarks are among the smallest and the most well-

studied model checking benchmarks [12]. The original set of 158

testcases includes both sat and unsat problems. First, this set was

filtered by removing all problems provable by signal

correspondence with induction depth K = 4 (ABC command ssw -

F 4) or disproved by BMC of depth 100 (ABC command bmc –F

100). This led to a subset containing 51 “hard” TIP problems.

Applying indcut with default settings these 51 problems solved

41 of them, with runtime for each benchmark not exceeding 1

second. Interestingly, some of the benchmarks solved by indcut

could also be proved by signal correspondence with very large

induction depth. Thus, cmu_periodic_N could be proved by

ssw -F 96 (K = 96) in 30 sec, while indcut solved it in 0.2 sec.

The 10 remaining benchmarks not solved by indcut are:

cmu_dme1_B, cmu_dme2_B, irst_dme4_B, irst_dme5_B,

irst_dme6_B, nusmv_dme1-16_B, nusmv_dme2-16_B,

texas_two_proc_6_E, vis_coherence_3_E, vis_coherence_4_E.

These benchmarks could not be solved by indcut even when we

modified the default set of parameters. In all cases, a subset of

clauses was proved inductively, but the resulting invariant was not

sufficient to imply the target property, while other candidate

clauses implying it were not inductive. We believe that none of

the model checkers submitted to the model checking competition

[4] were able to solve these 10 benchmarks.

6 Conclusions and Future Work

This paper proposes a new method for inductively strengthening

the model checking of safety properties. The method supplements

existing methods and is useful for proving hard unsat problems.

In combination with other synthesis and verification algorithms

implemented in ABC, the proposed method solved 334 of the 344

benchmarks from the model checking competition [4]. The

remaining 10, plus another 27 of the 344 problems solved by the

proposed method, were not solved by any of the entrants in the 15

minutes allowed for each example. The hardest PicoJava example

took less than 7 seconds.

In summary, the contributions of this paper are:

• A new efficient method for expressing candidate invariants

using m-clauses formulated for the nodes in the circuit.

• A scalable hierarchical approach to proving the candidate

invariants, which trades off computational effort for the

number and expressiveness of invariants generated.

• Experiments using several benchmark suites to show that

the proposed method can solve many difficult problems.

Future work will include:

• Further experiments and fine tuning using benchmarks

contributed by industrial collaborators.

• Integrating the induction strengthening engine into robust

equivalence and model checkers.

• Using the computed invariant clause sets as don’t-cares for

circuit restructuring in logic synthesis.

• Performing direct comparison with industrial model

checkers.

Acknowledgements

This work was supported in part by SRC contracts 1361.001

and 1444.001, NSF grant CCF-0702668, and the California Micro

Program with industrial sponsors Actel, Altera, Calypto, Intel,

Magma, Synopsys, Synplicity, and Xilinx.

References
[1] Berkeley Logic Synthesis and Verification Group. ABC: A System

for Sequential Synthesis and Verification. Release 70930.

http://www-cad.eecs.berkeley.edu/~alanmi/abc

[2] A. Biere, C. Artho, V. Schuppan, “Liveness checking as safety

checking”. Proc. Intl. Workshop on Formal Methods for Industrial

Critical Systems (FMICS'02), ENTCS, Vol. 66(2).

[3] A. Biere. AIGER format and toolbox. http://fmv.jku.at/aiger/

[4] A. Biere and T. Jussila. Hardware model checking competition at

CAV’06. http://fmv.jku.at/hwmcc/

[5] P. Bjesse and K. Claessen. “SAT-based verification without state

space traversal”. Proc. FMCAD'00. LNCS, Vol. 1954, pp. 372-389.

[6] P. Bjesse and J. Kukula, “Automatic generalized phase abstraction

for formal verification”, Proc. ICCAD’06, pp. 1076-1082.

[7] A. R. Bradley and Z. Manna, “Checking safety by inductive

generalization of counterexamples to induction”, Proc. FMCAD ’07.

[8] R. Brayton, “The synergy between logic synthesis and equivalence

checking”, Keynote at FMCAD’07. http://www.cs.utexas.edu/users/

hunt/FMCAD/2007/presentations/fmcad07_brayton.ppt

[9] M. L. Case, A. Mishchenko, and R. K. Brayton, "Inductively finding

a reachable state space over-approximation", Proc. IWLS '06, pp.

172-179. http://www.eecs.berkeley.edu/~alanmi/publications/

2006/iwls06_inv.pdf

[10] M. L. Case, A. Mishchenko, and R. K. Brayton, "Automated

extraction of inductive invariants to aid model checking", Proc.

FMCAD '07, pp. 165-172. http://www.eecs.berkeley.edu/~alanmi/

publications/2007/fmcad07_ind.pdf

[11] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press,

1999.

[12] N. Een and N. Sörensson, “Temporal induction by incremental SAT

solving”, Proc. BMC’03, ENTCS, Vol. 89(4).

[13] N. Een and N. Sörensson, “An extensible SAT-solver”. SAT ‘03.

http://www.cs.chalmers.se/Cs/Research/FormalMethods/MiniSat

[14] N. Een, “Cut sweeping”, Cadence Technical Report 2007.

http://minisat.se/downloads/CutSweeping.ps.gz

[15] C. A. J. van Eijk. “Sequential equivalence checking based on

structural similarities”, IEEE TCAD, Vol. 19(7), July 2000, pp. 814-

819.

[16] F. Lu and K.-T. Cheng. “Sequential equivalence checking based on

k-th invariants and circuit SAT solving”. Proc. HLDVT’05.

[17] F. Lu and T. Cheng. “IChecker: An efficient checker for inductive

invariants”. Proc. HLDVT ’06, pp. 176-180.

[18] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, "Robust

boolean reasoning for equivalence checking and functional property

verification", IEEE Trans. CAD, Vol. 21(12), 2002, pp. 1377-1394.

[19] K. L. McMillan and N. Amla, “Automatic abstraction without

counterexamples.” Proc. TACAS ‘03, LNCS, Vol. 2619, Springer,

pp. 2-17.

[20] K. L. McMillan. “Interpolation and SAT-Based model checking”.

Proc. CAV’03, pp. 1-13.

[21] A. Mishchenko and R. Brayton, "SAT-based complete don't-care

computation for network optimization", Proc. DATE '05, pp. 418-

423.

[22] A. Mishchenko, S. Chatterjee, and R. Brayton, "DAG-aware AIG

rewriting: A fresh look at combinational logic synthesis", Proc. DAC

'06, pp. 532-536. http://www.eecs.berkeley.edu/~alanmi/

publications/2006/dac06_rwr.pdf

[23] A. Mishchenko, S. Chatterjee, R. Brayton, and N. Een,

"Improvements to combinational equivalence checking", Proc.

ICCAD '06, pp. 836-843 http://www.eecs.berkeley.edu/~alanmi/

publications/2006/iccad06_cec.pdf

[24] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton,

“Combinational and sequential mapping with priority cuts”, Proc.

ICCAD ’07, pp. 354-361. http://www.eecs.berkeley.edu/~alanmi/

publications/ 2007/iccad07_map.pdf

[25] A. Mishchenko, M. Case, R. Brayton, and S. Jang, "Scalable and

scalably-verifiable sequential synthesis", Submitted DAC'08. http://

www.eecs.berkeley.edu/~alanmi/publications/2008/dac08_vss.pdf

[26] H. Mony, J. Baumgartner, V. Paruthi, and R. Kanzelman.

“Exploiting suspected redundancy without proving it”. Proc.

DAC’05, pp. 463-466.

[27] P. Pan and C.-C. Lin, “A new retiming-based technology mapping

algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42.

[28] M. Prasad, A. Biere, and A. Gupta. ”A survey of recent advances in

SAT-based formal verification”, Intl. Journal on Software Tools for

Technology Transfer (STTT), Springer 2005, Vol. 7 (2), pp. 156-

173. http://fmv.jku.at/papers/PrasadBiereGupta-STTT-7-2-2005.pdf

[29] E. Sentovich et al. “SIS: A system for sequential circuit synthesis”.

Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, UC Berkeley,

1992.

Table 5.1. Experimental results for proving unsatisfiability on the PicoJava benchmarks [19].

Original Design Preprocessed Design Indcut Performance
Example

PI Reg AIG PI Reg AIG
Clauses

Proved

Runtime,

sec

pj006 1277 703 17542 1277 332 16160 4732 5.11

pj007 396 314 7224 396 108 6040 1183 2.60

pj008 446 338 7555 446 139 6142 4659 2.90

pj009 336 269 6844 336 76 5566 2555 3.25

pj010 366 295 7493 366 89 6705 3261 2.53

pj015 1322 775 18964 1322 370 18607 4338 6.78

pj016 1190 671 17000 1190 303 16149 4675 5.11

pj019 476 383 10467 476 64 7884 4311 4.48

