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Abstract

Performing synthesis and verification in isolation has two undesirable consequences: (1) verification runs the risk of becoming intractable, and (2) strong sequential optimizations are not applied because they are hard to verify. This paper develops a methodology for sequential equivalence checking using feedback from synthesis. A format for recording synthesis information is proposed. An implementation is described and experimentally compared against an efficient general-purpose sequential equivalence checker that does not use synthesis information. Experimental results confirm expected substantial savings in runtime and reliability of equivalence checking for large designs.
1 Introduction

In this paper, we propose a methodology shift to a synthesis transparent process, which records and uses the synthesis history in an efficient way. It can promote the use of sequential synthesis and enable a scalable verification of the result.  

Sequential synthesis can result in considerable reductions in delay (e.g. see [22]) and area; however, it is mostly avoided for reasons of non-scalability of both synthesis and verification. To circumvent this, we believe that sequential synthesis and verification must go hand-in-hand to make sequential synthesis acceptable, and propose a way to make this happen. 

General sequential equivalence checking (GSEC) of two FSMs is PSPACE complete; however, if synthesis is restricted by one set of combinational transformations followed by one retiming or vice versa, the problem is provably simpler. On the other hand, iterating retiming and combinational transformations makes the problem again PSPACE complete [14], even though this is a very restricted set of sequential transformations. Also, as in the case of combinational equivalence checking (CEC) [20], in practice the problem becomes simpler if there are structural similarities between the two circuits to be compared. 

The current work has similarities with the following two approaches in the literature. Van Eijk [12] derived an inductive invariant, constructed by a fixed point process, consisting of a set of equivalences between signals in the two circuits. This invariant characterizes a superset of the reachable states of the product machine. Bjesse [6] and Case [9] extended this to an invariant composed of implications, which can give tighter approximations.
Such methods are dependent on the particular implementation structures of the two machines being compared because equivalences or implications can be stated only between existing signals. To overcome this limitation, Van Eijk proposed creating additional signals, without any fanout, which might be useful in establishing additional equivalences. His proposal involved adding a few nodes which could be obtained by retiming. These signals approximate the reachable state space, thereby simplifying SEC, but do not guarantee that the invariant derived is sufficient to prove sequential equivalence.

Mneimneh et. al. [26] looked at the problem of one retiming and one set of combinational logic transformations (in either order) and proposed a retiming invariant composed of a conjunction of functional relations among latch values derived from atomic retiming moves. 

We address the problem when one machine is derived from the other by a sequence of more general transforms, which may include retiming, combinational synthesis, merging sequentially equivalent nodes, and performing window-based sequential synthesis with don’t-cares. We propose to record the synthesis history, which will provide the extra signals to aid verification. In contrast to van Eijk, our history aided verification approach (HSEC) can be characterized as follows:

· All nodes created during synthesis are recorded, instead of adding a set of ad-hoc signals. 
· Each synthesis step records a sequential equivalence that should hold if the implementation of the synthesis algorithm is correct. A side benefit is that if an equivalence does not hold, the implementation is incorrect and the source of the error can be isolated.
· The invariant is the set of all equivalences recorded. 

· The invariant is sufficient to prove sequential equivalence of the two machines by induction without counter-examples. 
· The invariant can be proved easily by proving each equivalence, one at a time. Typically, the proofs are local and hence fast, and can be done in parallel.
Section 2 surveys the background. Section 3 shows how to efficiently record the history of synthesis by integrating two AIG managers. Section 4 details the use of the recorded history in sequential verification. Section 5 discusses other uses of a recorded history. Section 6 reports experimental results and Section 7 concludes the paper and outlines future work.

2 Background

2.1 Boolean Networks

A Boolean network is a directed acyclic graph (DAG) with nodes corresponding to logic gates and directed edges corresponding to wires connecting the gates. The terms Boolean network and circuit are used interchangeably in this paper. If the network is sequential, the memory elements are assumed to be D‑flip-flops with initial states. Terms memory elements, flop-flops, and registers are used interchangeably in this paper.
A node n has zero or more fanins, i.e. nodes that are driving n, and zero or more fanouts, i.e. nodes driven by n. The primary inputs (PIs) are nodes without fanins in the current network. The primary outputs (POs) are a subset of nodes of the network. If the network is sequential, it contains registers whose inputs and output are treated as additional PIs/POs in combinational optimization and mapping. It is assumed that each node has a unique integer called its node ID.

A fanin (fanout) cone of node n is a subset of all nodes of the network reachable through the fanin (fanout) edges from the given node. A maximum fanout free cone (MFFC) of node n is a subset of the fanin cone, such that every path from a node in the subset to the POs passes through n. Informally, the MFFC of a node contains all the logic used exclusively by the node. When a node is removed, the logic in its MFFC can be removed.

Merging node n onto node m is a structural transformation of a network that transfers the fanouts of n to m and removes n and its MFFC. Merging is often applied to a set of nodes that are proved to be equivalent. In this case, one node is denoted as the representative of an equivalence class, and all other nodes of the class are merged onto the representative. The representative can be any node if its fanin cone does not contain any other node of the same class. In this work, the representative is the node of the class that appears first in a topological order.
There are different forms of sequential equivalence for FSMs [27]. We use the traditional notion, which states that two FSMs are equivalent if they produce the same output sequences for the same input sequence starting from their two initial states.

2.2 And-Inverter Graphs

A combinational And-Invertor Graph (AIG) is a Boolean network composed of two-input ANDs and inverters. Structural hashing of AIGs ensures that, for each pair of nodes, all constants are propagated and there is at most one AND node having them as fanins (up to permutation). Structural hashing is performed by one hash-table lookup when AND nodes are created and added to an AIG manager. When an AIG is incrementally rehashed, the changes are propagated to the fanouts, which may lead to rehashing large portions of AIG nodes.
The size (area) of an AIG is the number of its nodes; the depth (delay) is the number of nodes on the longest path from the PIs to the POs. The goal of AIG optimization by local transformations of an AIG is to reduce both area and delay.  

Sequential AIGs add registers to the logic structure of combinational AIGs. The registers are technology-independent D‑flops with one input and one output that are assumed to belong to the same clock domain. Previous work on sequential AIGs [2][7] applies on-the-fly forward retiming to the registers along with the combinational structural hashing of the AIG nodes. 

However, in this paper, we use simplified sequential AIGs where registers are represented traditionally as additional terminal nodes of the AIG. An additional data-structure identifies the I/O pair associated with a register’s input and output. The PIs and register outputs are called combinational inputs (CIs) and the POs and register inputs are called combinational outputs (COs). Although mostly representing the combinational logic, simplified sequential AIGs are still suitable for sequential transformations. For example, for retiming, the operation is decomposed into individual register moves. Each move adds new registers to the register boundary while the old registers are removed. 
In this paper, the registers are assumed to have a fixed binary initial state
. If a register has an unknown or a don’t-care initial state, it can be transformed to have 0-initial state by adding a new PI and a MUX controlled by a special register that produces 0 in the first frame and 1 afterwards.   

2.3 SAT Sweeping and Induction
Combinational SAT sweeping is a technique for detecting and merging nodes that are equivalent up to complementation in a combinational network [15][17] [19]
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Bounded model checking (BMC) uses Boolean satisfiability to prove a property true for all states reachable from the initial state in a fixed number of transitions (BMC depth). In the context of equivalence checking, BMC checks pair-wise equivalence of the outputs of two circuits to be verified. BMC can be implemented as a combinational SAT sweeping applied to several unrolled timeframes with initial state applied in the first frame. 

k-step induction over timeframes is a method for proving sequential properties, such as sequential equivalence of two nodes in the network [12]. A property or a set of properties are proved inductively if the following two cases hold: 

· Base Case: The properties hold true for all inputs in the first k frames starting from the initial state. 

· Inductive Case: If the properties are assumed to be true in the first k frames starting from any state, then they hold in the k+1st frame. 

A SAT-based inductive prover [6] is based on simulation and combinational SAT sweeping [20]. Speculative reduction [25] is a key ingredient of an efficient inductive prover because it reduces the runtime by several orders of magnitude and allows sequential SAT sweeping to work for large industrial design. Basically, it uses the simple device of moving all fanouts of a set of candidate equivalent nodes to one representative of the class.
Sequential SAT sweeping is similar to combinational SAT-sweeping, except that it detects and merges sequentially equivalent nodes
. In general, combinationally equivalent nodes are also sequentially equivalent, but not vice versa. Thus, it is helpful to apply combinational SAT sweeping before sequential sweeping. The implementation of sequential SAT sweeping uses k-step induction and an efficient implementation makes use of a SAT-based inductive prover. 

3 Recording Synthesis History

AIGs are used increasingly in CAD tools as a unifying data structure for applications dealing with logic synthesis and formal verification. As a circuit representation, AIGs provide uniformity, fast manipulation, low memory requirements, straight-forward construction for both logic networks and mapped netlists, and the possibility of combining them with efficient simulators and SAT solvers, leading to a semi-canonical representation that can replace BDDs in many applications [19].

In the context of AIG-based synthesis, recording synthesis history can be done using two AIG managers: a Working AIG (WAIG), which represents the current state of the synthesis, and a History AIG (HAIG), which records all AIG nodes ever encountered during synthesis. 
The following rules, which are the standard ones, are used in manipulating a WAIG:
· New logic nodes are added as synthesis proceeds.
· Old logic cones are periodically replaced by new logic cones. When this happens, (a) the old root node is replaced by the new root node, and (b) the fanouts of the old root are transferred to be fanouts of the new root.
· Nodes without fanout (such as the old root) are immediately removed. This helps maintain accurate metrics (node count, logic depth, etc)

The following rules are followed for a HAIG:

· New logic nodes are added as synthesis proceeds.
· Each time a new node is created in the WAIG, a corresponding node is either found or created in the HAIG, and a link between the two nodes is established using procedure setWaigNodeMapping.
· Old nodes are not removed and fanouts are not transferred.

· When a node replacement is performed in the WAIG, the two corresponding nodes in the HAIG are linked (indicating that they should be sequentially equivalent) using procedure setHaigNodeMapping.
Thus two node mapping are supported in a WAIG / HAIG pair:

· Each WAIG node points to a corresponding HAIG node, which was created when the WAIG node was created.
· Some of the HAIG nodes point to other HAIG nodes. This node mapping is created between the corresponding HAIG nodes when a WAIG node is replaced by another WAIG node. The resulting pair of HAIG nodes should be sequentially equivalent if synthesis is correct. These equivalences will be proved during HAIG-based verification, as described in Section 4. 
Table 1 establishes a correspondence between the AIG procedures of the WAIG and HAIG. These are the only ones needed for implementing any sequential synthesis algorithm. 
Table 1. Relation between WAIG and HAIG procedures.

	Working AIG
	History AIG

	aigManagerCreate (the first call)
	aigManagerCreate

	aigManagerCreate (other calls)
	do nothing

	aigManagerDelete (other calls)
	do nothing 

	aigManagerDelete (the last call)
	aigManagerDelete

	aigNodeCreate
	aigNodeCreate and 

setWaigNodeMapping

	aigNodeReplace
	setHaigNodeMapping

	aigNodeDelete_recursive
	do nothing


The first four lines of Table 1 describe what happens when the WAIG is created and deleted.  At the first creation of WAIG, the HAIG manager is created also. On subsequent duplications of the WAIG, the HAIG is unchanged, but the CIs/COs of the new WAIG are remapped to point to the CIs/COs of the HAIG. On the last deletion of any associated WAIG, its HAIG is deleted also.
When a WAIG node is created, a corresponding HAIG node is created and put in correspondence with the WAIG node. When one WAIG node replaces another WAIG node, nothing is done in the HAIG, except establishing the mapping between the corresponding HAIG nodes. Finally, when a WAIG node is recursively deleted, the HAIG remains unchanged.

3.1 Recording Combinational Synthesis

Recording the history during combinational synthesis involves three steps shown in Figure 3.1. First, logic cone A is re-synthesized, and a new logic cone B is constructed. Note that at this point B has no fanouts. Both cones are present in both the WAIG and HAIG because creating a new WAIG node always results in creating a matching HAIG node. Second, the fanout of logic cone A is transferred to logic cone B in the WAIG. The HAIG is unchanged, except the mapping (indicating equivalence) is established between the old root and the new root in the HAIG. Finally in the WAIG, logic node A is removed and subsequent  new logic may be constructed in the WAIG on top of the new logic cone. No nodes are removed from the HAIG. Subsequent new logic is constructed in the HAIG on top of a new logic cone.
3.2 Recording Retiming

Retiming [16] can be decomposed into forward and backward retiming. Each of these retimings can be decomposed into atomic register moves. An atomic move involves transferring registers forward or backward over one AIG node. In forward retiming, the initial state of the new register is trivial to compute. In backward retiming, the initial state is typically computed by formulating a SAT instance. If the SAT instance is satisfiable, the computed initial state is assigned to the new register.


[image: image1]
Figure 3.1. Example of history recording in WAIG and HAIG.

Individual register moves are recorded similarly to recording combinational synthesis. In this case, the role of the combination logic cones A and B is played by the AIG node before and after retiming, as shown in Figure 3.2. Note that, in the case of retiming, the equivalence pointers in the HAIG connecting A and B are “asserting” sequential equivalence. Also, note that sequential transformations, like retiming can create new registers which create new CIs / COs pairs in the HAIG.

[image: image2]
Figure 3.2. Logic cones for one forward retiming move.

3.3 Recording Window-Based Transformations

To ensure scalability, some synthesis transformations are applied to a node or a group of nodes in the context of a window rather than the whole network. A window is computed using a set of user-specified parameters, such as a limit on the number of levels of logic to be included on the fanin/fanout side of the node(s), a limit on the window size, and the presence and length of reconvergent paths or sequential loops subsumed in the window. For a overview of windowing, see [23]. 
A key to recording window-based transforms is to record the whole logic structure of the window after the transform and only assert in the HAIG, sequential equivalence of the window’s outputs before and after the transformation. Corresponding internal nodes may not be equivalent if don’t cares were used.
3.4 Recording Transformations Involving ODCs

Combinational or sequential synthesis may involve the use of observability don’t-cares computed for a node or a group of nodes. In this case, nodes after synthesis may have different Boolean functions in terms of the CIs. Such nodes cannot be recorded as equivalent to the original ones in the HAIG. However, for the computation of ODCs to be scalable, there always exists a scope, in which the functionality is preserved. This may include a window, a timeframe, or the whole sequential circuit. In all cases, the primary outputs of the scope should be sequentially equivalent before and after the ODC-based synthesis, and can be recorded as in the case of windowing.
3.5 Recording Sequential SAT Sweeping
When a circuit is transformed by sequential SAT sweeping, the nodes belonging to an equivalence class are merged onto the class representative. Typically, this operation computes many equivalences (or inverted equivalences) at once. In the implementation, the classes are computed first and then the AIG is duplicated while substituting (in a corresponding polarity) the representative for each node in the equivalence class. The pseudo-code of this procedure is shown in Figure 3.5. 
New HAIG nodes are created inside procedure aigAnd. The mapping of new HAIG nodes into equivalent old HAIG nodes is set by the procedure setHaigNodeMapping. This is the same procedure that is called inside aigNodeReplace. The pseudo-code is listed to clarify exactly how this is done.
node aigNodeCopyWithEquivalences( aig B, node n, classes C )

{

         // if n is already visited, return its copy
         if ( n->copy != NULL )

                return n->copy;

         // if n belongs to an equivalence class, return its representative

         r = getRepr( C, n );
         if ( r != NULL ) {

                if ( n has the same polarity as r )

                       return r;

                else

                      return aigNot(r);

         }

         // solve the problem for fanins of n

         m0 = aigDuplicationWithEquivalences( B, n->fanin0, C );

         m1 = aigDuplicationWithEquivalences( B, n->fanin1, C );

         // create the copy, save it in the node, and return

         n->copy = aigAnd( m0, m1 );

         setHaigNodeMapping( n, n->copy );

         return n->copy;

}

aig aigCopyWithEquivalences( aig A, classes C )

{

         // start the new AIG manager
         aig B = aigStart(); 

         // clear the copy pointers for all nodes in the old AIG

         for each object n of aig A 

               n->copy = NULL;

         // create combinational inputs and make old nodes point to them
         for each combinational input n of aig A 

               n->copy = createCi( B );

         // recursively construct the AIG from the combinational outputs
         for each combinational output n of aig A 

               aigNodeCopyWithEquivalences( B, n, C );

         return B;

}

Figure 3.5. Copying AIGs while merging equivalent nodes.

4 Using the HAIG for Verification
A history AIG (HAIG) is an AIG containing the original version of the design, the final one, and all the intermediate logic derived during synthesis. It is a sequential circuit in every sense (e.g. an initial state for every register), but with a lots of redundancy. Sequential verification of the original against the final one can be performed by proving equivalence of all candidate pairs of HAIG nodes recorded during synthesis. 
4.1 Theory

Definition: Unlike combinational synthesis, a window in sequential synthesis can cross the register boundary several times. The sequential depth of a window-based sequential synthesis transform is the largest number of registers on any path from an input to an output of the window. Currently, loops in a window are not allowed.
Theorem 1: If transforms recorded in a HAIG have sequential depth less or equal to k, the equivalence classes of the HAIG nodes can be proved by k-step induction.

Theorem 2: If the inductive proof of the candidate equivalences in a HAIG passes without counter-examples, then all synthesis steps have been performed correctly (which implies that the original design and final design are sequentially equivalent).
The proof of Theorem 1 is straightforward. The formal proof of Theorem 2 can be found in [7]. 
4.2 Implementation

Figure 4.2 shows the pseudo-code of a simple inductive prover used to verify the candidate equivalences recorded in the HAIG. This prover is much simpler than the general-case prover [12]
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status inductiveVerification( aig HAIG, int k )

{

        // run BMC for k-1 initialized timeframes

        status = performBMC( HAIG, k-1 );

        // return the status of sequential verification after BMC

        if ( status == “encountered a counter-example” )

                 return ID of the synthesis transform that failed BMC;

        // do speculative reduction for k uninitialized timeframes

        aig HAIG_SR = speculativeReduction( HAIG, k-1 );

        // derive SAT solver containing CNF of the reduced timeframes

        solver S = transformAIGintoCNF( HAIG_SR );

        // check candidate equivalences in k-th timeframe

        status = performSatSweepingWithConstraints( S, HAIG );

        // return the status of sequential verification after SAT sweeping

        if ( status == “encountered a counter-example” )

                 return ID of the synthesis transform that failed induction;       

        return “equivalence check succeeded”;

}

Figure 4.2. Simple inductive prover to verify HAIG.
The simple inductive prover makes use of speculative reduction [25], resulting in substantially reduced runtime. There is no need for iterative refinement of the equivalence classes because, if synthesis was performed correctly, counter-examples are never produced. time frame. If a counter-example is detected, the ID of the corresponding synthesis transform can be returned for help in debugging the synthesis code. We note that even the kth copy can be speculatively reduced. Further, each equivalence in this copy can be solved in parallel. 

It is significant that the prover that can used in verification of the HAIG can be so simple because this inductive prover should not be same as that used in synthesis, otherwise the same bug may appear in both and make the bug not observable.
Memory requirement for a general AIG manager are roughly 32 bytes per AIG node stored. However, a HAIG can get by with 8 bytes per node. The largest benchmarks in the set had about 20K AIG nodes. Assuming two copies of the circuit stored in a HAIG, yields 2 * 20,000 * 8 = 320Kb. AIGs also lead to significant compaction as shown in the program AIGER [5].  The runtime of HAIG recording is negligible.

5 Other Uses of a HAIG
A HAIG can be used in several other applications, e.g., to improve the quality of technology mapping or to perform incremental changes to netlists after physical design (ECO).

Using synthesis history to overcome structural bias inherent in cut-based structural mapping leads to substantial improvements in delay and area [8]. It was shown that further iterating HAIG-based synthesis and tech-mapping tends to gradually improve the quality of mapping. This happens because the logic structure of the AIG after each iteration of mapping is recorded in the HAIG, and the AIG is gradually synthesized to be compatible with the implementation technology. In [22], it was shown that sequential mapping combining technology mapping and retiming [28] can be extended to use the HAIG similarly.
Another application could be design debugging after physical synthesis, which requires tracing some logic gates back to the lines of the original HDL code, which produced them. For such application, additional APIs would allow the designer to use the HAIG to efficiently iterate through the synthesis steps forward or backward, and trace the dependence of a node in the final AIG to the original source code. Another application may explore the impact of a particular synthesis transform on the final result and possibly incrementally undo that transform to improve the result.
6 Experimental Results

History recording and HAIG-based sequential verification have been partially implemented in ABC [4]. The SAT solver used is a modified version of MiniSat-C_v1.14.1 [10]. The benchmarks used are 20 largest public circuits from the ISCAS’89, ITC’97, and Altera QUIP benchmark suites [1]. The runtimes were measured in seconds on a workstation with two dual‑core AMD Opteron 2218 CPUs with 16GB RAM, and runs x86_64 GNU/Linux. Only one core was used in the experiments.

The synthesis included three iterations of balancing, rewriting, and retiming. Balancing is algebraic tree restructuring for minimizing delay. Rewriting stands for one pass of AIG rewriting [21]. Finally, retiming consists of a fixed number of steps of forward retiming. (In the reported experiments, at most 3000 retiming moves were performed in each iteration.)
This script was selected to ensure that synthesis involves several iterations of combinational synthesis and retiming, resulting in a network that is difficult to verify, according to [14].

The results of synthesis are shown in Table 1. The three sections of this table show the statistics for the original and final networks and the HAIG, respectively. The parameters reported are the number of primary inputs (column “PI”), primary outputs (column “PO”), registers (columns “Reg”), AIG nodes (columns “Node”), and AIG levels (columns “Lev”). The runtime of synthesis is shown in the last column of Table 1.
The results of synthesis were verified with and without using the HAIG. Verification with the HAIG used the approach described in Section 4. Verifying without the HAIG was done by a general-purpose sequential equivalence checking engine [24], which performs a sequence of simplifying transformations, including  register sweep, retiming, combinational synthesis, SAT sweeping, register and signal correspondence, etc. 
The results of verification are shown in Table 2. The first section shows the statistics of using two time-frames of the HAIG for verification. Since after unrolling, the timeframes are a combinational circuit, listed are only the number of AIG nodes (column “Node”) and the number of AIG levels (column “Lev”). 

The second section shows the number of equivalences enforced in the first timeframe (column “Constr”) and the equivalences checked in the second timeframe (column “Property”) as well as the total number of equivalences in the HAIG (column “Total”). The first two numbers are less than the total number of node pairs because speculative reduction [25]
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The third section of Table 2 show the parameters of CNF from the two timeframes of the HAIG using efficient AND-to-CNF conversion [11]. The last section shows the runtimes of SAT‑based verification using the HAIG (column “HAIG”) and of the general-purpose SEC (column “SEC”) in ABC (command dsec [24]). Entry 1000+ indicates a timeout at 1000 seconds.
The last lines in Tables 1-2 list geometric averages of the corresponding parameters. The examples that timed out were given a time of 1000 in computing the runtime ratios.

6.1 Discussion
We discuss the results in the tables with regard to a) size of the HAIG, b) speed of verification, and c) reliability of verification.

To discuss the size of the HAIG, note that it contains both the original and final versions of the design in the AIG form. Their total is 1.77 while the HAIG size is 5.13. Thus, on average, the HAIG is about 3x larger than a miter of the circuit that would be created for SEC. While the experiments represent only a medium synthesis effort, the fact that AIGs can be stored in a very compact form suggests that memory blowup during HAIG recording is not going to be a problem (for example, AIGER [5] uses on average 3 bytes to represent one AIG node).
Verification using the HAIG (HSEC) ranged from over 600 times faster, to 4.4 times slower than the general-purpose SEC (GSEC), with an average speed up of 4.59x on the 20 examples. On five of the examples, GSEC was actually faster than HSEC. We speculate that this is due to GSEC using heavy but scalable pre-processing: min-register retiming, structural sweep, and register correspondence. If this fast pre-processing can reduce or already solve the sequential miter, then general-case SEC does not take much time. HSEC became slower when there were many properties to verify, which was generally due to recording retiming one move at a time. Each gate, over which a register moves, causes an equivalence to be generated and checked later. A possible future investigation would be to see if only recording the equivalences at the final register positions would be sufficient. In addition, we reiterate that HSEC can be formulated so that each property can be checked completely in parallel,
There were 25% of the examples that timed out during GSEC, while none timed out during HSEC, although the largest example, raytracer, with over 13K registers, took 800 seconds by HSEC. This percentage is likely to increase in experiments where heavier synthesis is applied, such as sequential SAT sweeping, min-register retiming, use of reachability don’t cares, etc. This is because we know that GSEC is PSPACE-complete. In contrast, HSEC is NP-complete because it is reduced to SAT (Theorem 1).
7 Conclusions and Future Work

We proposed a transparent synthesis process, which efficiently records the history of synthesis transformations. We showed how this history can simplify sequential verification. We proposed a simple elegant format for storing a history as an AIG and described how this can be done easily by orchestrating computations in two related AIG managers. Finally, we demonstrated that the use of a history usually leads to savings in the runtime for sequential verification, compared to the runtime of an efficient general-purpose equivalence checker. More importantly, it leads to a reliable and rugged method for SEC, which is guaranteed to always complete.
Typical questions and concerns about a history-based sequential verification process are: 
1) Can’t incorrect information be passed inadvertently from the synthesis tool to the verification tool? 
2) Might the same bugs in the synthesis tool also exist in the verification tool, thereby cancelling each other out and leading to false positives? 
3) Won’t the memory required to record the history explode on large examples?
4) If a synthesis tool does not use AIGs can one still use this methodology?
First, we emphasize that the synthesis history is used simply as a set of hints for verification. Every step recorded in the history must be proved, and should be proved using a different prover compared to the one used in synthesis. Fortunately the inductive prover needed in HSEC is much simpler than in GSEC because induction for a HAIG should succeed without counter-examples. A simple HAIG prover in ABC is only about 100 lines of code (not counting the AIG package and the SAT solver), which is much more than about 2000 lines of code needed to implement a general-case inductive prover. The simplicity of the HSEC prover makes it easy to debug and more reliable. Also, at 8 bytes per node, memory requirements for a HAIG are very light, can be compacted significantly, and can be stored on disk without cache interference during history recording. Finally, we envision a history package based on AIGs which is a stand-alone module and can be called by any synthesis tool. 
Also, the absence of counter-examples ensures fast and reliable runtimes of the HSEC solver. This is supported by experimental results, although there are cases where GSEC solver can be faster. Mostly, a GSEC prover for large industrial circuits is much slower because of the runtime spent generating and simulating counter-examples, and refining the equivalence classes. For HSEC, a counter-example would be extremely rare but would be extremely useful in that it would identify an incorrect implementation of a synthesis transformation. 
The speed of HSEC is helped because speculative reduction effectively reduces the HAIG to a single copy of the original circuit, except for the additional signals that are necessary to state the equivalences. In other words, if these signals removed, the HAIG will collapse to a single copy of the original circuit. Even in the last, kth timeframe, the circuit can be speculatively reduced. For further speed, all equivalences can be proved in parallel and in the rare case that one does not hold, the first one in topological order identifies a bug in the synthesis code. This is sufficient for debugging the synthesis code.

Although we have not explored other ways of recording synthesis history, the use of AIGs seems to provide an elegant method for doing this. AIGs are becoming increasingly accepted in both synthesis and verification communities, efficient AIG packages are being developed and improved, and AIGs are being used as an intermediate format for circuit logic representation. 
Future work in this area will include:

· Completing the HAIG implementation in ABC to include all transformations; in particular, backward retiming, sequential SAT sweeping, and window-based transforms, such as re-encoding, ODC-based resynthesis.

· Polishing the HAIG interface and releasing it as a stand-alone package ready for integration into non-AIG based synthesis tools.

· Conducting extensive experiments on industrial benchmarks while recording long sequences of synthesis transforms.

· Exploring the potential of using a partial HAIG. In particular, (a) developing methods to record a minimal history needed to ensure inductiveness and (b) investigating if some history information can be used to speed up the general-case SEC.
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Table 1. Synthesis results.
	Bench-
	Original network
	After synthesis
	HAIG
	Run-

	mark
	PI
	PO
	Reg
	Node
	Lev
	Reg
	Node
	Lev
	Reg
	Node
	Lev
	time,s

	s13207
	31
	121
	669
	2728
	36
	1060
	2133
	25
	4763
	20598
	36
	0.36

	s35932
	35
	320
	1728
	11948
	19
	2016
	9094
	11
	5046
	60771
	19
	0.71

	s38417
	28
	106
	1636
	9238
	31
	1833
	8161
	27
	10636
	60156
	48
	0.83

	s38584
	12
	278
	1452
	12310
	37
	2478
	9427
	25
	7731
	63638
	43
	0.98

	b14
	32
	54
	245
	6070
	61
	587
	4893
	61
	2630
	31296
	73
	0.32

	b15
	36
	70
	449
	8448
	66
	949
	7756
	94
	6377
	51139
	106
	0.67

	b17
	37
	97
	1415
	27567
	93
	2271
	24386
	104
	10415
	137921
	127
	1.70

	b18
	37
	23
	3320
	81710
	132
	3940
	65264
	117
	12320
	354141
	132
	3.99

	aqua
	464
	3328
	1477
	25058
	276
	2032
	20710
	347
	10477
	124894
	347
	1.82

	cfft
	52
	592
	1051
	13838
	80
	1165
	9184
	62
	10051
	79216
	119
	0.85

	cord1
	50
	32
	719
	11846
	73
	1433
	8425
	58
	6592
	60432
	119
	0.67

	cord2
	34
	40
	1015
	15773
	82
	2080
	10862
	63
	8510
	79469
	142
	1.04

	desperf
	121
	64
	1976
	29905
	17
	1992
	22873
	28
	10976
	145498
	31
	1.66

	ether
	192
	1171
	1272
	10820
	70
	2159
	8977
	78
	7737
	60486
	111
	1.27

	fpu
	262
	280
	659
	24932
	3580
	997
	16294
	1876
	9659
	126436
	3580
	3.21

	jpeg
	1720
	3450
	3972
	56601
	89
	5788
	43712
	73
	12972
	243672
	104
	6.63

	mem
	115
	152
	1825
	16727
	33
	2399
	14067
	38
	8781
	85341
	45
	1.79

	radar
	3292
	17732
	6001
	78342
	173
	7557
	58759
	91
	15001
	347762
	174
	8.75

	video
	1903
	3528
	3549
	46433
	95
	3422
	32852
	75
	12549
	208953
	99
	4.86

	raytracer
	4364
	10569
	13079
	187683
	338
	13624
	137974
	252
	22079
	771632
	338
	13.65

	Geomean
	
	
	
	1.00
	
	
	0.77
	
	
	5.13
	
	


Table 2. Verification results.
	Bench-
	HAIG (2 frames)
	CNF statistics
	HAIG outputs
	Runtime, s

	mark
	Node
	Lev
	Var
	Clause
	Literal
	Constr
	Property
	Total
	HAIG
	SEC

	s13207
	9999
	44
	49631
	100078
	213073
	10821
	7526
	16557
	1.47
	1000+

	s35932
	24230
	26
	45186
	101053
	237682
	10733
	3127
	41866
	2.08
	44.67

	s38417
	31926
	49
	99776
	210981
	463841
	24418
	7691
	47369
	7.86
	63.74

	s38584
	27530
	44
	79499
	171554
	380874
	21279
	5443
	46931
	0.60
	18.90

	b14
	19548
	94
	55175
	125353
	276393
	12511
	6645
	22580
	9.47
	2.18

	b15
	28958
	145
	81916
	180762
	399998
	21169
	6666
	38223
	19.85
	21.84

	b17
	72016
	147
	180428
	414631
	928526
	40450
	20253
	91526
	82.02
	48.84

	b18
	162428
	162
	388024
	919704
	2073474
	79858
	57365
	217378
	100.45
	126.94

	aqua
	59421
	415
	159804
	356435
	795010
	39764
	14531
	90077
	119.67
	1000+

	cfft
	44231
	150
	140962
	308619
	680245
	31522
	15495
	64259
	42.36
	1000+

	cord1
	30202
	121
	86974
	192412
	429937
	21616
	7018
	47834
	1.52
	8.52

	cord2
	36252
	162
	108475
	236987
	526894
	27282
	9471
	61838
	2.99
	9.62

	desperf
	66698
	35
	153539
	354900
	820614
	38235
	12181
	99651
	9.69
	4.34

	ether
	32329
	153
	94498
	206245
	457600
	21793
	9567
	45194
	4.87
	5.83

	fpu
	54829
	2710
	177714
	390191
	856681
	44815
	19571
	94187
	5.73
	1000+

	jpeg
	81170
	89
	278307
	606075
	1338154
	63579
	40262
	188743
	18.07
	279.30

	mem
	44444
	60
	110632
	248315
	559943
	25050
	11004
	60230
	4.66
	43.83

	radar
	135625
	135
	362882
	823046
	1867188
	72429
	58201
	253965
	80.29
	52.82

	video
	87497
	79
	279167
	617224
	1371529
	59229
	42531
	157531
	113.00
	69.94

	raytracer
	288421
	487
	764810
	1757699
	3975396
	154115
	130032
	548596
	800.55
	1000+

	Geomean
	
	
	
	
	
	0.42
	0.19
	1.00
	1.00
	4.59
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Step 3: Recursively remove A and continue building logic on top of B
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Step 2: Transfer fanout from A to B








Step 1: Build a new logic cone B








� A motivation of this restriction for industrial designs is given in � REF _Ref182722386 \r \h � \* MERGEFORMAT �[3]�.


� The nodes are sequentially equivalent if they compute the same value, up to complementation, in all states reachable from the initial state.
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