Invariant-Strengthened Elimination of Dependent
State Elements

Michael L. Case'? Alan Mishchenko?

Robert K. Brayton!

2

Jason Baumgartner? Hari Mony?

! Department of EECS, University of California at Berkeley, CA
2 IBM Systems and Technology Group, Austin, TX

Abstract— This work presents a technology-independent syn-
thesis optimization that is effective in reducing the total number
of state elements of a design. It works by identifying and eliminat-
ing dependent state elements which may be expressed as functions
of other registers. For scalability, we rely exclusively on SAT-
based analysis in this process. To enable optimal identification of
all dependent state elements, we integrate an inductive invariant
generation framework. We introduce numerous techniques to
heuristically enhance the reduction potential of our method, and
experiments confirm that our approach is scalable and is able to
reduce state element count by 25% on average in large industrial
designs, even after other aggressive optimizations such as min-
register retiming have been applied.

I. INTRODUCTION

Logic synthesis and formal verification are closely related
fields. Verification tools often rely on technology-independent
synthesis optimizations to reduce the size of the design being
verified, thereby enhancing the scalability of the verification
process. In this work we present a technology-independent
synthesis optimization that can reduce the number of state
elements in a design, thereby enhancing the scalability of
verification tools. The focus of this paper is on synthesis for
verification.

A dependent state element is one which may be expressed
as a function over other state elements in the design. Once
identified, the overall state element count of the design may
be reduced by replacing the dependent elements by the
corresponding functions over the remaining elements. Many
verification algorithms are highly sensitive to the number of
state elements present in the design. For example, BDD-based
reachability analysis generally requires exponential resources
with respect to state element count, hence it may dramatically
benefit from the elimination of dependent state elements [1].
The effectiveness of induction is also generally sensitive to
the implementation of the logic, particularly in the presence
of unreachable states [2]. Dependent state element elimination
inherently reduces the fraction of unreachable states of a
design, thereby enhancing inductiveness.

Dependency is traditionally identified using BDD-based
algorithms (e.g., [1]), which practically limits its application to
smaller designs or requires approximate compositional analy-
sis, resulting in suboptimalities. Recently, it has been demon-
strated that combinational dependency of next-state functions
may be identified using purely SAT-based analysis [3], en-
abling the analysis to scale to much larger designs. However,
the previous research lacks several elements that make this
method effective in practice. In this paper, we address the

topic of sequential dependent state variable elimination using
SAT-based techniques. Our contributions are as follows.

« To enhance state element reduction capability, we for-
mulate the dependency check in a way that allows our
formulation to directly reduce the total number of state
elements, discussed in Section IV.

« Because the dependent state elimination process provides
network simplifications that may not be compatible, we
introduce a technique to heuristically arrive at a legal
netlist of minimal size by finding a high-quality compat-
ible subset of dependent state elements in Section IV-C.

o SAT-based dependent state element elimination can in-
troduce logic bloat in the design, and to mitigate this we
introduce a way to leverage flexibilities in the dependency
check to enable heuristically greater combinational logic
reductions (Section IV-D).

o To enable the identification of state elements which are
dependent in the reachable states though not necessarily
in arbitrary states, we integrate an unreachability invariant
framework to approximate unreachable state don’t cares.
To enable a purely SAT-based method, our invariant
generation framework uses random simulation and k-
step induction to derive inductive invariants in a format
suitable for efficient SAT-based dependency computation.
This will be discussed in Section V. While the invariants
here are derived to benefit dependent state state elimina-
tion, they have application to many verification contexts
as well.

The algorithms described in this work can be partitioned
into two main components: 1) dependent state element identi-
fication and 2) invariant generation. A synthesis loop alternates
between these two components along with combinational
synthesis until no further design reductions are possible. The
technique has been shown to provide significant reductions
even after a design has first been heavily synthesized. The
number of registers in a design can be reduced by 25% on
average, even after optimizations such as min-register retiming
have been applied. The dependent state elements in our experi-
ence are re-expressed as complex functions over the remaining
elements, indicating that these dependencies cannot be found
by simpler techniques such as register correspondence.

II. BACKGROUND AND RELATED WORK

In this section we review fundamental synthesis concepts
and terminology used throughout this paper. We also provide
a review of prior SAT-based resubstitution research.

A. Boolean Networks and And-Inverter Graphs

A Boolean Network (BN) is a directed acyclic graph (DAG)
composed of a set of input signals and Boolean functions [4].
Each Boolean function in the BN has an on-set (off-set) which
is the set of valuations of the functions inputs that cause the
function to evaluate to 1 (0). By the definition of a function, the
on and off-sets must be disjoint, but there may be valuations
of the inputs for which the value of the function is undefined.
These input valuations are not contained in either the on- or
off-sets and represent don’t care conditions against which an
implementation of the function may be optimized. In synthesis,
such don’t cares arise for several reasons, and two such reasons
that are important in this work are: 1) There may be sequential
don’t cares in the form of unreachable states against which
combinational logic functions may be minimized, and 2) There
may be satisfiability don’t cares where the sub-BN’s that drive
the function inputs may be incapable of generating certain
input patterns.

In this work we operate on a particular type of BN referred
to as an And/Inverter Graph (AIG). An AlG is a DAG where
each node is either a 2-input AND gate or an input to
the AIG. Inverters may be present and are indicated with
a complementation attribute on the edges in the DAG. A
sequential AIG is an AIG that also contains state elements,
hereafter referred to as registers. The register r is the only
state-holding AIG primitive, which has an associated initial
state init(r), defining its time-0 behavior, as well as a next-
state function next(r) which defines the value of r at the
following time-frame.

B. SAT-Based Resubstitution

In logic synthesis, resubstitution refers to a process that
recasts a Boolean expression as a function over other pre-
existing Boolean expressions [4]. For example, suppose there
are Boolean signals X, g1, g2, ..., gn. Resubstitution may be
used to build a function F(-) such that X = F(g1,92,--.,9n),
or to prove that no such function exists. The functions g1, go,
.. .» gn, are referred to as the basis and F(-) as the dependency
function. Upon finding F', the old implementation of X can
be removed and replaced with with the new implementation
of F'. Often resubstitution yields a reduction in the size of the
AIG, and for this reason has been the focus of much synthesis
research.

Traditionally, resubstitution is performed using Binary Deci-
sion Diagrams (BDDs) [1]. While efficient for small functions,
the scalability of BDD-based techniques is often limited to
modestly sized functions and bases, preventing optimal de-
pendency identification in larger netlists. Recently it has been
demonstrated that resubstitution may be cast as a Boolean
Satisfiability (SAT) problem [3]. The formulation builds a
combinational test circuit and uses SAT to determine if the
circuit’s single output is satisfiable. If the answer is unsat
then the dependency function F'(-) exists and can be extracted
from the proof of unsatisfiability through interpolation. This
method offers substantially greater scalability than possible
with BDD-based analysis.

B (X's off-set) 1

9 9, 9s 91 92 9
Circuit Copy 1 Circuit Copy 2
Fig. 1. SAT-based dependency formulation [3]

Suppose that we wish to express X as a function over
signals gj,...,gs. This is possible if and only if for each
valuation to signals g1,...,gs there is a single possible X
valuation. We can test if such a resubstitution exists using the
circuit shown in Figure 1. Two separate copies of X, g1, g2,
and g3 are instantiated. Each pair of g¢’s is constrained to have
the same value, and the pair of X’s is constrained to have
differing values. A resubstitution exists if and only if this test
circuit is unsatisfiable. Many SAT solvers can be configured
to record a proof of unsatisfiability [5], and interpolation on
this proof provides the dependency function.

Given Boolean formulas A(z,y) and B(y, z), if A(z,y) -
B(y, z) = 0 then there exists a Craig Interpolant [6] I such
that I refers to only the common variables y of A and B, and
A = I = B. [7] provides an algorithm to extract the
interpolant I from the proof of unsatisfiability of A - B. This
technique was first introduced to the verification community in
a SAT-based unbounded verification algorithm [8] where the
interpolant represents an overapproximate image computation.

In the resubstitution context, interpolation will be used to
derive a dependency function. We may partition the resub-
stitution test circuit in Figure 1 into two halves A and B.
A represents the set of g’s where X = 1, the on-set of X.
Similarly, B represents the off-set of X. Because A —
I = B, I is a function that lies in between the on and off-
sets of X, and we can replace X with . Furthermore, I only
refers to the common variables between A and B, namely the
g’s, hence I provides the dependency function.

While this SAT-based formulation of [3] enables substan-
tially greater scalability than BDD-based techniques, this
formulation is limited in four key ways:

1) The prior research can only re-express combinational
logic and cannot directly eliminate registers. In this
work we simplify verification problems, and reducing
the number of registers is important to increasing the
scalability of many verification algorithms. Section IV-
A will discuss how we directly eliminate registers.

2) The prior research cannot identify dependencies which
hold in all reachable states but not in arbitrary unreach-
able states. In our experience, the reduction potential
of this combinational analysis is often a subset of
that possible using min-register retiming with integrated
resynthesis [9]. We use invariants to overcome this
limitation, as discussed in Sections IV-B and V.

3) The prior research does not address incompatibilities
present in the set of found dependencies. Often, depen-
dencies must be discarded to avoid creating combina-

tional cycles in the logic. We discuss an efficient way
to compute a compatible set of dependencies in Section
IV-C.

4) The prior research does not address the logic bloat that
may result from interpolation. In general, logic gener-
ated by interpolation is highly redundant. We discuss a
method to mitigate this logic bloat in Section IV-D.

ITI. DEPENDENT REGISTER ELIMINATION ALGORITHM

Our overall dependent register elimination routine is illus-
trated in Algorithm 1. The method used to eliminate dependent
registers will be detailed in Section IV, and the method used to
compute invariants will be discussed in Section V. At the top
level, these two methods are iterated along with combinational
synthesis (e.g., [10]) until design size is no longer reduced.

Algorithm 1 Dependent register elimination

1: function sequentialResynthesize(design)

2 invariants := ()

3 repeat

4 invariants += gatherInvariants(design, invariants)
5: design := eliminateRegisters(design, invariants)
6 design = combinationalSynthesis(design)

7 until (No change in design size)

8 return design

9: end function

10:

11: function gatherlnvariants(design, invariants)

12: while (Conlfig file calls for more invariants) do

13: Sfamily, parameters = readConfigFile()

14: candidates := getCandidates(family, parameters)
15: candidates = reduceToBest(candidates, invariants)
16: candidates = testBaseCase(candidates)

17: repeat

18: candidates := testIndStep(candidates, invariants)
19: until (No change in candidate set)

20: invariants += candidates

21: end while

22: return invariants

23: end function

24:

25: function eliminateRegisters(design, invariants)
26: depends :=)

27: for all (registers R in design) do

28: test := buildResubTest(next(R), other next-states)
29: if (satSolve(test) == unsat) then

30: proof := getResolutionProof()

31: next = getDependencyFunc(next(R), proof)

32: notNext := getDependencyFunc(—next(R), proof)
33: curr := getDependencyFunc(R, proof)

34: notCurr = getDependencyFunc(—R, proof)

35: depends += pickBest(next, notNext, curr, notCurr)
36: end if

37: end for

38: depends := makeCompatible(design, depends)
39: return simplifyDesign(design, depends)
40: end function

IV. RESUBSTITUTING FOR OPTIMAL LOGIC REDUCTION

In this section, we discuss our enhanced resubstitution pro-
cedure (function eliminateRegisters in Algorithm 1).
Our resubstitution setup is illustrated in Figure 2, which
is similar to Figure 1 but modified in several ways. This

Resubstitution Test Function

B
Invariants = 1
Next State

A .
« For a particular state var S, next(S') # next(S?)
« For every other state var T, next(T") = next(T?)
[T T
Invariants
Functions
C 2

[TTTTTT] [TTTTTT]
Inputs / Current State Inputs / Current State

Invariants | Next State

Functions

C 1

Fig. 2. Our enhanced resubstitution framework

section will discuss how we target the formulation to find
dependent registers as well as enhancements that make SAT-
based resubstitution effective in practice. We iteratively call
this procedure for every next-state function in the design in

order to find the set of all dependent registers.

A. Register Elimination

If the resubstitution formulation illustrated in Figure 2 is
unsatisfiable, then a dependency function will be obtained
that may be used as a replacement for next(S). Trading
the existing implementation of next(S) with the dependency
function may yield a savings in the number of ANDs in the
AIG. This paper is targeted to aiding verification where the
number of registers often is more important than the number of
ANDs. Here we present a formulation by which a dependency
function can be used to directly eliminate a register in the
design.

Consider Figure 3a where the logic needed to implement
next(S) is highlighted. If a dependency function exists, it
will express next(S) as a function of the other two next-
state signals next(T)) and next(T). The implementation of
next(S) may be replaced with this dependency function, as
illustrated in Figure 3b. We can further simplify the design
by expressing this dependency function over the current states
instead of the next-states, thereby eliminating register .S.

Definition 1: Let an orphan state be any state o, for which
there does not exist a state oo such that o; is reachable from
o9 in one transition.

Note that every no reachable state, with the possible excep-
tion of the design’s initial state(s), is an orphan state.

Theorem 1: For registers S, T, ..., T, if there exists an
F(-) such that next(S) = F(next(Ty),...,next(T,)) then
for every state that is not an orphan state S = F(T4,...,T},).

Proof: Let o1 be a state of the design and a concrete
valuation of the registers S, Ty, ..., T,. If o1 is not an
orphan state then there exists a state oo such that o; can
be reached in one transition from oy. Let X (0,,) denote the
valuation of register X in state o,, and note that there exists

™
T, | T,

S Initial
Qﬁj \éﬂn -

(b) Resubstitute next(s) (c) Eliminate S by separating
time 0 and time > 0 behavior

Register elimination process

(a) Original Circuit

Fig. 3.

inputs such that next(X(o2)) = X(o1). From the hypothesis
we have next(S(o2)) = F(next(T1(02)),. .., next(T,(02))).
Rewriting we see that S(o1) = F(T1(01),...,Tn(01)). N

Theorem 1 allows for the dependency function computed
over next-state functions to be expressed over current states,
provided the initial state(s) are accounted for. The result of this
process is illustrated in Figure 3c. The dependency function
between Figure 3b and 3c is identical; only the logic driving
its inputs has changed. The register S has been completely
eliminated at the cost of initial state correction logic. To correct
the initial state, we introduce a multiplexor which at time 0
will drive the initial value of the register being eliminated, and
thereafter will drive the dependency function for the next-state
function of the eliminated register. To enable selection of these
two values, a register may need to be introduced to the design
which initializes to 1 and thereafter drives 0. This register is
reused across all resubstitutions.

While Theorem 1 is not guaranteed to hold in the initial
state, in some cases the initial value may be preserved by
that dependency function. That is, the value produced by
the dependency function at time 0 may be identical to the
initial value of the register being removed, and the initial state
correction logic can be omitted. On a benchmark suite for
which 3,390 resubstitutions were performed, the initial state
had to be corrected 67% of the time. Our designs had complex
initialization functions due to retiming [11] whose value
the dependency function could replicate with relatively low
probability. This illustrates the power of our technique enhance
register reduction capability particularly in the presence of
complex initial states.

B. Optimal Dependency Identification via Invariants

A key strength of our formulation is its use of unreacha-
bility invariants, as illustrated in Figure 2. An unreachability
invariant may be synthesized into a gate I over registers in the
design such that I = 0 only on unreachable states. Through
the use of an adequately strong set of unreachability invariants,
our formulation may optimally identify all dependent registers.
However, due to resource limitations, an incomplete set of
unreachability invariants will often be used to identify many
but not necessarily all dependent registers. We discuss the
invariant generation scheme which we have found effective
in this application in Section V.

C. Compatible Dependencies

The eliminateRegisters function from Algorithm 1
will attempt to resubstitute each next-state function present in
the design. Through this process, a large number of depen-
dency functions may be identified that can replace existing
registers as depicted in Figure 3. Unfortunately, the set of
dependencies found in this manner are generally not compati-
ble, and if multiple dependency simplifications are performed
simultaneously then often a combinational cycle will be cre-
ated in the AIG resulting in an illegal design. A compatible
set of dependencies is one in which all dependencies can be
applied simultaneously with no resultant combinational cycles.

Therefore, once the dependencies have been identified, one
must identify a subset of compatible dependencies contained
therein, and this chosen subset may impact the size of the
resulting design.

Algorithm 2 Selecting a set of compatible dependencies

1: function makeCompatible(design, dependencies)

2: scored := (), compatible := ()

3 for all (Dep. D in dependencies) do

4 red = D.redundant_AIG_node

5: repl = D .replacement_AIG_node

6 gain = aigSize(design) - aigSize(design - red + repl)
7 scored| D] = scoreFunction(gain.regs, gain.ANDs)

8: end for

9: sortDescending(scores)

10: for all (Dep. D in scored) do

11: red = D.redundant_AIG_node

12: repl = D .replacement_AIG_node

13: if (lisCyclic(repl, red, compatible)) then
14: compatible += D

15: end if

16: end for

17: return compatible
18: end function

To illustrate the notion of incompatible resubstitution, con-
sider a design with registers Rj,... R, which have a one-
hot encoding where in every reachable exactly one of these
n registers will evaluate to 1. Given adequate invariants to
characterize this one-hot condition, the following dependen-
cies may be identified: -

Ri=RoANR3ANRyN--+, Ro=RiANRsANRyN-+-

It is not possible to express R; as a function of Ry and si-
multaneously express Ro as a function of R; without creating
a combinational cycle.

Finding a compatible subset of dependencies is a computa-
tionally difficult task. Finding an optimal subset would entail
enumerating and testing every possible subset, and this is
feasible for only very small sets of dependencies. In this work
we utilize a heuristic to quickly find a near-optimal subset of
compatible dependencies.

After the complete set of dependencies is found, we reduce
this to a set of compatible dependencies as illustrated in
Algorithm 2. Each found dependency consists of two signals:
a redundant signal that will be eliminated and a replacement
signal that will be introduced in its place. We first sort the
dependencies in the order of their ability to simplify the circuit,
computed as a function scoreFunction. (Experimentally,
we have found that the function 20 - gain.regs + gain.ANDs
works well.) The list of sorted dependencies is then iterated
over, and a subset of compatible dependencies is greedily
found. For each dependency, we test if performing this opti-
mization in the presence of the other compatible dependencies
will introduce a combinational cycle using isCyclic. If
so, the candidate merge is discarded. Otherwise the merge is
added to the compatible set.

While this search is greedy, prioritizing the dependencies by
score enables the algorithm to capture most of the optimization
potential present in the original set of dependencies. This
is illustrated on a set of industrial designs in Table I. For

TABLEI. Compatible dependencies on a set of IBM benchmarks

Total Deps. Compatible Deps.
Design Count Sum Score | Count Sum Score
Setl / IBMOI 348 -830 295 405
Setl / IBM02 310 -17248 269 -17324
Setl / IBMO3 442 -17452 385 -17390
Setl / IBM04 800 1058 571 985
Setl / IBMOS 34 303 22 219
Setl / IBM06 184 1496 123 966
Setl / IBMO7 142 0 102 -242

each design, the found dependencies and compatible subset of
these found dependencies are examined. Usually only a small
percentage (14%) of the total dependencies must be discarded
to form a compatible subset. If the total gain is summed over
all possible dependencies, we see that the sum gain from the
compatible dependencies is similar. This indicates that most
of the AIG optimization potential present in the full set of
dependencies was captured by the compatible subset.

D. Reducing Dependency Function Interpolants

The dependency functions are obtained from the interpolant
of a proof of unsatisfiability. Using the method given in [7],
the resultant logic will have size that is linear in the size of
the resolution proof. The proof of unsatisfiability for large SAT
problems may also be large, and this may make the interpolant
and resulting dependency function much more complex than
necessary. Here we explore several ways to control the size of
the obtained dependency functions.

The most basic way to control the size of the dependency
functions is with combinational synthesis. Logic that comes
from interpolants is, in our experience, usually highly re-
dundant and amenable to combinational synthesis techniques.
Here we focus on ways to more directly optimize our depen-
dency functions before combinational synthesis is applied.

One simple way to control the size of the interpolants before
synthesis is applied is to use incremental SAT. Our imple-
mentation attempts to resubstitute each next-state function in
the sequential AIG, and through this process many similar
SAT problems are encountered. Using one incremental solver
instance to solve all of these problems is advantageous for two
reasons:!

1) One incremental solver typically learns fewer clauses
than many non-incremental solvers. The size of an
interpolant is related to the number of learned clauses,
and using incremental SAT will result in a reduction in
the total size of all interpolants.

2) In incremental SAT the learned clauses from one prob-
lem are preserved and may contribute toward the search
for a satisfiable solution to a future problem. If the same
learned clause participates in two proofs of unsatisfiabil-
ity then the two interpolants will share common logic.
This also reduces the total cost of the logic needed to
implement all interpolants.

In addition to using incremental SAT, we propose a more
intelligent approach to mitigate logic bloat. For a particular

Incremental SAT is generally preferred, but such solvers can store a large
number of learned clauses. If memory is a concern, the solver instance may
need to be periodically refreshed.

TABLE II. Dependency function use on a set of IBM benchmarks

Depend. Average Score, By Replacement Type
Design Count S S next(S) mext(S)
Setl / IBMO1 261 1.05 0.44 -2.57 -2.29
Setl / IBM02 232 | -8.64 -26.65 -12.18 -11.94
Setl / IBMO03 331 | -6.03 -18.62 -9.46 -9.10
Setl / IBM0O4 600 1.63 2.34 -1.82 -1.56
Setl / IBMO5 25 2.64 5.54 0.27 0.14
Setl / IBM06 138 2.89 5.65 -0.32 -0.33
Setl / IBMO7 106 1.48 1.60 -1.95 -2.00

register Sis, resubstitution using a problem formulation simi-
lar to Figure 2 gives an alternate implementation of next(S).
Section IV-A tells how to use the dependency function to
obtain an alternate implementation of S. Usually replacing .S
is advantageous because register S can be removed. However,
if the initial state of S must be corrected then an additional reg-
ister may be introduced to accomplish this, thereby cancelling
the reduction in the number of registers in the design. For this
reason it is advantageous to, on a dependency-by-dependency
basis, choose to replace either next(S) or S.

We gain additional freedom in our use of the dependency
function by considering how the interpolant is extracted from
Figure 2. Note that because next(S) spans the two partitions
of Figure 2, the interpolant will be a function of next(S5).
More specifically, the interpolant will give us a dependency
function F' such that

next(S) C F(next(S), next(T1),...) C next(s)
Assigning Boolean values to next(S) gives two possible
interpretations of the dependency function:

1) next(S) = 1 means that F' can replace next(S):

onset(next(S)) C F(1, next(T1),...) C offset(next(S))

2) next(S) = 0 means that F' can replace next(S):

offset(nezt(S)) C F(0, next(T1),...) C onset(next(S))
This gives the additional flexibility to use F' to replace either
next(S) or next(S).

Combining the above concepts, a single dependency func-
tion F can be used to replace one of the 4 signals: S, S,
next(S), or next(S). Each of these 4 replacements affects the
size of the modified AIG in different ways, and to quantify
this each possible replacement is scored in a manner identical
to Section IV-C. By selecting the highest-scoring replacement,
the dependency function can be used to its best advantage.

This is examined on a suite of industrial benchmarks in
Table II. For each design, the number of found dependencies
is given. Each dependency found on a next-state function
next(S) is scored as if it were used to replace one of the
four signals: S, S, next(S), or next(S), and the average score
for each replacement type is given. A negative score indicates
that the number of ANDs introduced to build the dependency
function was greater than the cost of the logic being removed.
Note that the signal we would prefer to replace is benchmark-
dependent. In general, it is also dependency-specific, and our
implementation individually scores each dependency in 4 ways
in order to best utilize each dependency function.

V. INVARIANT GENERATION

Unreachability invariants are essential to the reduction po-
tential of SAT-based dependent register elimination. Given
invariants which adequately characterize the unreachable states

of a design, the formulation of Figure 2 is able to optimally
identify all dependent registers in a design. However, in prac-
tice resource limitations will entail that the set of invariants
may be a subset of those which truly hold of the design. The
invariant generation approach which we have found useful for
dependent register identification is detailed in this section.

The invariant generation algorithm is depicted in function
gatherInvariants of Algorithm 1. The set of invariants
is found over several iterations of a basic invariant discovery
algorithm. By finding invariants over several iterations, the
overall framework is made considerably faster as the number
of candidate invariants to be proved in each iteration decreases.
Also, after each iteration completes a new set of invariants
is found, and this provides a place that the computation can
be safely terminated if computational resources are exceeded.
After each iteration, a set of new invariants have been obtained
that can then be added to the global collection of proved
invariants.

When discovering new invariants, the first step is gathering
the candidate invariants, properties that are suspected to hold
but have not yet been proved. A set of properties from a
particular property family, described in more detail in Section
V-A, are first validated against a small set of simulation
vectors. Each vector is derived from a random walk on the
reachable state space and is therefore guaranteed to visit only
reachable states. If any candidate invariants are found invalid
by simulation, they are immediately discarded.

Next, the remaining candidates are filtered, as described in
Section V-B. The goal is to remove candidates that are easily
falsifiable or that are not capable of refining the current reach-
able state set over-approximation, given by the conjunction of
all the already proved invariants. By filtering the candidates in
this way, the proof of these candidates is made more scalable
while the candidate set’s ability to strengthen the current set
of proved invariants changes only very little.

The final step involves proving that the candidate invariants
hold in all reachable states. There are a variety of unbounded
verification algorithms that could be used, but in general
induction is the most scalable for large industrial designs. In
this work we use k-induction [12] which involves proving the
following:

Base Case The candidate invariants hold for all states reach-
able in k or less transitions from the initial state(s).
Inductive Step For all paths’> of length k£ on which the
candidate invariants hold, the invariants also hold in all

states reachable in the next time step.

A. Property Families

The candidate invariants are local properties over the nodes
in the design’s AIG. In our implementation there are five
property domains we consider: constants, equivalences, k-
cuts, implications, and random clauses. Each family exhibits
a different proof complexity and ability to refine the set of
proved invariants.

2This can be strengthened to unique state induction by only considering
simple paths [12]. Here we omit that constraint for computational reasons.

Constants are nodes that appear to take the same value in
all reachable states. Typically there are few sequentially
constant nodes in a design, but the constants are fast to
compute and prove.

Equivalences are pairs of nodes that appear equivalent in
every reachable state [13]. The number of equivalences
available depends on the design, but like constants these
are usually fast to compute and are used for low-effort
invariant generation.

k-cuts are candidate invariants that are derived from k-
feasible cuts of nodes in the network [14]. The set of
k-feasible cuts for all nodes in a user-defined part of the
AIG are enumerated. For each cut, candidate invariants
are derived by forming a clause from the OR of the
cut nodes. 2% such candidates are derived, one for each
polarity assignment to the cut nodes. In practice, for small
k the number of cuts is approximately linear in the size of
the AIG, and therefore the number of candidate invariants
is approximately linear as well. This makes the proof
of such invariants manageable while providing a good
reachability approximation.

Implications are 2-literal clauses over pairs of gates in a
design [15], [16]. Because implications are found ex-
haustively, there may be a quadratic number of candidate
implication invariants. This can make the proof very slow,
but the candidate invariants found are usually able to sig-
nificantly refine the current reachability approximation.

Random clauses are clauses formed from random sets of
nodes. The size of such a set and the circuit location
from which the nodes come is parametrized. There are
typically very many random clauses that appear to hold as
candidate invariants, but they are effective in refining the
proved invariants in ways that the other property families
are not capable of.

B. Candidate Filtering

The number of candidate invariants generated may be very
large, and it may be computationally infeasible to prove
that each of these candidates are true in every reachable
state. Additionally, not every candidate invariant is effective
in characterizing unreachable states which are not already
characterized by other already proved invariants. Therefore it
is practically necessary to filter the candidates before they are
proved.

Let I be the conjunction of all previously proved invariants,
as illustrated in Figure 4. The on-set of I contains the set of
reachable states, and we would like to find new invariants
which are able to reduce this on-set to better approximate the

reachable states.

Candidate
Invariant C

-
Amount by
which C
strengthens 1
Je— STCAI

Reachable
State Set ~_J

Reachable
State Set

If Cis proved,
I1:=CnhI

Filtering candidate invariants

The amount by which a new candidate invariant C' may
strengthen the current reachability approximation [is equal
to the size of the on-set of ~C' A I. The size of the on-set is
difficult to precisely compute, though it can be estimated with
random simulation. For each candidate invariant I, the number
of times random simulation asserts —=C' A I is recorded as the
candidate’s “score. ” The top-scoring candidate invariants are
selected for the inductive proof attempt. These are the candi-
dates that, if proved, can best refine the current reachability
approximation.

C. Invariant Generation Process

In this section we detail the algorithmic parameters which
we have found useful for invariant generation. The basic in-
variant discovery loop (gatherInvariants of Algorithm
1) is iterated several times in order to quickly form a high-
quality reachability approximation. In our experiments the
following cycle was repeated until until a user-specified time
limit was reached:

1) Look for constants. Keep the 5000 “best” candidates
(Section V-B), and prove them using 1-step induction.

2) Repeat step 1, and enable equivalences.

3) Repeat step 2, and enable 4-cuts. Restrict the search for
cuts to the nodes near the registers (lower 8 AIG levels).

4) Repeat step 2, and additionally look for Boolean impli-
cations between registers.

5) Repeat step 2, and additionally look for random 3-literal
clauses. Restrict the nodes that can participate in these
clauses to be near the registers (lower 8 AIG levels).

6) Increment the k in k-step induction, and go to step 1.

These invariant generation iterations are illustrated for one
IBM benchmark in Figure 5. Four statistics are shown: 1)
getCandidates Time: the time needed to derive candidate
invariants, 2) Prove Time: the time needed to prove those
candidates, 3) Candidate Invariants: the total number of can-
didate invariants after filtering, and 4) Proved Invariants: the
total number of proved invariants. These four statistics were
collected over 9 iterations of the basic invariant discovery loop.
Iterations 1 - 5 use £ = 1 induction while 6 - 9 use k = 2
induction.

Note that iterations 3 and 8 compute the invariants over the
same families, but the number of candidates in iteration 8 is
significantly less than in iteration 3. This is because iterations
1-7 have derived a tighter reachability approximation than
iterations 1-2 alone, and so in iteration 8 there are fewer can-
didates that are able to refine this reachability approximation
and the filtering described in Section V-B is more effective.

On the industrial design examined in Figure 5, invariants
successfully proved in the following three families: k-cuts,
random clauses, and implications. In our experience all 5
families provide useful invariants in general, and cycling
through different property families allows them to complement
each other. The resultant reachability approximation is more
effective in strengthening dependent state element elimination
than invariants derived from any single family alone.

B getCandidates() Time
[Prove Time

[l Candidate Invariants
[J Proved Invariants

0.8 - M M

0.6 -

04 -

2 28 tiz 42 iiE £ 28 132 i
= < L8 - 3 = Z 453

1 =2 =30 =8-§ ’ES% s e =80 ES-E
2 g8 &5 S58 255 2 S8 =g SER
= 2] %0 200 BO0F = 2= 20 200
= £= == SZE SEX =] 23 £= £E==
(@) S5 IS c8a &g @] S5 cg oS,
~ O U5 O5g U3 I O U5 O35 E
= 58 28 2B ZE =58 25 XB=

Fig. 5. Invariant generation process

D. Extracting Synthesis Properties

The constants and equivalences property families give in-
variants that can be directly used to simplify the circuit.
Specifically, each invariant of this type implies that a node
in the AIG can be removed and replaced with either another
node or a constant.

Our implementation will detect such simple conditions and
optimize the AIG accordingly. This is not as powerful as
sequential SAT sweeping [13] because some useful candidate
invariants may be removed by the filtering of Section V-B,
but detection of the invariants with corresponding synthesis
optimizations requires little overhead and occasionally helps to
reduce the design size. Additionally, previously proved invari-
ants strengthen our inductive formulation and so occasionally
we find more equivalences than SAT sweeping.

VI. EXPERIMENTAL RESULTS

The algorithms discussed in this paper were implemented
in the IBM internal verification tool SixthSense [11]. All
experiments were run on a 1.83 GHz laptop running Linux 2.6.
Three sets of challenging IBM benchmarks were synthesized
using our register resubstitution framework. The benchmarks
were selected from a collection of designs with properties that
are known to be difficult to prove or falsify.

The proposed synthesis method is able to improve upon
the best-known synthesis methods to date, and to demonstrate
this the benchmarks were aggressively preprocessed before
our synthesis was applied. The preprocessing steps included:
combinational synthesis, min-register retiming, combinational
synthesis, removal of sequentially equivalent registers, and
finally, one more round of combinational synthesis. These
steps are able to dramatically reduce the size of the design,
and after preprocessing the existing synthesis methods cannot
optimize these designs further.

Our proposed synthesis algorithm, illustrated in Algorithm 1
was applied to the preprocessed designs twice. In the first
pass, invariant generation was disabled in order to isolate the
effects of dependent state element elimination. In the second
pass, the design was reverted to the preprocessed snapshot and
Algorithm 1 was rerun with invariant generation enabled. The
invariant generation algorithm was given 180 seconds to find
invariants using the scheme discussed in Section V-C, and the

TABLE III. Performance on three sets of IBM benchmarks
Preprocessed Design Algorithm 1 Without Invariants Algorithm 1

Design Inputs Regs ANDS Time | Regs ANDS Time | Invars. Regs ANDS Time
Setl / IBMO1 59 386 1721 8.54 238 1582 12.98 806 238 1561 211.53
Setl / IBM02 44 457 3292 473 294 6235 32.36 1102 295 6266 241.84
Setl / IBMO03 44 625 5982 4.61 429 9332 50.10 2031 430 9301 301.57
Setl / IBM04 34 743 3693 4.70 457 4131 86.47 25 457 4073 22530
Setl / IBMOS 104 744 7520 5.56 736 5885 176.34 161 731 6092 401.57
Setl / IBM06 18 836 6312 9.62 775 6337 164.21 29 775 6309 374.02
Setl / IBMO7 44 241 1127 1.07 189 1463 17.20 872 190 1022 173.42
Setl Summary! 1.00 1.00 0.75 1.23 0.75 1.17

Set2 / IBMOS 8 104 535 1.16 104 529 0.97 101 104 526 201.77
Set2 / IBM09 16 703 3401 472 696 3410 139.56 3110 Unreachable? 293.93
Set2 / IBM10 21 836 4351 5.12 828 4361 133.82 59 714 3098 300.83
Set2 / IBM11 19 540 2384 1.54 536 2399 46.04 670 534 3346 293.40
Set2 / IBM12 126 194 847 1.38 194 848 2.09 508 194 838 202.28
Set2 Summary! 1.00 1.00 0.99 1.00 0.96 1.02

Set3 / IBM13 187 431 3836 4.00 431 3836 15.74 72 431 3827 248.58
Set3 / IBM14 38 474 2803 1.80 474 2803 7.23 299 455 2740 225.03
Set3 / IBM15 152 297 2162 2.50 263 2274 12.18 810 263 2184 217.10
Set3 / IBM16 63 674 6200 6.56 666 6105 81.01 90 665 6102 283.58
Set3 / IBM17 68 690 2849 4.74 688 2864 82.20 48 688 2851 307.74
Set3 / IBM18 65 778 6930 11.38 763 5365 128.61 534 685 4519 316.37
Set3 Summary! 1.00 1.00 0.98 0.97 0.95 0.94

! Ratios are relative to the preprocessed AIG size.

2 Synthesis proved all design properties to be unreachable. After COI reduction, the design has 0 registers and 0 ANDs.

number of proved invariants is given in the Invars column.
The results of these experiments are given in Table III.

The effectiveness of our technique is highly dependent on
the benchmark set. In Set/, all designs have many functionally
dependent state elements, even after powerful sequential syn-
thesis techniques such as min-register retiming were applied.
On this benchmark set, dependent state element elimination
was very effective, even without invariants. However, the
invariants did help the state element elimination algorithm
mitigate the increase in ANDs.

In the benchmarks Ser2 and Set3, there exist very few
registers that can be identified as dependent state elements
without the use of invariants. Enabling invariant generation
triples the number of dependent state elements that can be
identified, on average. This indicates that all of the “easy” state
element elimination was actually performed by min-register
retiming during preprocessing. While dependent state elements
still exist after min-register retiming, their discovery requires
the use of reachability invariants.

VII. CONCLUSION

This paper developed a method to eliminate functionally
dependent state elements in a sequential design. The method
is inspired by [1] but has several enhancements that make it
effective in practice:

o Dependent state elements can be identified and directly
removed, thereby reducing the total number of registers
in the design.

« A method to identify a compatible set of dependencies is
discussed. This method is fast and effective in reducing
the found dependencies to a compatible subset without
sacrificing significant optimization potential.

« A method is developed that can effectively mitigate the
logic bloat that comes from interpolation.

o The dependent state element elimination is strengthened
with an invariant generation framework, enabling the
detection of unreachable state invariants which extend
this purely SAT-based optimization technique into a se-
quential synthesis transformation.

Experiments show that while the effectiveness of this
technique is highly benchmark dependent, it can reduce the
number of registers in industrial designs by 25% even after
powerful sequential synthesis methods such as min-register
retiming have been applied, an area where we have found [1]
to be ineffective.

REFERENCES

[1] J. Jiang and R.K. Brayton, “Functional Dependency for Verification Reduction”, at
CAV 2004.

[2] M. Wedler, D. Stoffel and W. Kunz, “Exploiting state encoding for invariant
generation in induction-based property checking,” in ASP-DAC, 2004.

[3] C. Lee, J. Jiang, C. Huang and A. Mishchenko, “Scalable exploration of functional
dependency by interpolation and incremental SAT solving,” in /ICCAD 2007.

[4] R.K. Brayton, R. Rudell, A. Sangiovanni-Vincentelli and A.R. Wang, “MIS: A
Multiple-Level Logic Optimization System,” in TCAD 1987.

[5] L. Zhang and S. Malik, “Validating SAT solvers using an independent resolution-
based checker: practical implementations and other applications,” in DATE 2003.

[6] W. Craig, “Linear reasoning: A new form of the Herbrand-Gentzen theorem,” in J.
Symbolic Logic 1957.

[7] P. Pudldk, “Lower bounds for resolution and cutting plane proofs and monotone
computations”, in J. Symbolic Logic 1997.

[8] K.L. McMillan, “Interpolation and SAT-Based Model Checking,” in CAV 2003.

[9] J. Baumgartner and A. Kuehlmann, “Min-Area Retiming on Flexible Circuit
Structures,” in /CCAD, 2001.

[10] A. Mishchenko, S. Chatterjee and R.K. Brayton, “DAG-aware AIG rewriting: A
fresh look at combinational logic synthesis,” in DAC, 2006.

[11] H. Mony, J. Baumgartner, V. Paruthi, R. Kanzelman and A. Kuehlmann, “Scalable
Automated Verification via Expert-System Guided Transformations,” in FMCAD
2004.

[12] N. Eén and N. Sérensson, “Temporal Induction by incremental SAT solving,” in
Proc. Workshop on Bounded Model Checking 2003.

[13] C.A.J. van Eijk, “Sequential equivalence checking based on structural similarities,”
in TCAD 2000.

[14] M.L. Case, A. Mishchenko and R.K. Brayton, “Cut-Based Inductive Invariant
Computation,” at JWLS 2008.

[15] M.L. Case, A. Mishchenko and R.K. Brayton, “Inductively Finding a Reachable
State Space Over-Approximation,” in /WLS 2006.

[16] M.L. Case and R.K. Brayton, “Maintaining A Minimum Equivalent Graph In The
Presence of Graph Connectivity Changes,” UC Berkeley Technical Report, 2007.

