
 1

ABSTRACT
We demonstrate that a maximum-flow-based approach to
register-minimization is a useful platform for incorporating
varied design constraints. In this work, we extend the flow-
based formulation to include timing constraints and to
guarantee the existence of an equivalent initial state.
Reducing the register count is motivated by positive
consequences for physical design, verification, and power
consumption, but it is critically necessary for synthesis that
these timing and functionality requirements are also met.
Our solution is optimum in the number of registers under
either or both constraints and also possesses several other
distinct advantages: the runtime is significantly faster than
comparable techniques, the algorithm is capable of early
termination with a timing-feasible solution, and both
maximum and minimum path constraints can be specified.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids

General Terms
Algorithms, Design.

Keywords
Retiming, Sequential Optimization, Initial State, Min-Area.

I. INTRODUCTION

Retiming [8] moves registers over combinational nodes in a
logic network, preserving output functionality and logic
structure. This can be applied to many ends, including
period minimization, register reduction, sequential
verification, and improved physical design.

Minimizing the number of registers is a particularly useful
application. The area and power consumption of the logic
network are reduced, but the real benefits are realized in
domains that are outside the reach of other tradeoffs for area

and/or power. Because each register is an additional point to
which the clock must be distributed, the difficultly of the
clock network design is eased, and the dynamic power
required to distribute the clock is reduced. The number of
state elements is also a primary determinant of the
complexity of sequential verification problem, and register
reduction has been used with positive results in this domain.

However, some potential consequences of register
minimization must be addressed for synthesis flows: 1)
timing of the design is affected, and bounds must be placed
on the lengths of the longest and shortest combinational
paths to ensure that register setup and hold times are met,
and 2) initialization of the sequential machine is affected,
and if registers are retimed backward, the existence of an
equivalent initial state is jeopardized without additional
initialization logic.

We introduce a retiming algorithm that performs register
minimization under timing and/or initializability constraints.
The formulation is based upon the flow-based register
minimization introduced in [6] and uses a maximum-flow
solver as the computational core of the system. These
additional design constraints can be imposed with simple
modifications to the corresponding flow problem. Even with
the additional constraints, the result is still minimal in the
number of registers.

Timing-constrained minimum-register retiming was first
described in the original work on retiming by [8]. The
formulation does not scale well to larger designs, as all pair-
wise delay constraints must be enumerated and incorporated
into the problem. The scalability was improved with the
introduction of the Minaret algorithm [9]; Minaret uses
retiming-skew equivalence to eliminate the need to consider
infeasible timing constraints, thus reducing the problem
size. Our algorithm further restricts the pair-wise
constraints by area criticality, providing another reduction
in the problem size and improving the ability to scale to
larger problems. Furthermore, it has the important property
that every intermediate solution is timing-feasible: the
runtime can be bounded with only a loss in the minimization
potential. Finally, we also describe a means to consider
constraints on both long and short paths.

Guaranteeing initializability has also been addressed,
though the solutions remain unsatisfactory. If no equivalent
initial state is found to exist, either the retiming must be
restricted to the forward direction to ensure feasibility [8] or

Scalable Min-Register Retiming Under Timing and
Initializability Constraints

Aaron P. Hurst, Alan Mishchenko, and Robert K. Brayton
University of California, Berkeley

Berkeley, CA

 2

additional combinational logic synthesized [17]. The
solution proposed by [10] does not scale beyond small
designs. Minimally transforming a useful retiming without
an equivalent initial state into one that has an equivalent
initial state is a difficult problem. We demonstrate how to
do this with a minimal increase in the number of additional
registers.
 In summary, the contribution of this work is a unified
problem structure for efficiently minimizing the number of
registers under two critical types of design constraints. We
demonstrate that our solution is more scalable than prior
approaches, either when optimality is necessary or may be
relaxed.

The paper is organized as follows. Section II describes
the background information and Section III the foundational
flow-based register minimization algorithm. Section IV
demonstrates how to incorporate timing constraints, and
Section V how to guarantee initial state feasibility. While
presented separately, both constraints can be mixed within
the same retiming flow. Experimental results are provided
in Section VI.

II. BACKGROUND

A circuit is modeled as a directed graph G=<V,E> whose
vertices V correspond to logic cells and directed edges E
correspond to wires connecting the gates, decomposed into
pair-wise connections from gate outputs to inputs. The
vertices may be either combinational or sequential elements.
The circuit’s external connections are represented by
additional vertices called primary inputs (PIs) and primary
outputs (POs).

A node has zero or more fan-ins, i.e. nodes that are
driving this node, and zero or more fan-outs, i.e. nodes
driven by this node. The transitive fan-out of a vertex v is a
subset of all combinational nodes of the network reachable
through the fan-out edges from v, captured by the function
TFO(v): V→2V. The sequential fan-out TFOk(v) is the
subset of combinational nodes that are reachable from v
through exactly k registers.

All combinational elements n are assumed to have non-
negative delays dn. Let ()d u v→ be the longest

combinational delay along any path between u and v, and
()kd u v→ be the longest combinational delay that passes

through exactly k registers.
A combinational frame of the circuit is comprised of the

acyclic combinational network between the register outputs
/ PIs and register inputs / POs.

A. Retiming

Retiming [8] relocates the registers to optimize some
circuit characteristic while preserving output functionality
and optionally meeting some additional constraints. Any
valid retiming is captured by a retiming lag function
r(v):V → Z that describes the number of registers moved

backward over each combinational node. At a minimum, a
retiming lag function must satisfy Equation 1 to be
physically implementable. wi(e) is the initial number of
registers present on edge e.

)()()(ewvrur i≤−),(vue =∀ (1)

The body of known retiming algorithms has greatly
proliferated and improved over the years since the problem
was first described in [8]. A complete overview of these
developments is beyond the scope of this paper; however,
the available alternatives to solve the problems discussed in
this paper are described in more detail in Sections III-V.

III. MIN-REG RETIMING ALGORITHM

The flow-based register minimization method of
Algorithm 1 (introduced in [6] and hereafter referred to as
the unconstrained minimum-register retiming) forms the
basis of both our timing- and initial-state-constrained
retiming algorithms. This technique involves iterating a
maximum-flow problem on a modified version of the circuit
until a fix-point is reached. This iteration is done in two
distinct phases: forward and backward, and it is proved in
[6] that this results in the optimal minimum-register
retiming. Using the determination of maximum-flow as the
inner core of a register-minimizing retiming algorithm
appears to be more computationally efficient than other
approaches.

We highlight one important property utilized in the
unconstrained register minimization algorithm, described by
Lemma 1. This is used to enforce the sequential latency
along all paths but will also be useful for additional
constraints.

Lemma 1. If there exists an unconstrained flow edge

e=u→v, a finite minimum cut will never lie between u and
v.

Proof. Consider the counterexample. The width of the
minimum cut is exactly the sum of the capacity of the edges
that cross it. If u lies before the cut but not v, e must cross
the cut. Because the capacity of e is infinite, the cut can not
be finite, thus violating the assumptions. ■

ALGORITHM 1: UNCONSTRAINED MIN-REGISTER RETIMING

1: /* forward retiming phase */
2: loop {
3: compute fwd min cut R
4: move registers to R
5: } until no decrease in number of registers
6: /* backward retiming phase */
7: loop {
8: compute bwd min cut R
9: move registers to R
10: } until no decrease in number of registers

 3

IV. TIMING CONSTRAINTS

In most synthesis applications (as opposed to the
verification applications), it is necessary to introduce
constraints on the minimum and maximum combinational
path delays. This problem is known as timing-constrained
minimum-register retiming. Its computational difficulty
exceeds that of both the minimum-register and minimum-
delay problems.

All known timing-constrained min-register algorithms
utilize a version of the linear program first described in [8].
The fundamental bottleneck of this approach lies in the
enumeration and incorporation of all pair-wise delay
constraints. In the original algorithm, all connected pairs
were examined, resulting in an O(v3) procedure. The
Minaret algorithm [9] provided a leap forward by using a
retiming-skew equivalence to bind the constraints to those
that are potentially timing-critical.

Our algorithm provides a leap forward over Minaret by
further restricting the enumeration of the constraints to the
subset of the circuit that is also area-critical. The number of
paths that must be examined is much smaller. The power in
this approach lies in the observation that the regions that are
area- and timing-critical are very different; the intersection
can be quite small in even a large circuit.

An additional advantage—critical for industrial
scalability—is that the optimum solution is approached via
a set of intermediate solutions, which are monotonically
improving and always timing-feasible. Thus, the algorithm
can be terminated at any point with an improved timing
feasible solution. Finally, short-path timing constraints are
handled also.

Consider the presence of a register on the output of some
node v. Let max

vT be the maximum allowable arrival time

and min
vT be the minimum allowable arrival time. Typically,

these values would include local variations such as the
estimated local clock skew (vδ), the timing parameters of

the register cell appropriate to drive the capacitive load (e.g.
setup Sv and hold Hv), and the maximum period of the local
clock domain (Tclk). Any physical information about the
location of v will improve the precision of these values.
Equations 2 and 3 suggest definitions in terms of these
parameters.

 max

v clk v vT T S δ= − − (2)

 min
v v clkT H δ= − (3)

We require that the initial positions of the registers meet

these maximum and minimum arrival constraints. If it is
desired that a higher frequency be achieved through
retiming, the design would need to be retimed first by one of
the many delay-minimizing retiming algorithms
[8][13][11][15], among which efficient exact and heuristic
solutions are available.

A. Conservative vs. Exact Timing Constraints

Consider retiming one or more registers in either
direction within one combinational frame of the circuit to
some vertex v. Let Rv be the potential new register on v’s
output. There are four timing constraints that are affected
by this move: the latest and earliest arrival times on the
timing paths that start and end at the retimed register. At the
start or end of the path, two constraints are made potentially
critical; the other two can be ignored. Observe that the
degree of criticality of these constraints is strictly increasing
with the distance that the registers move.

We introduce two versions of each of these constraints:
conservative and exact.

In the conservative version, it is assumed that the end of
the timing path opposite the moving register remains fixed.
This is an over-constraint: the other register may have
moved also in the same direction (and only the same
direction within each forward or backward phase), thereby
relaxing the timing criticality. The set of conservative
constraints Ccons defines the vertices past which a register
can not be retimed without potentially violating the timing.

The set of conservative constraints can be computed in
O(E) time with a static timing analysis of the original
circuit. The short-path constraints can be identified in one
pass. The long-path constraints require two passes (to
capture the components of the path on either side of the
original register); register output arrivals are seeded with
their input arrivals from the first pass and then those values
are propagated forward.

A conservative timing constraint can be enforced in the
flow graph by simply removing the constrained node from
the graph (or, equivalently, redirecting its fan-ins/outs to the
flow sink). After removal, these timing-constrained nodes
will not participate in the resulting minimum cut.

For exact constraints, the other end of a timing path is not
assumed to have remained stationary. Each exact constraint
therefore encodes the position to which the other end of a
timing path would have to move for register Rv to remain
timing feasible. The set of exact constraints Cexact defines
the node pairs (source and sink of a path) that describe these
dependencies. These can be computed easily: the exact
constraints at v are the roots U of the transitive fan-in/out
cones whose depth is min

vT / max
vT and cross exactly one

register. There may be many several such pairs for each v.
Enforcement of the exact timing constraints is

accomplished by introducing additional unconstrained flow
edges into the graph. An edge v → u is added for every
exact constraint, where v is the potential new register
position and u is the point to which the register boundary
must also move. By Lemma 1, these unconstrained flow
edges will prohibit the resulting cut from violating this
particular constraint; the cut will be the optimally minimum
one that meets the exact constraints.

Because the depth of the cone is at least the current
period, each timing arc will terminate at a node that is never

 4

topologically deeper than its source. The arcs will therefore
always be in the direction from sink to source, and the flow
from source to sink will remain finite. This motivates the
requirement that the circuit initially meets the timing
constraints.

Paths through these arcs indicate timing dependencies
that stretch across multiple cycles. Note that there may even
be cycles within the set of constraints; this occurs whenever
a critical sequential cycle is present in the netlist. A correct
result is such that moves of registers within a critical cycle
are synchronized.

B. Iterative Refinement

The overall algorithm (Algorithm 2) consists of an
iterative refinement on the conservatism of the timing
constraints until the optimal solution has been reached for a
combinational frame. The refinement need only be
performed for regions whose timing conservative is
preventing further area improvement, i.e. area-critical.

During an iteration, each node will be in one of three
states: (i) none, if retiming a register past this node will not
introduce a timing violation, (ii) conservative, or (iii) exact.

Refinement is accomplished as follows. We compute two
minimum cuts: Runder, the minimum cut under the (current)
exact constraints, and Rover, the minimum cut under both the
exact and conservative constraints. Note that Runder is under-
constrained and Rover is over-constrained. Therefore, Runder
will be at least as deep as Rover, whose timing constraints
prevent deeper register moves. The vertices whose timing
are to be refined are those that are conservatively
constrained and lie (topologically) between the two cuts.
The exact constraints are computed for each of the tightened
vertices, inserted into Cexact, and the vertex is removed from
Ccons. The refinement terminates when Runder= Rover.

V. INITIAL IZABILITY

To be functionally correct, a retiming must have a set of
equivalent initial states that reproduce the initial behavior of

the original circuit. There are several ways to address this
requirement: restricting the retiming to the forward direction
only [8], introducing additional combinational initialization
logic [17], or computing an equivalent initial state after
backward retiming—if one exists [16]. The latter is
preferable, allowing the full optimization power of retiming
to be exploited with minimal perturbation to the
combinational logic.

However, a problem arises when a retiming has no
equivalent initial state. In this case, the problem must be
transformed into one that has an equivalent initial state,
even if some optimality is lost. This is the problem of
ensuring initializability. For minimum-delay retiming, [12]
describes a method that finds a feasible solution by
restricting the target period; there is no equivalent target
register count in the min-register problem. In [16] a
heuristic transformation is introduced for altering any
minimum-delay retiming. For the minimum-register
problem, [10] describes a solution, but it requires the
formulation of retiming as a mixed-integer linear program
(MILP), making it only useful for small circuits.

We propose a technique that is both optimal in its result
and empirically scalable in its runtime. It should be noted
that the notion of optimality is relative to the point of
observation where the initialization behavior of the two
circuits is constrained to be identical. The most general
location is at the outputs, where the maximal number
observability don’t cares (ODCs) will be introduced;
however, this may lead to a very deep sequential
equivalence checking problem during the initial state
computation. We require identical behaviors as observed at
the locations/states of the registers after the forward min-
register retiming phase has been completed.

 Once a potential backward retiming cut R has been
generated for the circuit, we attempt to find an equivalent
initial state. This problem can be constructed and solved as
an instance of SAT. As the registers are pushed backward
through the circuit, a variable is introduced for every nodes
over which a register is retimed. Note that there may be
multiple variables for each physical node; they can be
differentiated by their lags at the point of retiming. The SAT

ALGORITHM 2: TIMING-CONSTRAINED MIN-REGISTER RETIMING

1: /* forward retiming phase */
2: loop {
3: let Ccons be { }max

1: s.t. () nn m d m n T∃ → ≥

4: let Cexact be an empty list of V V×
5: loop {
6: compute fwd min cut Runder under constraints Cexact
7: compute fwd min cut Rover under constr. Cexact, Ccons
8: for all n in TFO() TFI()over under consR R C∩ ∩

9: { }max max
1: ()long n m nP m T d d m n T← − < → ≤

10: { }min min
1: ()short m m mP m T d d n m T← − ≤ → <

11:
cons consC C n← −

12: () ()exact exact long shortC C n P n P← ∪ × ∪ ×

13: } until Runder= Rover
14: move registers to Runder= Rover
15: } until no decrease in number of registers
16 /* backward retiming phase (omitted) */

Fig. 1. The bias structure for the feasibility constraint γ. On the left
of the unrolled circuit are the initial positions of the registers; the
uninitializable positions are on the right. The width of all cuts
deeper than γ are penalized by one with the addition of node nbias.

 5

problem is also incrementally constructed by adding
constraints imposed on these variables by net connections,
gate functionality, and the original initial states. If the solver
is able to find an equivalent initial state, no further effort is
necessary.

If there exists no equivalent initial state, we attempt to
isolate the source of the conflict. Let a feasibility constraint
γ be a subset of the problem variables (and a partial cut in
the unrolled netlist) that has the following property: it is
sufficient for a retiming to be as deep as γ to be infeasible.
Correspondingly, a retiming must be at least partially
shallower than γ to be feasible. Lemma 2 implies that
infeasibility is monotonically increasing with topological
order, and that such a partial cut γ must exist.

Lemma 2. If a particular retiming is initial state

infeasible, all strictly deeper retimings are also infeasible.
Proof. Consider a feasible assignment at some strictly

deeper cut. The forward propagation of these initial states
implies a set of initial values at the location of shallower
cut. This set of values comprises a feasible initial state for a
retiming at the shallower cut and violates the assumption. ■

We find a reasonably minimum partial cut γ as follows.

The circuit is ordered topologically, and binary search is
used to find the shallowest complete cut, which results in an
UNSAT initial state. The last variable that was required to
produce UNSAT is then added to γ, and the procedure is
repeated until γ by itself is sufficient to imply UNSAT. The
final γ is a feasibility constraint. Alternatively, the UNSAT
core (if available) can be used to isolate the source of the
conflict and greatly speed up the search.

Each new feasibility constraint is then added to the
cumulative set Cfeas. To implement each constraint γ, a
penalty structure is added to the flow graph to bias it
against any cuts that lie deeper than the corresponding
partial cut. This is accomplished using the graph feature
illustrated in Figure 1. Note that the net effect is that the
minimum width of any cut that lies beyond γ is increased by
one, thereby penalizing infeasible retiming solutions, i.e.,
each feasibility constraint introduces exactly one register.

As the register count is increased, one of two cases will
occur: (i) the minimum cut is now shallower than γ and the
result is initializable, (ii) the minimum cut is still as deep as
γ and another penalty is necessary. In this manner, the
register count is incremented until it first becomes possible
to find an equivalent initial state. If multiple penalties with
multiple overlapping elements are generated, search may be
required to guarantee optimality; this was not the case in our
examples, and we do not discuss it here.

Because the problem of computing an equivalent initial
state after backward retiming—let alone transforming that
retiming—is already NP-hard, is not possible to establish a
polynomial upper bound on the runtime of this algorithm.
However, this in no way precludes its speed and scalability

on the class of circuits typically seen in the real world. Our
experience has shown that, for the circuits that we
examined, the check for an equivalent initial state via SAT
is extremely fast. The total number of calls to the SAT
solver is bounded by O(FR log R), where R is the original
number of registers in the design and F is the number of
additional registers that are required to ensure initial state
feasibility. F is quite small in all of the examined circuits.

VI. EXPERIMENTAL RESULTS

We applied the proposed algorithm to a suite of gate-
level circuits derived from public-domain hardware designs
[1]. Altera tools were used to extract and optimize the logic
networks, possibly including sequential optimization. These
were then preprocessed by the ABC logic synthesis package
[1] as follows: the designs were (a) flattened, (b)
structurally hashed and (c) algebraically balanced. All
experiments were conducted on a 3.0Ghz x64 machine.

Table 1 compares the performance of our timing-
constrained algorithm against Minaret [9]. The testcases
presented are the ones with over 1000 registers that were
processed by Minaret without error. The maximum delay
constraint for every net was set to the initial circuit delay,
and minimum delay constraints were set to negative infinity
(because these are not supported by Minaret). The runtimes
of both Minaret and our flow-based method are listed. The
average runtime of Minaret is 102x that of our tool.

Table 1 also lists the percentage of nodes in each circuit
that were initially subject to a conservative delay constraint
(in column %Cons). The next columns (#Refined and
#Exact) list the number of nodes that were refined and the
number of exact constraints that resulted. For each of these
metrics, the worst-case values across all forward/backward

ALGORITHM 3: INITIALIZABLE RETIMING

1: /* forward retiming phase (omitted) */
2: /* backward retiming phase */
3: define init state problem variables as V ×Ζ (node × lag)
4: let Cfeas be an empty list of 2V
5: loop {
6: save current register positions as R’
7: loop {
8: compute bwd min cut R under constraints Cfeas
9: move registers to R
10: update initial state problem
11: } until no decrease in number of registers
12: if SAT(R) terminate
13:

14: let topo be an topological ordering of V
15: let γ be an empty 2V
16: loop {
17: binary search on v until
18: SAT() w/o variablesTFO() { : topo() topo()}

SAT() w/o variablesTFO() { : topo() topo()}

R u u v

R u u v

γ
γ

¬ ∪ ≥
∧ ∪ >

19: push v→ γ
20: } until SAT(R) w/o variables TFO(γ)
21: Cfeas ← Cfeas + γ
22: move registers to R’
23: } forever

 6

retiming iterations are presented.
We implemented a unit timing model for comparison

with Minaret, but the algorithm can be used with one that is
much more descriptive. A second implementation used a
standard load- and slew-dependent interpolating table
lookup to compute path delays. Because computation of
timing data dominates the runtime, this extra effort
increased the runtime to 5x that of the unit delay version.

Table 2 describes the application of initial-state-feasible
retiming on some of the benchmarks. Register minimization
preserves the initial state in the overwhelming majority of
cases; only one design in the entire suite (“s400”) did not
have an equivalent initial state. For the other benchmarks,
all initial states in the design were set to random values to
create conflicts. The number of registers in the infeasible
retiming is listed in the column Infeas. Regs. Initial-state-
feasible retiming was also applied, and the number of
additional registers (or, equivalently, the number of
iterations) is listed in the column Feasible Regs. Column
Avg. |γ| is the average number of nodes in each of the
feasibility constraints.

The randomization of the initial states likely results in
more difficult problems than would be generated in any
actual design, and yet the optimal feasible retiming can be
found in a median runtime of a little over a second. The
circuit “radar12” is the outlier and presents a challenge due
to its particular arithmetic structure.

ACKNOWLEDGEMENTS

This work was supported by SRC contracts 1361.001 and
1444.001, NSF grant CCF-0702668 "Sequentially
Transparent Synthesis", and the California Micro Program
with our industrial sponsors Actel, Altera, Calypto, Intel,
Magma, Synopsys, Synplicity, and Xilinx.

REFERENCES

[1] Berkeley Logic Synthesis and Verification Group, ABC: A
System for Sequential Synthesis and Verification, Release
61104. http://www.eecs.berkeley.edu/~alanmi/abc/

[2] G. Cabodi, S. Quer and F. Somenzi, “Optimizing sequential
verification by retiming transformations,” Proc. DAC’01,
pp. 601-606.

[3] J. Cong and C. Wu, “Optimal FPGA mapping and retiming
with efficient initial state computation”, IEEE Trans. CAD,
vol. 18(11), Nov. 1999, pp. 1595-1607.

[4] G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited
and reversed”, IEEE Trans. CAD, vol. 15(3), March 1996,
pp. 348-357.

[5] A. Goldberg, Network optimization library. (Software tools)
http://www.avglab.com/andrew/soft.html

[6] A. Hurst, A. Mishchenko, and R. Brayton, “Fast min-
register retiming via binary max-flow”, Proc. of FMCAD,
2007.

[7] M. Hutton and J. Pistorius, Altera QUIP benchmarks.
http://www.altera.com/education/univ/research/unv-
quip.html

[8] C. E. Leiserson and J. B. Saxe. “Retiming synchronous
circuitry“, Algorithmica, 1991, vol. 6, pp. 5-35.

[9] N. Maheshwari and S. Sapatnekar, “Efficient retiming of
large circuits”, IEEE Trans VLSI, 6(1), March 1998, pp. 74-
83.

[10] N. Maheshwari and S. Sapatnekar, “Minimum area retiming
with equivalent initial states”, Proc. ICCAD ‘97.

[11] P. Pan, “Continuous retiming: Algorithms and
applications”. Proc. ICCD ‘97, pp. 116-121.

[12] P. Pan and G. Chen, “Optimal retiming for initial state
computation”, Proc. Conf. on VLSI Design, 1999.

[13] S. S. Sapatnekar and R. B. Deokar, “Utilizing the retiming-
skew equivalence in a practical algorithms for retiming large
circuits”, IEEE Trans. CAD, vol. 15(10), Oct.1996, pp.
1237-1248.

[14] N. Shenoy and R. Rudell, “Efficient implementation of
retiming”, Proc. ICCAD ’94, pp. 226-233.

[15] D.R. Singh, V. Manohararajah, and S.D. Brown,
“Incremental retiming for FPGA physical synthesis”, Proc.
DAC ’05, pp. 433-438.

[16] L. Stok, I. Spillinger, and G. Even, “Improving initialization
through reversed retiming”, Proc. of European Conf. on
Design and Test, 1995.

[17] H. J. Touati and R. K. Brayton, “Computing the initial states
of retimed circuits“, IEEE Trans. CAD, vol. 12(1), Jan
1993, pp. 157-162.

TABLE 1: TIMING-CONSTRAINED MIN-REG RETIMING RESULTS

 Original Circuit Flow-Based Minaret
Name Nodes Regs Delay Regs % Cons # Refined # Exact Runtime Runtime

s38417 19.5k 1465 54.0 1288 15.0% 4 5 2.08s 17.8s
b17 opt 49.3k 1414 44.0 1413 71.5% 0 0 6.9s 227.6s

mux8 128bi 7.8k 1155 14.0 1149 27,1% 0 0 0.07s 0.5s
oc cfft 19.5k 1051 111.0 874 23.3% 1654 6998 12.1s 769.s

oc des perf 41.3k 1976 31.0 1920 89.3% 27225 602773 10.2s 114.6s
oc pci 19.6k 1354 88.0 1311 1.9% 4 8 0.10s 33.8s

oc wb dma 29.2k 1775 36.0 1754 28.6% 2 4 0.24s 24.6s
oc vga 17.1k 1108 123.0 1079 25.6% 1 6 0.10s 30.6s
MEAN 1x 102x

TABLE 2: INITIALIZABLE MIN-REG RETIMING RESULTS

 Orig Infeas Feasible
Name Gates Regs Regs Reg Avg. |γ| Time

s400 0.3k 21 18 +1 8.0 0.08s
oc aes core 16.6k 402 395 +3 2.0 2.55s
oc vga lcd 17.1k 1108 1087 +1 1.0 1.09s

nut 003 6.6k 484 450 +3 1.0 1.41s
radar12 71.1k 3875 3771 +27 2.3 108.3s

oc wb dma 29.2k 1775 1757 +2 3.5 5.70s
oc minirisc 3.9k 289 271 +2 1.0 0.49s

