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ABSTRACT 
We demonstrate that a maximum-flow-based approach to 
register-minimization is a useful platform for incorporating 
varied design constraints. In this work, we extend the flow-
based formulation to include timing constraints and to 
guarantee the existence of an equivalent initial state. 
Reducing the register count is motivated by positive 
consequences for physical design, verification, and power 
consumption, but it is critically necessary for synthesis that 
these timing and functionality requirements are also met.  
Our solution is optimum in the number of registers under 
either or both constraints and also possesses several other 
distinct advantages: the runtime is significantly faster than 
comparable techniques, the algorithm is capable of early 
termination with a timing-feasible solution, and both 
maximum and minimum path constraints can be specified.   
 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids 

General Terms 
Algorithms, Design. 

Keywords 
Retiming, Sequential Optimization, Initial State, Min-Area. 

I. INTRODUCTION 

Retiming [8] moves registers over combinational nodes in a 
logic network, preserving output functionality and logic 
structure. This can be applied to many ends, including 
period minimization, register reduction, sequential 
verification, and improved physical design. 

Minimizing the number of registers is a particularly useful 
application. The area and power consumption of the logic 
network are reduced, but the real benefits are realized in 
domains that are outside the reach of other tradeoffs for area 

and/or power. Because each register is an additional point to 
which the clock must be distributed, the difficultly of the 
clock network design is eased, and the dynamic power 
required to distribute the clock is reduced. The number of 
state elements is also a primary determinant of the 
complexity of sequential verification problem, and register 
reduction has been used with positive results in this domain. 

However, some potential consequences of register 
minimization must be addressed for synthesis flows: 1) 
timing of the design is affected, and bounds must be placed 
on the lengths of the longest and shortest combinational 
paths to ensure that register setup and hold times are met, 
and 2) initialization of the sequential machine is affected, 
and if registers are retimed backward, the existence of an 
equivalent initial state is jeopardized without additional 
initialization logic. 

We introduce a retiming algorithm that performs register 
minimization under timing and/or initializability constraints.  
The formulation is based upon the flow-based register 
minimization introduced in [6] and uses a maximum-flow 
solver as the computational core of the system.  These 
additional design constraints can be imposed with simple 
modifications to the corresponding flow problem. Even with 
the additional constraints, the result is still minimal in the 
number of registers. 

Timing-constrained minimum-register retiming was first 
described in the original work on retiming by [8].  The 
formulation does not scale well to larger designs, as all pair-
wise delay constraints must be enumerated and incorporated 
into the problem.  The scalability was improved with the 
introduction of the Minaret algorithm [9]; Minaret uses 
retiming-skew equivalence to eliminate the need to consider 
infeasible timing constraints, thus reducing the problem 
size.  Our algorithm further restricts the pair-wise 
constraints by area criticality, providing another reduction 
in the problem size and improving the ability to scale to 
larger problems. Furthermore, it has the important property 
that every intermediate solution is timing-feasible: the 
runtime can be bounded with only a loss in the minimization 
potential. Finally, we also describe a means to consider 
constraints on both long and short paths. 

Guaranteeing initializability has also been addressed, 
though the solutions remain unsatisfactory.  If no equivalent 
initial state is found to exist, either the retiming must be 
restricted to the forward direction to ensure feasibility [8] or 
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additional combinational logic synthesized [17].  The 
solution proposed by [10] does not scale beyond small 
designs.  Minimally transforming a useful retiming without 
an equivalent initial state into one that has an equivalent 
initial state is a difficult problem.  We demonstrate how to 
do this with a minimal increase in the number of additional 
registers. 
 In summary, the contribution of this work is a unified 
problem structure for efficiently minimizing the number of 
registers under two critical types of design constraints. We 
demonstrate that our solution is more scalable than prior 
approaches, either when optimality is necessary or may be 
relaxed. 

The paper is organized as follows. Section II describes 
the background information and Section III the foundational 
flow-based register minimization algorithm. Section IV 
demonstrates how to incorporate timing constraints, and 
Section V how to guarantee initial state feasibility.  While 
presented separately, both constraints can be mixed within 
the same retiming flow. Experimental results are provided 
in Section VI. 

II. BACKGROUND 

A circuit is modeled as a directed graph G=<V,E> whose 
vertices V correspond to logic cells and directed edges E 
correspond to wires connecting the gates, decomposed into 
pair-wise connections from gate outputs to inputs. The 
vertices may be either combinational or sequential elements. 
The circuit’s external connections are represented by 
additional vertices called primary inputs (PIs) and primary 
outputs (POs).   

A node has zero or more fan-ins, i.e. nodes that are 
driving this node, and zero or more fan-outs, i.e. nodes 
driven by this node.  The transitive fan-out of a vertex v is a 
subset of all combinational nodes of the network reachable 
through the fan-out edges from v, captured by the function 
TFO(v): V→2V.  The sequential fan-out TFOk(v) is the 
subset of combinational nodes that are reachable from v 
through exactly k registers. 

All combinational elements n are assumed to have non-
negative delays dn. Let ( )d u v→ be the longest 

combinational delay along any path between u and v, and 
( )kd u v→ be the longest combinational delay that passes 

through exactly k registers. 
A combinational frame of the circuit is comprised of the 

acyclic combinational network between the register outputs 
/ PIs and register inputs / POs.  

A. Retiming 

Retiming [8] relocates the registers to optimize some 
circuit characteristic while preserving output functionality 
and optionally meeting some additional constraints.  Any 
valid retiming is captured by a retiming lag function 
r(v):V → Z  that describes the number of registers moved 

backward over each combinational node. At a minimum, a 
retiming lag function must satisfy Equation 1 to be 
physically implementable. wi(e) is the initial number of 
registers present on edge e. 

 

 )()()( ewvrur i≤−  ),( vue =∀  (1) 
 

The body of known retiming algorithms has greatly 
proliferated and improved over the years since the problem 
was first described in [8]. A complete overview of these 
developments is beyond the scope of this paper; however, 
the available alternatives to solve the problems discussed in 
this paper are described in more detail in Sections III-V. 

III. MIN-REG RETIMING ALGORITHM 

The flow-based register minimization method of 
Algorithm 1 (introduced in [6] and hereafter referred to as 
the unconstrained minimum-register retiming) forms the 
basis of both our timing- and initial-state-constrained 
retiming algorithms. This technique involves iterating a 
maximum-flow problem on a modified version of the circuit 
until a fix-point is reached. This iteration is done in two 
distinct phases: forward and backward, and it is proved in 
[6] that this results in the optimal minimum-register 
retiming. Using the determination of maximum-flow as the 
inner core of a register-minimizing retiming algorithm 
appears to be more computationally efficient than other 
approaches. 

We highlight one important property utilized in the 
unconstrained register minimization algorithm, described by 
Lemma 1.  This is used to enforce the sequential latency 
along all paths but will also be useful for additional 
constraints. 

 
Lemma 1.  If there exists an unconstrained flow edge 

e=u→v, a finite minimum cut will never lie between u and 
v.  

Proof.  Consider the counterexample. The width of the 
minimum cut is exactly the sum of the capacity of the edges 
that cross it.  If u lies before the cut but not v, e must cross 
the cut. Because the capacity of e is infinite, the cut can not 
be finite, thus violating the assumptions.  ■ 
 

ALGORITHM 1: UNCONSTRAINED MIN-REGISTER RETIMING 

1: /* forward retiming phase */ 
2: loop {  
3:  compute fwd min cut R  
4:  move registers to R 
5: } until no decrease in number of registers 
6: /* backward retiming phase */ 
7: loop {  
8:  compute bwd min cut R  
9:  move registers to R 
10: } until no decrease in number of registers 
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IV. TIMING CONSTRAINTS 

In most synthesis applications (as opposed to the 
verification applications), it is necessary to introduce 
constraints on the minimum and maximum combinational 
path delays. This problem is known as timing-constrained 
minimum-register retiming.  Its computational difficulty 
exceeds that of both the minimum-register and minimum-
delay problems.   

All known timing-constrained min-register algorithms 
utilize a version of the linear program first described in [8]. 
The fundamental bottleneck of this approach lies in the 
enumeration and incorporation of all pair-wise delay 
constraints. In the original algorithm, all connected pairs 
were examined, resulting in an O(v3) procedure.  The 
Minaret algorithm [9] provided a leap forward by using a 
retiming-skew equivalence to bind the constraints to those 
that are potentially timing-critical. 

Our algorithm provides a leap forward over Minaret by 
further restricting the enumeration of the constraints to the 
subset of the circuit that is also area-critical. The number of 
paths that must be examined is much smaller.  The power in 
this approach lies in the observation that the regions that are 
area- and timing-critical are very different; the intersection 
can be quite small in even a large circuit. 

An additional advantage—critical for industrial 
scalability—is that the optimum solution is approached via 
a set of intermediate solutions, which are monotonically 
improving and always timing-feasible.  Thus, the algorithm 
can be terminated at any point with an improved timing 
feasible solution. Finally, short-path timing constraints are 
handled also. 

Consider the presence of a register on the output of some 
node v.  Let max

vT be the maximum allowable arrival time 

and min
vT  be the minimum allowable arrival time. Typically, 

these values would include local variations such as the 
estimated local clock skew ( vδ ), the timing parameters of 

the register cell appropriate to drive the capacitive load (e.g. 
setup Sv and hold Hv), and the maximum period of the local 
clock domain (Tclk). Any physical information about the 
location of v will improve the precision of these values. 
Equations 2 and 3 suggest definitions in terms of these 
parameters. 

 
 max

v clk v vT T S δ= − −  (2) 

 min
v v clkT H δ= −  (3) 

 
We require that the initial positions of the registers meet 

these maximum and minimum arrival constraints.  If it is 
desired that a higher frequency be achieved through 
retiming, the design would need to be retimed first by one of 
the many delay-minimizing retiming algorithms 
[8][13][11][15], among which efficient exact and heuristic 
solutions are available. 

A. Conservative vs. Exact Timing Constraints 

Consider retiming one or more registers in either 
direction within one combinational frame of the circuit to 
some vertex v.  Let Rv be the potential new register on v’s 
output.  There are four timing constraints that are affected 
by this move: the latest and earliest arrival times on the 
timing paths that start and end at the retimed register. At the 
start or end of the path, two constraints are made potentially 
critical; the other two can be ignored. Observe that the 
degree of criticality of these constraints is strictly increasing 
with the distance that the registers move. 

We introduce two versions of each of these constraints: 
conservative and exact.  

In the conservative version, it is assumed that the end of 
the timing path opposite the moving register remains fixed. 
This is an over-constraint: the other register may have 
moved also in the same direction (and only the same 
direction within each forward or backward phase), thereby 
relaxing the timing criticality. The set of conservative 
constraints Ccons defines the vertices past which a register 
can not be retimed without potentially violating the timing. 

The set of conservative constraints can be computed in 
O(E) time with a static timing analysis of the original 
circuit. The short-path constraints can be identified in one 
pass. The long-path constraints require two passes (to 
capture the components of the path on either side of the 
original register); register output arrivals are seeded with 
their input arrivals from the first pass and then those values 
are propagated forward. 

A conservative timing constraint can be enforced in the 
flow graph by simply removing the constrained node from 
the graph (or, equivalently, redirecting its fan-ins/outs to the 
flow sink). After removal, these timing-constrained nodes 
will not participate in the resulting minimum cut. 

For exact constraints, the other end of a timing path is not 
assumed to have remained stationary. Each exact constraint 
therefore encodes the position to which the other end of a 
timing path would have to move for register Rv to remain 
timing feasible. The set of exact constraints Cexact defines 
the node pairs (source and sink of a path) that describe these 
dependencies. These can be computed easily: the exact 
constraints at v are the roots U of the transitive fan-in/out 
cones whose depth is min

vT / max
vT  and cross exactly one 

register.  There may be many several such pairs for each v. 
Enforcement of the exact timing constraints is 

accomplished by introducing additional unconstrained flow 
edges into the graph. An edge v → u is added for every 
exact constraint, where v is the potential new register 
position and u is the point to which the register boundary 
must also move.  By Lemma 1, these unconstrained flow 
edges will prohibit the resulting cut from violating this 
particular constraint; the cut will be the optimally minimum 
one that meets the exact constraints. 

Because the depth of the cone is at least the current 
period, each timing arc will terminate at a node that is never 
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topologically deeper than its source. The arcs will therefore 
always be in the direction from sink to source, and the flow 
from source to sink will remain finite. This motivates the 
requirement that the circuit initially meets the timing 
constraints.  

Paths through these arcs indicate timing dependencies 
that stretch across multiple cycles. Note that there may even 
be cycles within the set of constraints; this occurs whenever 
a critical sequential cycle is present in the netlist. A correct 
result is such that moves of registers within a critical cycle 
are synchronized. 

B. Iterative Refinement 

The overall algorithm (Algorithm 2) consists of an 
iterative refinement on the conservatism of the timing 
constraints until the optimal solution has been reached for a 
combinational frame.  The refinement need only be 
performed for regions whose timing conservative is 
preventing further area improvement, i.e. area-critical.   

During an iteration, each node will be in one of three 
states: (i) none, if retiming a register past this node will not 
introduce a timing violation, (ii) conservative, or (iii) exact.   

Refinement is accomplished as follows. We compute two 
minimum cuts: Runder, the minimum cut under the (current) 
exact constraints, and Rover, the minimum cut under both the 
exact and conservative constraints. Note that Runder is under-
constrained and Rover is over-constrained. Therefore, Runder 
will be at least as deep as Rover, whose timing constraints 
prevent deeper register moves. The vertices whose timing 
are to be refined are those that are conservatively 
constrained and lie (topologically) between the two cuts. 
The exact constraints are computed for each of the tightened 
vertices, inserted into Cexact, and the vertex is removed from 
Ccons. The refinement terminates when Runder= Rover. 

V. INITIAL IZABILITY 

To be functionally correct, a retiming must have a set of 
equivalent initial states that reproduce the initial behavior of 

the original circuit. There are several ways to address this 
requirement: restricting the retiming to the forward direction 
only [8], introducing additional combinational initialization 
logic [17], or computing an equivalent initial state after 
backward retiming—if one exists [16]. The latter is 
preferable, allowing the full optimization power of retiming 
to be exploited with minimal perturbation to the 
combinational logic.  

However, a problem arises when a retiming has no 
equivalent initial state. In this case, the problem must be 
transformed into one that has an equivalent initial state, 
even if some optimality is lost.  This is the problem of 
ensuring initializability. For minimum-delay retiming, [12] 
describes a method that finds a feasible solution by 
restricting the target period; there is no equivalent target 
register count in the min-register problem. In [16] a 
heuristic transformation is introduced for altering any 
minimum-delay retiming. For the minimum-register 
problem, [10] describes a solution, but it requires the 
formulation of retiming as a mixed-integer linear program 
(MILP), making it only useful for small circuits.   

We propose a technique that is both optimal in its result 
and empirically scalable in its runtime. It should be noted 
that the notion of optimality is relative to the point of 
observation where the initialization behavior of the two 
circuits is constrained to be identical. The most general 
location is at the outputs, where the maximal number 
observability don’t cares (ODCs) will be introduced; 
however, this may lead to a very deep sequential 
equivalence checking problem during the initial state 
computation. We require identical behaviors as observed at 
the locations/states of the registers after the forward min-
register retiming phase has been completed. 

 Once a potential backward retiming cut R has been 
generated for the circuit, we attempt to find an equivalent 
initial state. This problem can be constructed and solved as 
an instance of SAT.  As the registers are pushed backward 
through the circuit, a variable is introduced for every nodes 
over which a register is retimed. Note that there may be 
multiple variables for each physical node; they can be 
differentiated by their lags at the point of retiming. The SAT 

ALGORITHM 2: TIMING-CONSTRAINED MIN-REGISTER RETIMING 

1: /* forward retiming phase */ 
2: loop {  
3:  let Ccons be { }max

1:  s.t. ( ) nn m d m n T∃ → ≥  

4:  let Cexact be an empty list of V V×  
5:  loop { 
6:   compute fwd min cut Runder under constraints Cexact 
7:   compute fwd min cut Rover under constr. Cexact,  Ccons 
8:   for all n in TFO( ) TFI( )over under consR R C∩ ∩  

9:    { }max max
1: ( )long n m nP m T d d m n T← − < → ≤  

10:    { }min min
1: ( )short m m mP m T d d n m T← − ≤ → <  

11:    
cons consC C n← −  

12:    ( ) ( )exact exact long shortC C n P n P← ∪ × ∪ ×  

13:  } until  Runder= Rover 
14:  move registers to Runder= Rover 
15: } until no decrease in number of registers 
16 /* backward retiming phase (omitted) */ 
 

 

 
Fig. 1.  The bias structure for the feasibility constraint γ. On the left 
of the unrolled circuit are the initial positions of the registers; the 
uninitializable positions are on the right.  The width of all cuts 
deeper than γ are penalized by one with the addition of node nbias. 
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problem is also incrementally constructed by adding 
constraints imposed on these variables by net connections, 
gate functionality, and the original initial states. If the solver 
is able to find an equivalent initial state, no further effort is 
necessary. 

If there exists no equivalent initial state, we attempt to 
isolate the source of the conflict. Let a feasibility constraint 
γ be a subset of the problem variables (and a partial cut in 
the unrolled netlist) that has the following property: it is  
sufficient for a retiming to be as deep as γ to be infeasible. 
Correspondingly, a retiming must be at least partially 
shallower than γ to be feasible.  Lemma 2 implies that 
infeasibility is monotonically increasing with topological 
order, and that such a partial cut γ must exist. 

 
Lemma 2.  If a particular retiming is initial state 

infeasible, all strictly deeper retimings are also infeasible.  
Proof. Consider a feasible assignment at some strictly 

deeper cut.  The forward propagation of these initial states 
implies a set of initial values at the location of shallower 
cut. This set of values comprises a feasible initial state for a 
retiming at the shallower cut and violates the assumption.  ■ 

 
We find a reasonably minimum partial cut γ as follows. 

The circuit is ordered topologically, and binary search is 
used to find the shallowest complete cut, which results in an 
UNSAT initial state. The last variable that was required to 
produce UNSAT is then added to γ, and the procedure is 
repeated until γ by itself is sufficient to imply UNSAT.  The 
final γ is a feasibility constraint.   Alternatively, the UNSAT 
core (if available) can be used to isolate the source of the 
conflict and greatly speed up the search. 

Each new feasibility constraint is then added to the 
cumulative set Cfeas. To implement each constraint γ, a 
penalty structure is added to the flow graph to bias it 
against any cuts that lie deeper than the corresponding 
partial cut. This is accomplished using the graph feature 
illustrated in Figure 1. Note that the net effect is that the 
minimum width of any cut that lies beyond γ is increased by 
one, thereby penalizing infeasible retiming solutions, i.e., 
each feasibility constraint introduces exactly one register.   

As the register count is increased, one of two cases will 
occur: (i) the minimum cut is now shallower than γ and the 
result is initializable, (ii) the minimum cut is still as deep as 
γ and another penalty is necessary. In this manner, the 
register count is incremented until it first becomes possible 
to find an equivalent initial state.  If multiple penalties with 
multiple overlapping elements are generated, search may be 
required to guarantee optimality; this was not the case in our 
examples, and we do not discuss it here. 

Because the problem of computing an equivalent initial 
state after backward retiming—let alone transforming that 
retiming—is already NP-hard, is not possible to establish a 
polynomial upper bound on the runtime of this algorithm. 
However, this in no way precludes its speed and scalability 

on the class of circuits typically seen in the real world. Our 
experience has shown that, for the circuits that we 
examined, the check for an equivalent initial state via SAT 
is extremely fast. The total number of calls to the SAT 
solver is bounded by O(FR log R), where R is the original 
number of registers in the design and F is the number of 
additional registers that are required to ensure initial state 
feasibility. F is quite small in all of the examined circuits. 

VI. EXPERIMENTAL RESULTS 

We applied the proposed algorithm to a suite of gate-
level circuits derived from public-domain hardware designs 
[1]. Altera tools were used to extract and optimize the logic 
networks, possibly including sequential optimization. These 
were then preprocessed by the ABC logic synthesis package 
[1] as follows: the designs were (a) flattened, (b) 
structurally hashed and (c) algebraically balanced.  All 
experiments were conducted on a 3.0Ghz x64 machine. 

Table 1 compares the performance of our timing-
constrained algorithm against Minaret [9]. The testcases 
presented are the ones with over 1000 registers that were 
processed by Minaret without error.  The maximum delay 
constraint for every net was set to the initial circuit delay, 
and minimum delay constraints were set to negative infinity 
(because these are not supported by Minaret). The runtimes 
of both Minaret and our flow-based method are listed. The 
average runtime of Minaret is 102x that of our tool. 

Table 1 also lists the percentage of nodes in each circuit 
that were initially subject to a conservative delay constraint 
(in column %Cons). The next columns (#Refined and 
#Exact) list the number of nodes that were refined and the 
number of exact constraints that resulted.   For each of these 
metrics, the worst-case values across all forward/backward 

ALGORITHM 3: INITIALIZABLE RETIMING 

1: /* forward retiming phase (omitted) */ 
2: /* backward retiming phase */ 
3: define init state problem variables as V ×Ζ (node × lag) 
4: let Cfeas be an empty list of 2V  
5: loop {  
6:  save current register positions as R’ 
7:  loop { 
8:   compute bwd min cut R under constraints Cfeas 
9:   move registers to R 
10:   update initial state problem 
11:  } until  no decrease in number of registers 
12:  if SAT(R ) terminate 
13: 

14:  let topo be an topological ordering of V 
15:  let  γ be an empty 2V 
16:  loop { 
17:   binary search on v until 
18:     SAT( ) w/o variablesTFO( ) { : topo( ) topo( )}

SAT( ) w/o variablesTFO( ) { : topo( ) topo( )}

R u u v

R u u v

γ
γ

¬ ∪ ≥
∧ ∪ >

 

19:   push v→ γ 
20:  } until SAT(R ) w/o variables TFO(γ) 
21:  Cfeas ← Cfeas + γ 
22:  move registers to R’ 
23: } forever 
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retiming iterations are presented.  
We implemented a unit timing model for comparison 

with Minaret, but the algorithm can be used with one that is 
much more descriptive. A second implementation used a 
standard load- and slew-dependent interpolating table 
lookup to compute path delays.  Because computation of 
timing data dominates the runtime, this extra effort 
increased the runtime to 5x that of the unit delay version. 

Table 2 describes the application of initial-state-feasible 
retiming on some of the benchmarks. Register minimization 
preserves the initial state in the overwhelming majority of 
cases; only one design in the entire suite (“s400”) did not 
have an equivalent initial state.  For the other benchmarks, 
all initial states in the design were set to random values to 
create conflicts. The number of registers in the infeasible 
retiming is listed in the column Infeas. Regs. Initial-state-
feasible retiming was also applied, and the number of 
additional registers (or, equivalently, the number of 
iterations) is listed in the column Feasible Regs. Column 
Avg. |γ| is the average number of nodes in each of the 
feasibility constraints. 

The randomization of the initial states likely results in 
more difficult problems than would be generated in any 
actual design, and yet the optimal feasible retiming can be 
found in a median runtime of a little over a second.  The 
circuit “radar12” is the outlier and presents a challenge due 
to its particular arithmetic structure.  
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mux8 128bi 7.8k 1155 14.0 1149 27,1% 0 0 0.07s 0.5s
oc cfft 19.5k 1051 111.0 874 23.3% 1654 6998 12.1s 769.s

oc des perf 41.3k 1976 31.0 1920 89.3% 27225 602773 10.2s 114.6s
oc pci 19.6k 1354 88.0 1311 1.9% 4 8 0.10s 33.8s

oc wb dma 29.2k 1775 36.0 1754 28.6% 2 4 0.24s 24.6s
oc vga 17.1k 1108 123.0 1079 25.6% 1 6 0.10s 30.6s
MEAN     1x 102x

TABLE 2: INITIALIZABLE MIN-REG RETIMING RESULTS 

 Orig Infeas Feasible 
Name Gates Regs Regs Reg Avg. |γ| Time

s400 0.3k 21 18 +1 8.0 0.08s
oc aes core 16.6k 402 395 +3 2.0 2.55s
oc vga lcd 17.1k 1108 1087 +1 1.0 1.09s

nut 003 6.6k 484 450 +3 1.0 1.41s
radar12 71.1k 3875 3771 +27 2.3 108.3s

oc wb dma 29.2k 1775 1757 +2 3.5 5.70s
oc minirisc 3.9k 289 271 +2 1.0 0.49s

 


