
Fast Minimum-Register Retiming via Binary Maximum-Flow

Alan Mishchenko Aaron Hurst Robert Brayton

Department of EECS, University of California, Berkeley
{alanmi, ahurst, brayton}@eecs.berkeley.edu

Abstract

The paper introduces a simplified version of the maximum
network flow problem with application to minimum-register
retiming. The simplifying assumption, which is met by min-
register retiming, is that the flow takes only binary values,
resulting in an elegant and scalable implementation. Experiments
on industrial benchmarks show that the new algorithm is fast and
effective; on a network with 100K nodes and 6K registers it took 1
second to solve; an average 10% reduction in the number of
registers was achieved on a set of industrial benchmarks.

1 Introduction
Retiming [17] moves registers over combinational nodes in a

logic network, preserving functionality and logic structure.
Retiming can target a number of objectives: (a) minimize the
delay of the circuit (min-delay), (b) minimize the number of
registers under a delay constraint (min-area), and (c) minimize
the number of registers (min-register). Numerous approaches
have been proposed to achieve these goals [10][17][19][20][21]
[24][25][27], with most of the emphasis on the first two
objectives. Objective (b) has the reputation of being the hardest to
achieve in practice. Also, retiming has been integrated with logic
restructuring performed during technology-independent logic
synthesis [2][18][23], technology mapping [22][4], and formal
verification [9][16]. These approaches can modify the circuit
structure as well as the register positions. This does not reduce the
value of stand-alone retiming, since in some approaches, it might
be performed repeatedly [9] or as an initial/final step [16][22].

In this paper, we focus on min-register retiming, which has
several applications in logic synthesis and verification. In
synthesis, if delay is not important, the minimum number of
registers can save in area and power. Some of the resulting delay
degradation can be fixed by clock skewing [11]. In verification,
min-register retiming minimizes the number of state variables
[16], which may be critical for successful verification based on
state enumeration.

Although retiming problems are traditionally translated into
linear programming problems [16], it is well recognized that these
are of a special network type [25][20][21][22], and can be solved
with efficient network methods. Because the min-register problem
does not have delay constraints, it is the same as an undirected
max-flow problem. For integer flow sources and constraints, it is
known that the max-flow solution is integer, making the
complexity O(ME) instead of O(VE), where E is the number of
edges, V the number of nodes, and M the value of the maximum
flow. When the source flows and the edge capacities are unitary,
the max flow through any edge or node is binary (all flows are 0
or 1). This binary flow problem has the same worst case
complexity as the integer problem, O(RE), where R is the
minimum number of sources. However the binary formulation

allows for a very simple implementation, which is much faster,
uses less memory, and scales to larger networks. This formulation
allows the implementation to circumvent more general but less
scalable algorithms and software, such as [12][13].

To support these claims, we provide experimental results on
large industrial benchmarks. They demonstrate the scalability of
the new algorithm, e.g. a typical industrial circuit with 100K
nodes and 6K registers takes less than a second to retime. The
reduction in the number of registers ranges from 0% to 60%,
averaging about 10%.

In the near future, we plan to apply the binary flow algorithm to
min-area retiming by minimizing register count first and then
greedily trading area for delay, by a combination of skewing
some of the registers and incrementally retiming others, using an
algorithm similar to [26], hopefully leading to a fast heuristic
min-area method.

The rest of the paper is organized as follows. Section 2
describes the background. Section 3 describes the new algorithm.
Section 4 reports experimental results. Section 5 concludes the
paper and outlines future work.

2 Nomenclature
A Boolean network is a directed acyclic graph (DAG) with

nodes corresponding to logic gates and directed edges
corresponding to wires connecting the gates. The terms network,
Boolean network, and circuit are used interchangeably in this
paper.

A node has zero or more fanins, i.e. nodes that are driving this
node, and zero or more fanouts, i.e. nodes driven by this node.
The primary inputs (PIs) of the network are nodes without fanins
in the current network. The primary outputs (POs) are a subset of
nodes of the network. If the network is sequential, the register
outputs/inputs are sometimes treated as additional PIs/POs. The
PIs and register outputs are cumulatively called combinational
inputs (CIs) while the POs and register inputs are called
combinational outputs (COs).

A fanin (fanout) cone of a node n is a subset of all nodes of the
network reachable through the fanin (fanout) edges from n. Area
refers to the number of registers and delay refers to the number of
logic nodes on the longest path between a CI to a CO.

3 Proposed algorithms
 We present the simplified binary maximum flow algorithm and

its use for retiming of sequential circuits.

3.1 Retiming as a network flow problem
The traditional formulation of retiming [17] determines the new

locations of registers by computing a set of flow-like values
called register lags, which specify how many register are retimed
backward over a node. In the min-delay and min-area problems,
additional delay constraints make the search for a set of feasible

register lags difficult; in the min-register problem, their absence
leads to a significantly more tractable flow-only problem.

An optimal retiming may require that multiple registers are
moved across nodes (i.e. the lags are unbounded integers).
Instead, we propose decomposing the retiming into moves within
single cycle time frames. In each iteration, either zero or one
registers will be moved across a node. This formulation reduces
the problem to that of computing binary maximum-flow. The
resulting minimum cut specifies a new location for the registers
between their current location and their location in the next cycle.

The partition induced by the minimum-cut is guaranteed to
insert a register along every path within the current frame. This is
a necessary but not sufficient condition for the retiming to be
valid. A minimum cut of the directed graph may have edges that
cross backward over the cut, leading to an implementation with
paths that have more than one register within a single cycle.

This is illustrated in Figure 3.1. The flow from the current
register positions roi to their positions in the next frame rii is 2 in
the directed graph and the induced min-cut is along the outputs of
nodes n1 and n4. There is no valid retiming of area 2. However,
the flow through the undirected graph is 3, using the reverse edge
n2-n3, and results in a valid retiming.

Figure 3.1. Directed versus undirected flow.

This problem can be avoided by computing the flow through the
undirected version of the same network. The size of the minimum
cut may grow, but it can be proven that one always exists, which
has exactly one register along every path: if the min-cut is
generated by partitioning the residual graph into nodes that are
not reachable from the current register positions, any backward
edge must have flow and therefore be forward reachable; by
construction, no such edge could exist.

3.2 Binary maximum network flow algorithm
The proposed binary max-flow algorithm is a simplified version

of a more general Ford-Fulkerson integer max-flow algorithm [5].
Since a node either has flow or not, in contrast to its integer-
valued formulation, the residual and augmenting flows can be
recorded by setting a flow-label bit, without the need to support
flow counters. We discuss only the forward flow computation
because the backward flow is a dual problem.

In the pseudo-code shown in Figure 3.2, the sources of the flow
are the register outputs and the sinks are the COs. The reason for
this selection will be explained in Section 3.3. A dual selection is
associated with backward retiming.

The pseudo-code contains procedures to store and retrieve the
flow successor of a node (nodeSetFlowNext and
nodeGetFlowNext). Initially, computeMaxFlowForward resets the
flow successors. Since the flow of a node is either 0 (there is no
flow successor) or 1 (there is a flow successor), we look for an
augmenting path originating in each register output only once.
Augmenting paths are iteratively added by the recursive routine
computeMaxFlowAugmentPath.

//// rreettuurrnnss tthhee vvaalluuee ooff mmaaxxiimmuumm ffllooww ffrroomm LLOOss ttoo CCOOss
iinntt ccoommppuutteeMMaaxxFFlloowwFFoorrwwaarrdd((nneettwwoorrkk))
{{
 iinntt ffllooww == 00;;

 //// cclleeaarr tthhee ffllooww aattttrriibbuutteess ooff aallll nnooddeess iinn tthhee nneettwwoorrkk
 ffoorr eeaacchh nnooddee iinn nneettwwoorrkk {{
 nnooddeeSSeettFFlloowwNNeexxtt((nnooddee,, NNUULLLL));;
 }}

 //// ttrryy ttoo ffiinndd ffoorrwwaarrdd aauuggmmeennttiinngg ppaatthh oorriiggiinnaattiinngg iinn rreeggiisstteerr oouuttppuuttss
 ffoorr eeaacchh rreeggiisstteerr oouuttppuutt nnooddee iinn nneettwwoorrkk {{
 cclleeaarrNNooddeeVViissiitteeddMMaarrkkss((nneettwwoorrkk));;
 ffllooww == ffllooww ++ ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((nnooddee));;
 }}

 //// ffiinndd tthhee mmiinn--ccuutt ccoorrrreessppoonnddiinngg ttoo tthhee mmaaxx--ffllooww ccoommppuutteedd
 mmiinn__ccuutt == ccoommppuutteeMMaaxxFFlloowwFFiinnddMMiinnCCuutt((nneettwwoorrkk));;

 rreettuurrnn ffllooww;;
}}

//// rreettuurrnnss 11 iiff aauuggmmeennttiinngg ppaatthh eexxiissttss;; rreettuurrnnss 00 ootthheerrwwiissee
iinntt ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((nnooddee))
{{
 //// sskkiipp nnooddeess vviissiitteedd iinn tthhiiss ttrraavveerrssaall
 iiff ((nnooddeeIIssVViissiitteedd((nnooddee))))
 rreettuurrnn 00;;
 nnooddeeMMaarrkkAAssVViissiitteedd((nnooddee));;

 //// ffiinndd tthhee nnooddee tthhaatt bbrriinnggss ffllooww iinnttoo tthhiiss nnooddee
 pprreevv == ccoommppuutteeMMaaxxFFlloowwPPrreeddeecceessssoorr((nnooddee));;

 //// ccoonnssiiddeerr aa nnooddee tthhaatt ccuurrrreennttllyy ddooeess nnoott hhaavvee ffllooww aassssiiggnneedd
 iiff ((nnooddeeGGeettFFlloowwNNeexxtt((nnooddee)) ==== NNUULLLL)) {{

 //// iiff aa tteerrmmiinnnnaall nnooddee iiss rreeaacchheedd,, aann aauuggmmeennttiinngg ppaatthh iiss ffoouunndd
 iiff ((nnooddeeIIssPPOO((nnooddee)) |||| nnooddeeIIssLLII((nnooddee)))) {{
 nnooddeeSSeettFFlloowwNNeexxtt((nnooddee,, <<tteerrmmiinnaall>>));; rreettuurrnn 11;;
 }}

 //// llooookk ffoorr aann aauuggmmeennttiinngg ppaatthh tthhrroouugghh tthhee ffaannoouuttss
 ffoorr eeaacchh ffaannoouutt//ffaanniinn nneexxtt ooff nnooddee {{
 iiff ((pprreevv !!== nnooddee &&&& ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((nneexxtt)))) {{
 nnooddeeSSeettFFlloowwNNeexxtt((nnooddee,, nneexxtt));; rreettuurrnn 11;;
 }}
 rreettuurrnn 00;;
 }}

 //// iiff tthheerree iiss nnoo ffaanniinn wwiitthh ffllooww,, wwee rreeaacchheedd rreeggiisstteerr oouuttppuuttss
 //// iinn tthhiiss ccaassee,, nnoo nneeww ffllooww ccaann bbee aaddddeedd

 iiff ((pprreevv ==== NNUULLLL))
 rreettuurrnn 00;;

 //// ttrryy ppuusshhiinngg mmoorree ffllooww tthhrroouugghh ootthheerr ffaannoouuttss ooff tthhee ffaanniinn
 ffoorr eeaacchh ffaannoouutt//ffaanniinn nneexxtt ooff pprreevv {{
 iiff ((ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((nneexxtt)))) {{
 nnooddeeSSeettFFlloowwNNeexxtt((pprreevv,, nneexxtt));; rreettuurrnn 11;;
 }}
 }}

 //// ttrryy ppuusshhiinngg tthhee ffllooww tthhrroouugghh tthhee pprreeddeecceessssoorr
 //// iiff tthhiiss ccaann bbee ddoonnee,,tthhee pprreeddeecceessssoorr’’ss ffllooww wwiillll bbee rreesseett ttoo zzeerroo
 iiff ((ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((pprreevv)))) {{
 nnooddeeSSeettFFlloowwNNeexxtt((pprreevv,, NNUULLLL));; rreettuurrnn 11;;
 }}

 //// aann aauuggmmeennttiinngg ppaatthh ccoouunntt nnoott bbee ffoouunndd
 rreettuurrnn 00;;
}}

ri1 ri2 ri3

ro1 ro2

n1
n2

n3
n4

ro3

//// rreettuurrnnss tthhee mmiinniimmuumm--vvoolluummee mmiinn--ccuutt ccoorrrreessppoonnddiinngg ttoo tthhee mmaaxx--ffllooww
//// ((tthhiiss pprroocceedduurree iiss ccaalllleedd wwhheenn mmaaxxiimmuumm--ffllooww iiss aassssiiggnneedd
//// aanndd tthheerree iiss nnoo aauuggmmeennttiinngg ppaatthhss))
nnooddeesseett ccoommppuutteeMMaaxxFFlloowwFFiinnddMMiinnCCuutt((nneettwwoorrkk))
{{
 //// mmaarrkk aallll tthhee nnooddeess rreeaacchhaabbllee ffrroomm rreeggiisstteerr oouuttppuuttss iinn aa ffllooww ggrraapphh
 ffoorr eeaacchh rreeggiisstteerr oouuttppuutt nnooddee iinn nneettwwoorrkk {{
 ffllooww == ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((nnooddee));;
 aasssseerrtt((ffllooww ==== 00));; //// nnoo aauuggmmeennttiinngg ppaatthh ccaann bbee ffoouunndd
 }}

 //// ccoolllleecctt nnooddeess iinn tthhee mmiinn--ccuutt
 nnooddeesseett mmiinn__ccuutt == ∅∅;;
 ffoorr eeaacchh nnooddee iinn nneettwwoorrkk {{

 //// sskkiipp nnooddeess wwiitthhoouutt ffllooww oorr nnoott rreeaacchhaabbllee ffrroomm rreeggiisstteerr oouuttppuuttss
 iiff ((!!nnooddeeHHaassFFllooww((nnooddee)) |||| !!nnooddeeIIssVViissiitteedd((nnooddee))))
 ccoonnttiinnuuee;;

 //// ccoolllleecctt tteerrmmiinnaall nnooddeess rreeaacchhaabbllee ffrroomm rreeggiisstteerr oouuttppuuttss
 iiff ((nnooddeeIIssPPOO((nnooddee)) |||| nnooddeeIIssLLII((nnooddee)))))) {{
 mmiinn__ccuutt == mmiinn__ccuutt ∪∪ nnooddee;;
 ccoonnttiinnuuee;;
 }}

 //// ccoolllleecctt rreeaacchhaabbllee nnooddeess wwhhoossee ffaanniinn wwiitthh ffllooww iiss uunnrreeaacchhaabbllee
 iiff ((!!nnooddeeIIssVViissiitteedd((ccoommppuutteeMMaaxxFFlloowwPPrreeddeecceessssoorr((nnooddee))))))
 mmiinn__ccuutt == mmiinn__ccuutt ∪∪ nnooddee;;
 }}
 rreettuurrnn mmiinn__ccuutt;;
}}

//// ffoorr aa nnooddee wwiitthh ffllooww,, rreettuurrnnss tthhee ffaanniinn,, wwhhiicchh bbrriinnggss iinn tthhee ffllooww
nnooddee ccoommppuutteeMMaaxxFFlloowwPPrreeddeecceessssoorr((nnooddee))
{{
 ffoorr eeaacchh ffaanniinn//ffaannoouutt nneexxtt ooff nnooddee {{
 iiff ((nnooddeeGGeettFFlloowwNNeexxtt((nneexxtt)) ==== nnooddee))
 rreettuurrnn nneexxtt;;
 }}
 rreettuurrnn NNUULLLL;;
}}

Figure 3.2. Forward maximum flow computation.

An augmenting path is by definition a path from source to sink

along which each edge has some remaining capacity. When the
selected path hits a node a with flow, the existing flow to a is
pushed back to that predecessor of a with flow, say node b, and
another unvisited adjacent (fanout) node of b is chosen, from
which the augmentation continues recursively. When an
augmenting path to a CO is found, the flow labels of the nodes
along the path are changed to reflect the modified flow, which has
increased by 1. If an augmenting flow from a register can’t be
found, it will never be found even if the register is revisited later.
Thus when the last register has been processed, the maximum
flow has been found. Finally, a minimum cut (that is, the cut with
the smallest number of nodes) is computed from this maximum
flow by procedure computeMaxFlowMinCut. In general, the min-
cut is not unique. We choose the min-cut with the smallest
volume since the min-register retiming, based on this cut, moves
registers the least distance.

3.3 Minimum-register retiming algorithm
This section shows how to compute the min-register retiming by

iteratively applying the maximum-flow algorithm of Figure 3.2.
The min-area retiming is performed in two steps: forward and

backward, as shown in Figure 3.3. The only difference between
these two retiming steps is that forward one requires computing
maximum flow from the register outputs (sources) to the COs

(sinks), while the backward one requires computing the maximum
flow from the register inputs (sources) to the CIs (sinks).

//// ppeerrffoorrmmss mmiinniimmuumm--aarreeaa rreettiimmiinngg uussiinngg mmaaxxiimmuumm--ffllooww ccoommppuuttaattiioonn
rreettiimmeeMMiinnRReeggiisstteerr((nneettwwoorrkk))
{{
 //// iitteerraattee ffoorrwwaarrdd rreettiimmiinngg aass lloonngg aass tthheerree iiss iimmpprroovveemmeenntt
 wwhhiillee ((ccoommppuutteeMMaaxxFFlloowwFFoorrwwaarrdd((nneettwwoorrkk)) << rreeggiisstteerrCCoouunntt((nneettwwoorrkk))))
 rreettiimmeeMMoovveeRReeggiisstteerrssTTooMMiinnCCuutt((nneettwwoorrkk));;

 //// iitteerraattee bbaacckkwwaarrdd rreettiimmiinngg aass lloonngg aass tthheerree iiss iimmpprroovveemmeenntt
 wwhhiillee ((rreettiimmeeMMaaxxFFlloowwBBaacckkwwaarrdd((nneettwwoorrkk)) << rreeggiisstteerrCCoouunntt((nneettwwoorrkk))))
 rreettiimmeeMMoovveeRReeggiisstteerrssTTooMMiinnCCuutt((nneettwwoorrkk));;

 //// ccoommppuuttee nneeww iinniittiiaall ssttaattee
 rreettiimmeeCCoommppuutteeIInniittiiaallSSttaattee((nneettwwoorrkk));;
}}

Figure 3.3. Implementation of min-register retiming.

Both the forward and backward parts of the retiming are

performed on a single time frame of the network. However,
general retiming may move registers across a node more than
once; therefore the computation based on one time frame is
iterated in Figure 3.3.1

It should be noted that backward retiming followed by forward
retiming will also result in a solution with minimum area, but we
chose to perform forward retiming first because min-register
retiming in general is not unique. This reduces the amount of
logic that has to be retimed backward, and although not discussed
in this paper, this may lead to a simpler SAT problem when
computing a new initial state after retiming.

Only forward retiming is discussed below, as backward
retiming is its dual. The sources are the register outputs; the sinks
are COs. The reason for this selection is that in the forward
retiming, the min-cut lies between the current register positions
and the COs. In particular, a register may travel from its current
position all the way to an input of another register or to a PO and
get stuck there, waiting for the next time frame to proceed further.

Figure 3.4. Illustration of retiming in the presence of PIs.

The PIs constrain the forward movement of registers and the

location of the minimum cut. Consider a circuit with one PI, one
PO, and three registers shown in Figure 3.4. Internal node n is fed
by a register and a PI. This node cannot be retimed forward
because the PI does not have a matching register. Therefore, to
find the max-flow in the presence of PIs, we modify the sinks to
be the nodes in the TFO of the PIs plus the COs (previously, the
sinks were just the COs).

For the example shown in Figure 3.4, nodes n and m become
sinks in addition to the register inputs ri1, ri2, and ri3. The max-
flow computed without taking PIs into account is 2 (the
corresponding min-cut is {m, k}). When PIs are present, the max-

1 A similar effect could be achieved by unrolling the circuit several times
and computing the min-cut once using the unrolled time frames.

ri1 ri2 ri3 po

ro1 ro2 ro3 pi

n

m k

flow is 3, which is in correspondence with the min-register
retiming using three registers. It should be noted that, in our
computations, we do not add a host node and retime over it, as
done implicitly in [7], since the same result can be achieved by
forward and backward retiming on the circuit.

4 Experimental results
The algorithm presented in this paper was implemented in the

logic synthesis and verification system ABC [1] as a new
command retime. The current implementation can retime both
SIS-like logic networks and AIGs assuming a unit-delay model
(all internal logic nodes have delay 1).

The correct functionality of networks after retiming has been
verified by the bounded sequential equivalence checker in ABC
(command sec). To enable verification by comparing sequential
behavior of the original and the final circuits, starting from two
equivalent initial states, the circuits were preprocessed as follows.
All initial values of the registers in the original circuits were set to
zero and the circuit was cycled with random PI values for a fixed
number of clock cycles to arrive at an initial state, for the un-
retimed circuit, for which an equivalent initial state exists after
retiming.2 A corresponding equivalent initial state for the retimed
circuit was computed using a SAT solver [8]. The runtime of this
computation was negligible, compared to that of retiming. The
bounded sequential equivalence checker then verified that the two
states were equivalent up to a specified number of clock cycles.

The following notation is used in the tables below. Columns
labeled “A” refer to the number of registers in the network (area).
Columns labeled “D” refer to the number of nodes on the longest
combinational path. Columns labeled “T” refer to the runtime in
seconds measured on an IBM ThinkPad laptop with a 1.6GHz
Intel CPU with 2Gb of RAM.

Two experiments were performed and are reported in the
following sub-sections.

4.1 Comparison with previous retiming solutions
We compare the performance of the min-register retiming

against several previous efficient retiming solutions: (a) min-
delay retiming using retiming/skew equivalence implemented in
ASTRA [24], (b) min-area retiming under delay constraints
implemented in Minaret [20], (c) continuous min-delay retiming,
called c-retiming [21], and (d) a heuristic incremental min-delay
retiming used in an industrial setting [26].

The last algorithm was implemented by us in ABC and run on
the same computer as the presented algorithm. The results for the
first three algorithms are quoted from publications [24][20][21].
The benchmarks selected for this experiment were that subset of
the ISCAS’89 benchmarks, for which the same files were found
as used in [24][20][21]. They were judged the same by their
numbers of gates reported in these references. This ensures that
all retiming algorithms were applied to the same circuit structures.

Table 1 lists the benchmark names, followed by the original
circuit statistics: the number of gates in the network, and the
initial area/delay, and then the results of the five retiming
algorithms in terms of area, delay, and runtime.

The experimental results show that the proposed algorithm for
min-register retiming finds retimings with the smallest area. This
is because the min-delay algorithms, such as ASTRA and
c-retiming, do not constrain area while the only other area-

2 Since retiming preserves the cyclic core of a design, any state in the
cyclic core of the initial design has an equivalent initial state of the
retimed circuit.

oriented retiming method [20] works under a minimum-delay
constraint. Runtime comparisons with ASTRA and Minaret are
not valid without factoring in the speed of the older computers
used in those papers. However, comparison with c-retiming and
the incremental method indicate that the new method is very fast.

4.2 Performance on large benchmarks
We applied the proposed algorithm to a suite of gate-level

circuits derived from public-domain hardware designs. Altera
tools [14] were used to extract the logic networks. These were
then minimally preprocessed by ABC as follows: the original
hierarchical designs were (a) flattened, (b) structurally hashed and
(c) algebraically balanced. The original benchmarks in BLIF and
those preprocessed by ABC can be found on the web [28]. Out of
the set of 63 benchmarks, we removed one combinational circuit
(no registers) and 19 circuits whose initial register count was
already minimum, leaving 43 circuits shown in Table 2.

The first section of Table 2 shows the gate (“Gates”), register
(“A”), and delay (“D”) counts. The next section shows the results
produced by the proposed min-register retiming algorithm. To put
these results in perspective, they are compared with the
incremental heuristic min-delay retiming algorithm [26]
implemented in ABC. The number of iterations was set to twice
the critical delay of the original circuit instead of the fixed value
(32) suggested in [26]. The last column (Pan’s) shows the delay of
the exact min-delay retiming derived by computing sequential
arrival times [21][22].

The results confirm that the new min-register retiming
algorithm is very fast; it takes only a few seconds for even the
largest benchmarks. The average reduction in the number of
registers is 10% while some benchmarks are reduced more than
60%.

4.3 Heuristic min-area method
The last experiment (to be conducted in the final version of the

paper) will attempt to put together a heuristic min-area algorithm
by combining the proposed min-register method with a type of
incremental algorithm, as suggested in [26]. The idea is to start
out with as few registers as possible and shift them only as little
as possible to reach a desired delay.

5 Conclusions and future work
This paper presented an application of a simplified maximum

flow computation to the problem of minimizing the number of
registers after retiming. The presented method is very simple,
straight-forward to implement, fast, memory efficient, and
scalable for large industrial circuits. Potential applications of the
method include sequential synthesis and verification.

Future work will include refining fast incremental retiming
algorithm for delay and combining it with the proposed min-area
retiming algorithm and clock skewing to achieve good delay/area
trade-offs. This should open new opportunities for applying
retiming in delay-driven optimization flows without excessive
area penalties.

Acknowledgment
 This research was supported in part by SRC contracts 1361.001

and 1444.001, by the C2S2 Focus Research center under contract
2003-CT-888, and by the California Micro program with
industrial sponsors, Altera, Intel, Magma, and Synplicity.

References
[1] Berkeley Logic Synthesis and Verification Group, ABC: A System

for Sequential Synthesis and Verification, Release 61104.
http://www.eecs.berkeley.edu/~alanmi/abc/

[2] S. Bommu, N. O’Neill, and M. Ciesielski. Retiming-based
factorization for sequential logic optimization, ACM TODAES, vol.
5(3), July 2000, pp. 373-398.

[3] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
“Multilevel logic synthesis”, Proc. IEEE, vol. 78(2), February 1990,
pp. 264-300.

[4] J. Cong and C. Wu, “Optimal FPGA mapping and retiming with
efficient initial state computation”, IEEE Trans. CAD, vol. 18(11),
Nov. 1999, pp. 1595-1607.

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to
algorithms, New York: McGraw-Hill, 1990.

[6] A. Dasdan, “Experimental analysis of the fastest optimum cycle ratio
and mean algorithms”, ACM TODAES ‘04, vol. 9(4), pp. 385-418.

[7] G. De Micheli, “Synchronous logic synthesis: Algorithms for cycle
time minimization”, IEEE Trans. CAD, vol. 10(1), January 1991, pp.
63-73.

[8] N. Een and N. Sörensson, “An extensible SAT-solver”. Proc. SAT
‘03. http://www.cs.chalmers.se/~een/Satzoo/

[9] C. A. J. van Eijk. “Sequential equivalence checking based on
structural similarities”, IEEE Trans. CAD, vol. 19(7), July 2000, pp.
814-819.

[10] G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited and
reversed”, IEEE Trans. CAD, vol. 15(3), March 1996, pp. 348-357.

[11] J. P. Fishburn, “Clock skew optimization”, IEEE Trans. Comp., vol.
39(7), July 1990, pp. 945-951.

[12] A. Goldberg, “An efficient implementation of a scaling minimum-
cost flow algorithm”, Technical Report STAN-CS-92-1439, Stanford
University, 1992. http://ftp.cs.stanford.edu/cs/theory/goldberg/

[13] A. Goldberg, Network optimization library. (Software tools)
http://www.avglab.com/andrew/soft.html

[14] M. Hutton and J. Pistorius, Altera QUIP benchmarks.
http://www.altera.com/education/univ/research/unv-quip.html

[15] IWLS 2005 Benchmarks. http://iwls.org/iwls2005/benchmarks.html
[16] A. Kuehlmann and J. Baumgartner, "Transformation-based

verification using generalized retiming”, Proc. CAV’01, pp.
[17] C. E. Leiserson and J. B. Saxe. “Retiming synchronous circuitry“,

Algorithmica, 1991, vol. 6, pp. 5-35.
[18] B. Lin, “Restructuring of synchronous logic circuits”, Proc. Euro-

DAC ’93, pp. 205-209.
[19] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-

Vincentelli, “Retiming and resynthesis: Optimizing sequential
networks with combinational techniques”, IEEE Trans. CAD, vol.
10(1), Jan 1991, pp. 74-84.

[20] N. Maheshwari and S. Sapatnekar, “Efficient retiming of large
circuits”, IEEE Trans VLSI, 6(1), March 1998, pp. 74-83.

[21] P. Pan, “Continuous retiming: Algorithms and applications”. Proc.
ICCD ‘97, pp. 116-121.

[22] P. Pan and C.-C. Lin, “A new retiming-based technology mapping
algorithm for LUT-based FPGAs,” Proc. FPGA ’98, pp. 35-42.

[23] P. Pan, “Performance-driven integration of retiming and
resynthesis”, Proc. DAC ’99, pp. 243-246.

[24] S. S. Sapatnekar and R. B. Deokar, “Utilizing the retiming-skew
equivalence in a practical algorithms for retiming large circuits”,
IEEE Trans. CAD, vol. 15(10), Oct.1996, pp. 1237-1248.

[25] N. Shenoy and R. Rudell, “Efficient implementation of retiming”,
Proc. ICCAD ’94, pp. 226-233.

[26] D.R. Singh, V. Manohararajah, and S.D. Brown, “Incremental
retiming for FPGA physical synthesis”, Proc. DAC ’05, pp. 433-438.

[27] H. J. Touati and R. K. Brayton, “Computing the initial states of
retimes circuits“, IEEE Trans. CAD, vol. 12(1), Jan 1993, pp. 157-
162.

[28] http://www.eecs.berkeley. edu/~alanmi /benchmarks/altera

Table 1. Comparison of the new algorithm with the previous work.

Bench Original statistics ASTRA [24] Minaret [20]
mark Gates A D A D T A D T

s3271 1572 116 28 306 15 1.6 168 15 0.25
s3384 1685 183 60 438 27 15.5 167 27 2.44
s3330 1789 132 29 331 14 2.6 110 14 0.22
s4863 2342 104 58 201 30 1.5 138 30 5.24
s5378 2779 179 25 555 21 8.4 173 21 1.28
s6669 3080 239 93 719 29 49.3 305 29 2.20
s35932 16065 1728 29 1729 27 23.1 1729 27 7.56
Ratio 1.00 1.00 2.37 0.58 1.11 0.58

Bench C-retiming [21] Incremental [26] New min-area
Mark A D T A D T A D T

s3271 198 15 1.99 238 16 0.05 116 28 0.00
s3384 207 27 2.61 208 27 0.04 153 73 0.02
s3330 218 14 1.86 109 17 0.03 66 24 0.01
s4863 183 30 3.35 208 30 0.07 88 58 0.01
s5378 189 21 3.00 192 21 0.03 132 26 0.02
s6669 355 26 8.81 551 28 0.15 183 121 0.02
s35932 1729 27 40.02 1729 27 0.72 1728 29 0.06
Ratio 1.40 0.58 1.48 0.60 0.81 1.06

Table 2. Performance of the new algorithm on industrial benchmarks.

Benchmark Original Min-register Min-delay [26] Pan’s
 |AIG| A D A D T A D T D

barrel16a 397 37 11 32 11 0.00 124 4 0.02 4
barrel16 357 37 10 32 11 0.00 85 4 0.01 4
barrel32 902 70 12 64 13 0.00 166 5 0.03 5
barrel64 2333 135 14 128 14 0.01 422 5 0.06 5
mux32_16bit 1851 533 9 505 11 0.02 873 4 0.05 4
mux64_16bit 3743 1046 13 991 13 0.01 1460 5 0.12 5
mux8_128bit 3717 1155 7 1029 8 0.07 2297 3 0.18 3
mux8_64bit 1861 579 7 517 8 0.03 1145 3 0.07 3
nut_000 1262 326 58 318 60 0.00 393 27 0.05 27
nut_001 3179 484 93 449 109 0.01 558 57 0.08 46
nut_002 873 212 24 158 25 0.01 232 10 0.02 10
nut_003 1861 265 37 238 46 0.01 304 24 0.04 24
nut_004 713 185 13 170 15 0.00 213 6 0.02 6
oc_aes_core_inv 11177 669 25 658 25 0.05 669 25 0.25 25
oc_aes_core 8732 402 24 394 24 0.02 402 24 0.14 24
oc_aquarius 23109 1477 207 1473 206 0.19 1575 200 0.81 200
oc_ata_ocidec1 1601 269 14 268 14 0.00 275 11 0.02 11
oc_ata_ocidec2 1813 303 14 299 14 0.02 310 11 0.02 11
oc_ata_ocidec3 3957 594 14 581 19 0.03 599 13 0.06 13
oc_ata_vhd_3 3933 594 14 589 14 0.01 599 13 0.06 13
oc_ata_v 838 157 14 156 14 0.00 169 10 0.02 10
oc_cfft_1024x12 9498 1051 61 712 346 0.14 1672 26 0.91 20
oc_cordic_p2r 8430 719 55 718 55 0.02 975 45 0.26 39
oc_dct_slow 879 178 32 176 32 0.01 207 14 0.03 14
oc_des_perf_opt 21281 1976 15 1088 233 1.08 4656 14 1.27 13
oc_fpu 16115 659 2661 247 2712 0.07 1578 543 30.65 543
oc_hdlc 2221 426 14 383 17 0.02 426 13 0.03 13
oc_minirisc 1918 289 36 278 39 0.01 290 33 0.03 33
oc_oc8051 10315 754 92 752 92 0.04 757 87 0.19 87
oc_pci 10426 1354 46 1326 46 0.07 1405 26 0.39 26
oc_rtc 1093 114 41 86 41 0.01 114 29 0.02 29
oc_sdram 860 112 13 109 12 0.00 109 12 0.02 12
oc_simple_fm_rec 2300 226 66 223 75 0.01 276 40 0.05 40
oc_vga_lcd 9086 1108 35 1091 35 0.05 1126 25 0.24 25
oc_video_dct 36465 3549 60 2305 73 0.72 8525 16 12.84 16
oc_video_huff_dec 1591 61 21 60 22 0.01 65 18 0.02 18
oc_video_huff_enc 1720 59 19 47 32 0.01 90 13 0.02 13
oc_wb_dma 15026 1775 19 1767 34 0.12 1794 17 0.45 17
os_blowfish 9806 891 79 827 78 0.03 906 61 0.30 42
os_sdram16 1156 147 23 144 23 0.00 162 17 0.02 17
radar12 38058 3875 110 3754 110 0.37 3991 56 3.71 56
radar20 75149 6001 110 5364 110 1.15 6363 56 6.92 56
uoft_raytracer 145960 13079 237 11645 537 6.46 16974 208 23.70 202
Ratio 1.00 1.00 1.00 0.90 1.56 1.00 1.41 0.66 1.00 0.64

