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Abstract 

The paper introduces a simplified version of the maximum 
network flow problem with application to minimum-register 
retiming. The simplifying assumption, which is met by min-
register retiming, is that the flow takes only binary values, 
resulting in an elegant and scalable implementation. Experiments 
on industrial benchmarks show that the new algorithm is fast and 
effective; on a network with 100K nodes and 6K registers it took 1 
second to solve; an average 10% reduction in the number of 
registers was achieved on a set of industrial benchmarks. 

1 Introduction 
Retiming [17] moves registers over combinational nodes in a 

logic network, preserving functionality and logic structure. 
Retiming can target a number of objectives: (a) minimize the 
delay of the circuit (min-delay), (b) minimize the number of 
registers under a delay constraint (min-area), and (c) minimize 
the number of registers (min-register). Numerous approaches 
have been proposed to achieve these goals [10][17][19][20][21] 
[24][25][27], with most of the emphasis on the first two 
objectives. Objective (b) has the reputation of being the hardest to 
achieve in practice. Also, retiming has been integrated with logic 
restructuring performed during technology-independent logic 
synthesis [2][18][23], technology mapping [22][4], and formal 
verification [9][16]. These approaches can modify the circuit 
structure as well as the register positions. This does not reduce the 
value of stand-alone retiming, since in some approaches, it might 
be performed repeatedly [9] or as an initial/final step [16][22]. 

In this paper, we focus on min-register retiming, which has 
several applications in logic synthesis and verification. In 
synthesis, if delay is not important, the minimum number of 
registers can save in area and power. Some of the resulting delay 
degradation can be fixed by clock skewing [11]. In verification, 
min-register retiming minimizes the number of state variables 
[16], which may be critical for successful verification based on 
state enumeration. 

Although retiming problems are traditionally translated into 
linear programming problems [16], it is well recognized that these 
are of a special network type [25][20][21][22],  and can be solved 
with efficient network methods. Because the min-register problem 
does not have delay constraints, it is the same as an undirected 
max-flow problem. For integer flow sources and constraints, it is 
known that the max-flow solution is integer, making the 
complexity O(ME) instead of O(VE), where E is the number of 
edges, V the number of nodes, and M the value of the maximum 
flow. When the source flows and the edge capacities are unitary, 
the max flow through any edge or node is binary (all flows are 0 
or 1). This binary flow problem has the same worst case 
complexity as the integer problem, O(RE), where R is the 
minimum number of sources. However the binary formulation 

allows for a very simple implementation, which is much faster, 
uses less memory, and scales to larger networks. This formulation 
allows the implementation to circumvent more general but less 
scalable algorithms and software, such as [12][13]. 

To support these claims, we provide experimental results on 
large industrial benchmarks. They demonstrate the scalability of 
the new algorithm, e.g. a typical industrial circuit with 100K 
nodes and 6K registers takes less than a second to retime. The 
reduction in the number of registers ranges from 0% to 60%, 
averaging about 10%. 

In the near future, we plan to apply the binary flow algorithm to 
min-area retiming by minimizing register count first and then 
greedily trading area for delay, by a combination of skewing 
some of the registers and incrementally retiming others, using an 
algorithm similar to [26], hopefully leading to a fast heuristic 
min-area method.  

The rest of the paper is organized as follows. Section 2 
describes the background. Section 3 describes the new algorithm. 
Section 4 reports experimental results. Section 5 concludes the 
paper and outlines future work. 

2 Nomenclature 
A Boolean network is a directed acyclic graph (DAG) with 

nodes corresponding to logic gates and directed edges 
corresponding to wires connecting the gates. The terms network, 
Boolean network, and circuit are used interchangeably in this 
paper. 

A node has zero or more fanins, i.e. nodes that are driving this 
node, and zero or more fanouts, i.e. nodes driven by this node. 
The primary inputs (PIs) of the network are nodes without fanins 
in the current network. The primary outputs (POs) are a subset of 
nodes of the network. If the network is sequential, the register 
outputs/inputs are sometimes treated as additional PIs/POs. The 
PIs and register outputs are cumulatively called combinational 
inputs (CIs) while the POs and register inputs are called 
combinational outputs (COs).  

A fanin (fanout) cone of a node n is a subset of all nodes of the 
network reachable through the fanin (fanout) edges from n. Area 
refers to the number of registers and delay refers to the number of 
logic nodes on the longest path between a CI to a CO.  

3 Proposed algorithms 
 We present the simplified binary maximum flow algorithm and 

its use for retiming of sequential circuits. 

3.1 Retiming as a network flow problem 
The traditional formulation of retiming [17] determines the new 

locations of registers by computing a set of flow-like values 
called register lags, which specify how many register are retimed 
backward over a node.  In the min-delay and min-area problems, 
additional delay constraints make the search for a set of feasible 



register lags difficult; in the min-register problem, their absence 
leads to a significantly more tractable flow-only problem. 

An optimal retiming may require that multiple registers are 
moved across nodes (i.e. the lags are unbounded integers).  
Instead, we propose decomposing the retiming into moves within 
single cycle time frames.  In each iteration, either zero or one 
registers will be moved across a node.  This formulation reduces 
the problem to that of computing binary maximum-flow.  The 
resulting minimum cut specifies a new location for the registers 
between their current location and their location in the next cycle. 

The partition induced by the minimum-cut is guaranteed to 
insert a register along every path within the current frame.  This is 
a necessary but not sufficient condition for the retiming to be 
valid.  A minimum cut of the directed graph may have edges that 
cross backward over the cut, leading to an implementation with 
paths that have more than one register within a single cycle.   

This is illustrated in Figure 3.1. The flow from the current 
register positions roi to their positions in the next frame rii is 2 in 
the directed graph and the induced min-cut is along the outputs of 
nodes n1 and n4.  There is no valid retiming of area 2.  However, 
the flow through the undirected graph is 3, using the reverse edge 
n2-n3, and results in a valid retiming. 

 
Figure 3.1. Directed versus undirected flow. 

This problem can be avoided by computing the flow through the 
undirected version of the same network.  The size of the minimum 
cut may grow, but it can be proven that one always exists, which 
has exactly one register along every path: if the min-cut is 
generated by partitioning the residual graph into nodes that are 
not reachable from the current register positions, any backward 
edge must have flow and therefore be forward reachable; by 
construction, no such edge could exist. 

3.2 Binary maximum network flow algorithm 
The proposed binary max-flow algorithm is a simplified version 

of a more general Ford-Fulkerson integer max-flow algorithm [5]. 
Since a node either has flow or not, in contrast to its integer-
valued formulation, the residual and augmenting flows can be 
recorded by setting a flow-label bit, without the need to support 
flow counters. We discuss only the forward flow computation 
because the backward flow is a dual problem.  

In the pseudo-code shown in Figure 3.2, the sources of the flow 
are the register outputs and the sinks are the COs. The reason for 
this selection will be explained in Section 3.3. A dual selection is 
associated with backward retiming. 

The pseudo-code contains procedures to store and retrieve the 
flow successor of a node (nodeSetFlowNext and 
nodeGetFlowNext). Initially, computeMaxFlowForward resets the 
flow successors. Since the flow of a node is either 0 (there is no 
flow successor) or 1 (there is a flow successor), we look for an 
augmenting path originating in each register output only once. 
Augmenting paths are iteratively added by the recursive routine 
computeMaxFlowAugmentPath.  

 
 

////  rreettuurrnnss  tthhee  vvaalluuee  ooff  mmaaxxiimmuumm  ffllooww  ffrroomm  LLOOss  ttoo  CCOOss    
iinntt  ccoommppuutteeMMaaxxFFlloowwFFoorrwwaarrdd((  nneettwwoorrkk  ))  
{{  
          iinntt  ffllooww  ==  00;;  
           

          ////  cclleeaarr  tthhee  ffllooww  aattttrriibbuutteess  ooff  aallll  nnooddeess  iinn  tthhee  nneettwwoorrkk    
        ffoorr  eeaacchh  nnooddee  iinn  nneettwwoorrkk    {{  
                  nnooddeeSSeettFFlloowwNNeexxtt((  nnooddee,,  NNUULLLL  ));;  
        }}  
           

          ////  ttrryy  ttoo  ffiinndd  ffoorrwwaarrdd  aauuggmmeennttiinngg  ppaatthh  oorriiggiinnaattiinngg  iinn  rreeggiisstteerr  oouuttppuuttss    
        ffoorr  eeaacchh  rreeggiisstteerr  oouuttppuutt  nnooddee  iinn  nneettwwoorrkk    {{  
                cclleeaarrNNooddeeVViissiitteeddMMaarrkkss((  nneettwwoorrkk  ));;  
                  ffllooww  ==  ffllooww  ++  ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((  nnooddee  ));;  
        }}  
           

          ////  ffiinndd  tthhee  mmiinn--ccuutt  ccoorrrreessppoonnddiinngg  ttoo  tthhee  mmaaxx--ffllooww  ccoommppuutteedd    
          mmiinn__ccuutt  ==  ccoommppuutteeMMaaxxFFlloowwFFiinnddMMiinnCCuutt((  nneettwwoorrkk  ));;  
           

          rreettuurrnn  ffllooww;;  
}}        
  
  
 

////  rreettuurrnnss  11  iiff  aauuggmmeennttiinngg  ppaatthh  eexxiissttss;;  rreettuurrnnss  00  ootthheerrwwiissee  
iinntt  ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((  nnooddee  ))  
{{  
          ////  sskkiipp  nnooddeess  vviissiitteedd  iinn  tthhiiss  ttrraavveerrssaall    
          iiff  ((  nnooddeeIIssVViissiitteedd((  nnooddee  ))  ))  
                    rreettuurrnn  00;;  
          nnooddeeMMaarrkkAAssVViissiitteedd((  nnooddee  ));;  
                   

          ////  ffiinndd  tthhee  nnooddee  tthhaatt  bbrriinnggss  ffllooww  iinnttoo  tthhiiss  nnooddee  
          pprreevv  ==  ccoommppuutteeMMaaxxFFlloowwPPrreeddeecceessssoorr((  nnooddee  ));;  
         

          ////  ccoonnssiiddeerr  aa  nnooddee  tthhaatt  ccuurrrreennttllyy  ddooeess  nnoott  hhaavvee  ffllooww  aassssiiggnneedd  
          iiff  ((  nnooddeeGGeettFFlloowwNNeexxtt((  nnooddee  ))  ====  NNUULLLL  ))  {{  
           

                    ////  iiff  aa  tteerrmmiinnnnaall  nnooddee  iiss  rreeaacchheedd,,  aann  aauuggmmeennttiinngg  ppaatthh  iiss  ffoouunndd    
                    iiff  ((  nnooddeeIIssPPOO((  nnooddee  ))  ||||  nnooddeeIIssLLII((  nnooddee  ))  ))  {{    
                                nnooddeeSSeettFFlloowwNNeexxtt((  nnooddee,,  <<tteerrmmiinnaall>>  ));;  rreettuurrnn  11;;    
                    }}  
           

                    ////  llooookk  ffoorr  aann  aauuggmmeennttiinngg  ppaatthh  tthhrroouugghh  tthhee  ffaannoouuttss    
                    ffoorr  eeaacchh  ffaannoouutt//ffaanniinn  nneexxtt    ooff  nnooddee  {{  
                              iiff  ((  pprreevv  !!==  nnooddee  &&&&  ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((  nneexxtt  ))  ))  {{  
                                              nnooddeeSSeettFFlloowwNNeexxtt((  nnooddee,,  nneexxtt  ));;  rreettuurrnn  11;;    
                              }}  
                    rreettuurrnn  00;;  
          }}  
           

          ////  iiff  tthheerree  iiss  nnoo  ffaanniinn  wwiitthh  ffllooww,,  wwee  rreeaacchheedd  rreeggiisstteerr  oouuttppuuttss  
          ////  iinn  tthhiiss  ccaassee,,  nnoo  nneeww  ffllooww  ccaann  bbee  aaddddeedd    

      iiff  ((  pprreevv  ====  NNUULLLL  ))  
                rreettuurrnn  00;;  

   

          ////  ttrryy  ppuusshhiinngg  mmoorree  ffllooww  tthhrroouugghh  ootthheerr  ffaannoouuttss  ooff  tthhee  ffaanniinn    
          ffoorr  eeaacchh  ffaannoouutt//ffaanniinn  nneexxtt    ooff  pprreevv  {{  
                    iiff  ((  ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((  nneexxtt  ))  ))  {{  
                              nnooddeeSSeettFFlloowwNNeexxtt((  pprreevv,,  nneexxtt  ));;  rreettuurrnn  11;;    
                    }}  
          }}  
     

          ////  ttrryy  ppuusshhiinngg  tthhee  ffllooww  tthhrroouugghh  tthhee  pprreeddeecceessssoorr    
          ////  iiff  tthhiiss  ccaann  bbee  ddoonnee,,tthhee  pprreeddeecceessssoorr’’ss  ffllooww  wwiillll  bbee  rreesseett  ttoo  zzeerroo        
          iiff  ((  ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((  pprreevv  ))  ))  {{  
                    nnooddeeSSeettFFlloowwNNeexxtt((  pprreevv,,  NNUULLLL  ));;  rreettuurrnn  11;;    
          }}  
         

          ////  aann  aauuggmmeennttiinngg  ppaatthh  ccoouunntt  nnoott  bbee  ffoouunndd    
          rreettuurrnn  00;;  
}}        
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////  rreettuurrnnss  tthhee  mmiinniimmuumm--vvoolluummee  mmiinn--ccuutt  ccoorrrreessppoonnddiinngg  ttoo  tthhee  mmaaxx--ffllooww    
////  ((tthhiiss  pprroocceedduurree  iiss  ccaalllleedd  wwhheenn  mmaaxxiimmuumm--ffllooww  iiss  aassssiiggnneedd    
////  aanndd  tthheerree  iiss  nnoo  aauuggmmeennttiinngg  ppaatthhss))    
nnooddeesseett  ccoommppuutteeMMaaxxFFlloowwFFiinnddMMiinnCCuutt((  nneettwwoorrkk  ))  
{{  
          ////  mmaarrkk  aallll  tthhee  nnooddeess  rreeaacchhaabbllee  ffrroomm  rreeggiisstteerr  oouuttppuuttss  iinn  aa  ffllooww  ggrraapphh    
          ffoorr  eeaacchh  rreeggiisstteerr  oouuttppuutt  nnooddee  iinn  nneettwwoorrkk    {{  
                  ffllooww  ==  ccoommppuutteeMMaaxxFFlloowwAAuuggmmeennttPPaatthh((  nnooddee  ));;  
                  aasssseerrtt((  ffllooww  ====  00  ));;  ////  nnoo  aauuggmmeennttiinngg  ppaatthh  ccaann  bbee  ffoouunndd  
          }}  
                   

          ////  ccoolllleecctt  nnooddeess  iinn  tthhee  mmiinn--ccuutt    
          nnooddeesseett  mmiinn__ccuutt  ==  ∅∅;;  
          ffoorr  eeaacchh  nnooddee  iinn  nneettwwoorrkk  {{      
                 

                  ////  sskkiipp  nnooddeess  wwiitthhoouutt  ffllooww  oorr  nnoott  rreeaacchhaabbllee  ffrroomm  rreeggiisstteerr  oouuttppuuttss      
                  iiff  ((  !!nnooddeeHHaassFFllooww((  nnooddee  ))    ||||  !!nnooddeeIIssVViissiitteedd((  nnooddee  ))  ))  
                              ccoonnttiinnuuee;;  
                 

                  ////  ccoolllleecctt  tteerrmmiinnaall  nnooddeess  rreeaacchhaabbllee  ffrroomm  rreeggiisstteerr  oouuttppuuttss      
                  iiff  ((  nnooddeeIIssPPOO((  nnooddee  ))  ||||  nnooddeeIIssLLII((  nnooddee  ))  ))  ))  {{  
                              mmiinn__ccuutt  ==  mmiinn__ccuutt  ∪∪  nnooddee;;  
                              ccoonnttiinnuuee;;  
                  }}  
                 

                  ////  ccoolllleecctt  rreeaacchhaabbllee  nnooddeess  wwhhoossee  ffaanniinn  wwiitthh  ffllooww  iiss  uunnrreeaacchhaabbllee      
                  iiff  ((  !!nnooddeeIIssVViissiitteedd((  ccoommppuutteeMMaaxxFFlloowwPPrreeddeecceessssoorr((nnooddee))  ))  ))  
                              mmiinn__ccuutt  ==  mmiinn__ccuutt  ∪∪  nnooddee;;  
        }}  
        rreettuurrnn  mmiinn__ccuutt;;  
}}  
  
////  ffoorr  aa  nnooddee  wwiitthh  ffllooww,,  rreettuurrnnss  tthhee  ffaanniinn,,  wwhhiicchh  bbrriinnggss  iinn  tthhee  ffllooww    
nnooddee  ccoommppuutteeMMaaxxFFlloowwPPrreeddeecceessssoorr((  nnooddee  ))  
{{  
            ffoorr  eeaacchh  ffaanniinn//ffaannoouutt  nneexxtt  ooff  nnooddee  {{  
                      iiff  ((  nnooddeeGGeettFFlloowwNNeexxtt((  nneexxtt  ))  ====  nnooddee  ))  
                                rreettuurrnn  nneexxtt;;  
            }}  
            rreettuurrnn  NNUULLLL;;    
}} 

Figure 3.2. Forward maximum flow computation. 
 
An augmenting path is by definition a path from source to sink 

along which each edge has some remaining capacity. When the 
selected path hits a node a with flow, the existing flow to a is 
pushed back to that predecessor of a with flow, say node b, and 
another unvisited adjacent (fanout) node of b is chosen, from 
which the augmentation continues recursively. When an 
augmenting path to a CO is found, the flow labels of the nodes 
along the path are changed to reflect the modified flow, which has 
increased by 1. If an augmenting flow from a register can’t be 
found, it will never be found even if the register is revisited later. 
Thus when the last register has been processed, the maximum 
flow has been found. Finally, a minimum cut (that is, the cut with 
the smallest number of nodes) is computed from this maximum 
flow by procedure computeMaxFlowMinCut. In general, the min-
cut is not unique. We choose the min-cut with the smallest 
volume since the min-register retiming, based on this cut, moves 
registers the least distance. 

3.3 Minimum-register retiming algorithm 
This section shows how to compute the min-register retiming by 

iteratively applying the maximum-flow algorithm of Figure 3.2.  
The min-area retiming is performed in two steps: forward and 

backward, as shown in Figure 3.3. The only difference between 
these two retiming steps is that forward one requires computing 
maximum flow from the register outputs (sources) to the COs 

(sinks), while the backward one requires computing the maximum 
flow from the register inputs (sources) to the CIs (sinks).  

 
////  ppeerrffoorrmmss  mmiinniimmuumm--aarreeaa  rreettiimmiinngg  uussiinngg  mmaaxxiimmuumm--ffllooww  ccoommppuuttaattiioonn  
rreettiimmeeMMiinnRReeggiisstteerr((  nneettwwoorrkk  ))  
{{  
          ////  iitteerraattee  ffoorrwwaarrdd  rreettiimmiinngg  aass  lloonngg  aass  tthheerree  iiss  iimmpprroovveemmeenntt  
          wwhhiillee  ((  ccoommppuutteeMMaaxxFFlloowwFFoorrwwaarrdd((nneettwwoorrkk))  <<  rreeggiisstteerrCCoouunntt((nneettwwoorrkk))  ))  
                      rreettiimmeeMMoovveeRReeggiisstteerrssTTooMMiinnCCuutt((  nneettwwoorrkk  ));;  
                   

          ////  iitteerraattee  bbaacckkwwaarrdd  rreettiimmiinngg  aass  lloonngg  aass  tthheerree  iiss  iimmpprroovveemmeenntt  
          wwhhiillee  ((  rreettiimmeeMMaaxxFFlloowwBBaacckkwwaarrdd((nneettwwoorrkk))  <<  rreeggiisstteerrCCoouunntt((nneettwwoorrkk))  ))  
                      rreettiimmeeMMoovveeRReeggiisstteerrssTTooMMiinnCCuutt((  nneettwwoorrkk  ));;  
                   

          ////  ccoommppuuttee  nneeww  iinniittiiaall  ssttaattee  
          rreettiimmeeCCoommppuutteeIInniittiiaallSSttaattee((  nneettwwoorrkk  ));;  
}}        
                   

Figure 3.3. Implementation of min-register retiming. 
 
Both the forward and backward parts of the retiming are 

performed on a single time frame of the network. However, 
general retiming may move registers across a node more than 
once; therefore the computation based on one time frame is 
iterated in Figure 3.3.1  

It should be noted that backward retiming followed by forward 
retiming will also result in a solution with minimum area, but we 
chose to perform forward retiming first because min-register 
retiming in general is not unique. This reduces the amount of 
logic that has to be retimed backward, and although not discussed 
in this paper, this may lead to a simpler SAT problem when 
computing a new initial state after retiming.  

Only forward retiming is discussed below, as backward 
retiming is its dual. The sources are the register outputs; the sinks 
are COs. The reason for this selection is that in the forward 
retiming, the min-cut lies between the current register positions 
and the COs. In particular, a register may travel from its current 
position all the way to an input of another register or to a PO and 
get stuck there, waiting for the next time frame to proceed further. 

                
Figure 3.4. Illustration of retiming in the presence of PIs. 

 
The PIs constrain the forward movement of registers and the 

location of the minimum cut. Consider a circuit with one PI, one 
PO, and three registers shown in Figure 3.4. Internal node n is fed 
by a register and a PI. This node cannot be retimed forward 
because the PI does not have a matching register. Therefore, to 
find the max-flow in the presence of PIs, we modify the sinks to 
be the nodes in the TFO of the PIs plus the COs (previously, the 
sinks were just the COs). 

For the example shown in Figure 3.4, nodes n and m become 
sinks in addition to the register inputs ri1, ri2, and ri3. The max-
flow computed without taking PIs into account is 2 (the 
corresponding min-cut is {m, k}). When PIs are present, the max-
                                                           
1 A similar effect could be achieved by unrolling the circuit several times 
and computing the min-cut once using the unrolled time frames. 

ri1 ri2 ri3 po 

ro1 ro2 ro3 pi 

n 

m k 



flow is 3, which is in correspondence with the min-register 
retiming using three registers. It should be noted that, in our 
computations, we do not add a host node and retime over it, as 
done implicitly in [7], since the same result can be achieved by 
forward and backward retiming on the circuit.    

4 Experimental results 
The algorithm presented in this paper was implemented in the 

logic synthesis and verification system ABC [1] as a new 
command retime. The current implementation can retime both 
SIS-like logic networks and AIGs assuming a unit-delay model 
(all internal logic nodes have delay 1). 

The correct functionality of networks after retiming has been 
verified by the bounded sequential equivalence checker in ABC 
(command sec). To enable verification by comparing sequential 
behavior of the original and the final circuits, starting from two 
equivalent initial states, the circuits were preprocessed as follows. 
All initial values of the registers in the original circuits were set to 
zero and the circuit was cycled with random PI values for a fixed 
number of clock cycles to arrive at an initial state, for the un-
retimed circuit, for which an equivalent initial state exists after 
retiming.2 A corresponding equivalent initial state for the retimed 
circuit was computed using a SAT solver [8]. The runtime of this 
computation was negligible, compared to that of retiming. The 
bounded sequential equivalence checker then verified that the two 
states were equivalent up to a specified number of clock cycles. 

The following notation is used in the tables below. Columns 
labeled “A” refer to the number of registers in the network (area). 
Columns labeled “D” refer to the number of nodes on the longest 
combinational path. Columns labeled “T” refer to the runtime in 
seconds measured on an IBM ThinkPad laptop with a 1.6GHz 
Intel CPU with 2Gb of RAM.  

Two experiments were performed and are reported in the 
following sub-sections. 

4.1 Comparison with previous retiming solutions 
We compare the performance of the min-register retiming 

against several previous efficient retiming solutions: (a) min-
delay retiming using retiming/skew equivalence implemented in 
ASTRA [24], (b) min-area retiming under delay constraints 
implemented in Minaret [20], (c) continuous min-delay retiming, 
called c-retiming  [21], and (d) a heuristic incremental min-delay 
retiming used in an industrial setting [26].  

The last algorithm was implemented by us in ABC and run on 
the same computer as the presented algorithm. The results for the 
first three algorithms are quoted from publications [24][20][21]. 
The benchmarks selected for this experiment were that subset of 
the ISCAS’89 benchmarks, for which the same files were found 
as used in [24][20][21]. They were judged the same by their 
numbers of gates reported in these references. This ensures that 
all retiming algorithms were applied to the same circuit structures.  

Table 1 lists the benchmark names, followed by the original 
circuit statistics: the number of gates in the network, and the 
initial area/delay, and then the results of the five retiming 
algorithms in terms of area, delay, and runtime.  

The experimental results show that the proposed algorithm for 
min-register retiming finds retimings with the smallest area. This 
is because the min-delay algorithms, such as ASTRA and 
c-retiming, do not constrain area while the only other area-

                                                           
2 Since retiming preserves the cyclic core of a design, any state in the 
cyclic core of the initial design has an equivalent initial state of the 
retimed circuit. 

oriented retiming method [20] works under a minimum-delay 
constraint. Runtime comparisons with ASTRA and Minaret are 
not valid without factoring in the speed of the older computers 
used in those papers. However, comparison with c-retiming and 
the incremental method indicate that the new method is very fast. 

4.2 Performance on large benchmarks 
We applied the proposed algorithm to a suite of gate-level 

circuits derived from public-domain hardware designs. Altera 
tools [14] were used to extract the logic networks. These were 
then minimally preprocessed by ABC as follows: the original 
hierarchical designs were (a) flattened, (b) structurally hashed and 
(c) algebraically balanced. The original benchmarks in BLIF and 
those preprocessed by ABC can be found on the web [28]. Out of 
the set of 63 benchmarks, we removed one combinational circuit 
(no registers) and 19 circuits whose initial register count was 
already minimum, leaving 43 circuits shown in Table 2. 

The first section of Table 2 shows the gate (“Gates”), register 
(“A”), and delay (“D”) counts. The next section shows the results 
produced by the proposed min-register retiming algorithm. To put 
these results in perspective, they are compared with the 
incremental heuristic min-delay retiming algorithm [26] 
implemented in ABC. The number of iterations was set to twice 
the critical delay of the original circuit instead of the fixed value 
(32) suggested in [26]. The last column (Pan’s) shows the delay of 
the exact min-delay retiming derived by computing sequential 
arrival times [21][22].  

The results confirm that the new min-register retiming 
algorithm is very fast; it takes only a few seconds for even the 
largest benchmarks. The average reduction in the number of 
registers is 10% while some benchmarks are reduced more than 
60%.  

4.3 Heuristic min-area method 
The last experiment (to be conducted in the final version of the 

paper) will attempt to put together a heuristic min-area algorithm 
by combining the proposed min-register method with a type of 
incremental algorithm, as suggested in [26]. The idea is to start 
out with as few registers as possible and shift them only as little 
as possible to reach a desired delay. 

5 Conclusions and future work 
This paper presented an application of a simplified maximum 

flow computation to the problem of minimizing the number of 
registers after retiming. The presented method is very simple, 
straight-forward to implement, fast, memory efficient, and 
scalable for large industrial circuits. Potential applications of the 
method include sequential synthesis and verification. 

Future work will include refining fast incremental retiming 
algorithm for delay and combining it with the proposed min-area 
retiming algorithm and clock skewing to achieve good delay/area 
trade-offs. This should open new opportunities for applying 
retiming in delay-driven optimization flows without excessive 
area penalties. 
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Table 1. Comparison of the new algorithm with the previous work. 
 

Bench Original statistics ASTRA [24] Minaret [20] 
mark Gates A D A D T A D T 

s3271 1572 116 28 306 15 1.6 168 15 0.25 
s3384 1685 183 60 438 27 15.5 167 27 2.44 
s3330 1789 132 29 331 14 2.6 110 14 0.22 
s4863 2342 104 58 201 30 1.5 138 30 5.24 
s5378 2779 179 25 555 21 8.4 173 21 1.28 
s6669 3080 239 93 719 29 49.3 305 29 2.20 
s35932 16065 1728 29 1729 27 23.1 1729 27 7.56 
Ratio  1.00 1.00 2.37 0.58  1.11 0.58  

 
Bench C-retiming [21] Incremental [26] New min-area 
Mark A D T A D T A D T 

s3271 198 15 1.99 238 16 0.05 116 28 0.00 
s3384 207 27 2.61 208 27 0.04 153 73 0.02 
s3330 218 14 1.86 109 17 0.03 66 24 0.01 
s4863 183 30 3.35 208 30 0.07 88 58 0.01 
s5378 189 21 3.00 192 21 0.03 132 26 0.02 
s6669 355 26 8.81 551 28 0.15 183 121 0.02 
s35932 1729 27 40.02 1729 27 0.72 1728 29 0.06 
Ratio 1.40 0.58  1.48 0.60  0.81 1.06  

 
 
 



 
 
 

Table 2. Performance of the new algorithm on industrial benchmarks. 
 

Benchmark Original Min-register Min-delay [26] Pan’s 
 |AIG| A D A D T A D T D 

barrel16a 397 37 11 32 11 0.00 124 4 0.02 4 
barrel16 357 37 10 32 11 0.00 85 4 0.01 4 
barrel32 902 70 12 64 13 0.00 166 5 0.03 5 
barrel64 2333 135 14 128 14 0.01 422 5 0.06 5 
mux32_16bit 1851 533 9 505 11 0.02 873 4 0.05 4 
mux64_16bit 3743 1046 13 991 13 0.01 1460 5 0.12 5 
mux8_128bit 3717 1155 7 1029 8 0.07 2297 3 0.18 3 
mux8_64bit 1861 579 7 517 8 0.03 1145 3 0.07 3 
nut_000 1262 326 58 318 60 0.00 393 27 0.05 27 
nut_001 3179 484 93 449 109 0.01 558 57 0.08 46 
nut_002 873 212 24 158 25 0.01 232 10 0.02 10 
nut_003 1861 265 37 238 46 0.01 304 24 0.04 24 
nut_004 713 185 13 170 15 0.00 213 6 0.02 6 
oc_aes_core_inv 11177 669 25 658 25 0.05 669 25 0.25 25 
oc_aes_core 8732 402 24 394 24 0.02 402 24 0.14 24 
oc_aquarius 23109 1477 207 1473 206 0.19 1575 200 0.81 200 
oc_ata_ocidec1 1601 269 14 268 14 0.00 275 11 0.02 11 
oc_ata_ocidec2 1813 303 14 299 14 0.02 310 11 0.02 11 
oc_ata_ocidec3 3957 594 14 581 19 0.03 599 13 0.06 13 
oc_ata_vhd_3 3933 594 14 589 14 0.01 599 13 0.06 13 
oc_ata_v 838 157 14 156 14 0.00 169 10 0.02 10 
oc_cfft_1024x12 9498 1051 61 712 346 0.14 1672 26 0.91 20 
oc_cordic_p2r 8430 719 55 718 55 0.02 975 45 0.26 39 
oc_dct_slow 879 178 32 176 32 0.01 207 14 0.03 14 
oc_des_perf_opt 21281 1976 15 1088 233 1.08 4656 14 1.27 13 
oc_fpu 16115 659 2661 247 2712 0.07 1578 543 30.65 543 
oc_hdlc 2221 426 14 383 17 0.02 426 13 0.03 13 
oc_minirisc 1918 289 36 278 39 0.01 290 33 0.03 33 
oc_oc8051 10315 754 92 752 92 0.04 757 87 0.19 87 
oc_pci 10426 1354 46 1326 46 0.07 1405 26 0.39 26 
oc_rtc 1093 114 41 86 41 0.01 114 29 0.02 29 
oc_sdram 860 112 13 109 12 0.00 109 12 0.02 12 
oc_simple_fm_rec 2300 226 66 223 75 0.01 276 40 0.05 40 
oc_vga_lcd 9086 1108 35 1091 35 0.05 1126 25 0.24 25 
oc_video_dct 36465 3549 60 2305 73 0.72 8525 16 12.84 16 
oc_video_huff_dec 1591 61 21 60 22 0.01 65 18 0.02 18 
oc_video_huff_enc 1720 59 19 47 32 0.01 90 13 0.02 13 
oc_wb_dma 15026 1775 19 1767 34 0.12 1794 17 0.45 17 
os_blowfish 9806 891 79 827 78 0.03 906 61 0.30 42 
os_sdram16 1156 147 23 144 23 0.00 162 17 0.02 17 
radar12 38058 3875 110 3754 110 0.37 3991 56 3.71 56 
radar20 75149 6001 110 5364 110 1.15 6363 56 6.92 56 
uoft_raytracer 145960 13079 237 11645 537 6.46 16974 208 23.70 202 
Ratio 1.00 1.00 1.00 0.90 1.56 1.00 1.41 0.66 1.00 0.64 

 


