
Efficient FPGA Mapping using Priority Cuts
Sungmin Cho Satrajit Chatterjee Alan Mishchenko Robert Brayton

Department of EECS, University of California, Berkeley
{smcho, satrajit, alanmi, brayton}@eecs.berkeley.edu

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids—
Optimization; B.7.1 [Integrated Circuits]:
Types and Design Styles—Gate arrays; J.6
[Computer-Aided Engineering]: Computer-
aided design (CAD)

General Terms
Algorithms

Keywords
FPGA, Technology Mapping, Cut Enumeration,
Area Recovery, Lossless Synthesis

Abstract

The poster presents a new algorithm for FPGA
technology mapping into K-input look-up tables
(LUTs) applicable to large combinational and
sequential circuits.

The proposed algorithm is similar to the
traditional structural FPGA mapping algorithms
which perform depth-oriented LUT mapping
followed by area recovery. The traditional
methods enumerate all or nearly all cuts of each
node in order to find an optimum-depth mapping.
The proposed algorithm avoids exhaustive cut
enumeration by computing and updating only a
small number (typically, 5-10) of “good” K-
feasible cuts at each node.

These cuts are called “priority cuts”. The
criteria used to prioritize the cuts differ
depending on the mapping goals. For example,
when mapping for delay, the cuts are prioritized
first by delay, then by size, and finally by area
flow. The experiments indicate that such
prioritization leads to a depth-optimal mapping
for 95% of all benchmarks with any LUT sizes,
even if only one cut is stored at each node.
Increasing the number of priority cuts to 8 allows
the algorithm to avoid area penatly due to not
enumerating all cuts, while offering dramatic
improvements in memory and runtime.

For 6-input LUTs with 8 cuts stored at each
node, both memory and runtime are reduced
about 5x, compared to state-of-the-art mapping,
while delay and area are comparable. For 8-input
and larger LUTs, the improvements in memory
and runtime often reach 100x.

The runtime and memory requirements of the
proposed algorithm are linear in the number of
nodes in the subject graph and in the cut size.
This makes it useful for mapping into large
macro-cells, which can implement a subset of
Boolean functions with a given number of inputs.
Another promising extension is a sequential
mapping, which leads to a 20% reduction in
delay, compared to the combinational mapping
and retiming performed as a postprocessing step.

