
 1

Abstract— We present a formulation of retiming to minimize

the number of registers in a design by iterating a maximum
network flow problem. The retiming returned will be the
optimum one, which involves the minimum amount of register
movement. Existing methods solve this problem as an instance of
minimum-cost network flow, an algorithmically and practically
more difficult problem than maximum flow. Furthermo re,
because all flows are unitary, the problem can be simplified to
binary marking. Our algorithm has a worst-case bound of
O(R2E), where R is the number of registers and E the number of
edges. We demonstrate on a set of circuits that our formulation is
5x faster than minimum-cost-based methods.

Index Terms—Retiming, Sequential Verification, State
Minimization, Maximum Flow.

I. INTRODUCTION

ETIMING [13] moves registers over combinational nodes
in a logic network, preserving output functionality and

logic structure. Retiming can target a number of objectives: (i)
minimize the delay of the circuit (min-delay), (ii) minimize the
number of registers under a delay constraint (constrained min-
register), and (iii) minimize the number of registers
(unconstrained min-register). Numerous approaches have
been proposed to achieve these goals [13]-[18], with most of
the emphasis on the first two objectives.

In this paper, we focus on unconstrained min-register
retiming, which has several applications in logic synthesis and
verification. In synthesis, minimizing the number of registers
can save area and power or be used to ameliorate local
congestion. Even if delay constraints are ignored, often any
timing violations can be corrected with logic sizing,
combinational resynthesis, or intentional clock skewing [8]. In
verification, min-register retiming minimizes the number of
state variables [12], which reduces the size of the sequential
verification problem and has been demonstrated to reduce the
difficulty of the verification problem [3]. This may be critical
for proof completion.

Although retiming problems are traditionally expressed as
general linear programs, they can be solved efficiently as
minimum-cost network circulation problems using suitable
algorithms. Instead, we propose a retiming method that is
based on iterated binary maximum network flow, which is an
asymptotically and practically easier problem. The number of
iterations required appears to be quite small. Because the
result of each iteration is strictly better than the previous one,

the computation can be bounded and still result in an
improvement. It was found experimentally that the first
iteration of max-flow accounts on average for 90% of the total
reduction in the number of registers. This can be used to trade
quality for runtime when a problem is large or when fast
computation is critical.

To support these claims, we provide experimental results on
moderately-sized industrial benchmarks and a few larger
artificial ones. They demonstrate the efficiency of the new
algorithm: the optimum result can be generated for circuits
with more than a million gates in less than a minute and much
faster than using existing methods. On pre-optimized
benchmark circuits, the average reduction in register count was
11%, ranging between 0% and 63%.

An important feature of our algorithm is that it always
returns the minimum-register retiming that is closest to the
current position of the registers. If a register in the input circuit
cannot be retimed to minimize the total register count, it is not
touched. This simplifies the computation of the initial states
and minimizes the total perturbation.

The paper is organized as follows. Section II describes the
background information and existing approaches to minimum-
area retiming. Section III describes the new algorithm. Section
IV reports experimental results.

II. BACKGROUND

A circuit is modeled as a directed graph G=<V,E> whose
vertices V correspond to logic gates and directed edges E
correspond to wires connecting the gates, decomposed into
pair-wise connections from gate outputs to inputs. The
circuit’s external connections are represented by additional
primary input (PI) and primary output (PO) vertices. The
terms network, graph, and circuit are used interchangeably in
this paper.

A node has zero or more fan-ins, i.e. nodes that are driving
this node, and zero or more fan-outs, i.e. nodes driven by this
node. The transitive fan-out of a vertex v is a subset of all
nodes of the network reachable through the fan-out edges from
v, captured by the function TFO(v): V→2V.

A combinational frame of the circuit is comprised of the
acyclic network between the register outputs / PIs and register
inputs / POs. An example of this is illustrated in Figure 1; the
inputs (the register outputs) lie on the left, and the outputs (the
register inputs) on the right. The registers are duplicated for
the ease of illustration.

Fast Minimum-Register Retiming via Binary
Maximum-Flow

Aaron P. Hurst, Alan Mishchenko, and Robert K. Brayton

University of California, Berkeley

R

 2

A. Retiming

The problem of retiming is to relocate the registers in a
circuit to optimize some circuit characteristic while preserving
output functionality and optionally meeting some additional
constraints. The repositioning is captured by a retiming lag
function r(v):V → Z that describes the number of registers

moved backward over each combinational node. There are
several formulations of the retiming problem, but for the
purposes of this paper, we utilize the linear program (LP) in
Equations 1-2 from [13]. wi(e) is the initial number of
registers present on edge e.

 s.t.urvr
v)(u,e

∑
=∀

−)()(min (1)

)()()(ewvrur i≤−),(vue=∀ (2)

The dual of this LP is a minimum-cost network circulation
problem and can be solved efficiently using specialized
algorithms. Using the method described by Goldberg [9], the
minimum-cost flow can be computed in






)log()2(log VCEVVEO worst-case time, where C is the

maximum cost on any edge. The number of vertices and edges
in the corresponding network problem is proportional to the
size of the combinational circuit.

After a retiming has been determined, an equivalent set of
initial values must be computed for the registers. If no such
initial state exists, the particular retiming must be rejected or
the circuit otherwise altered. We discuss consequences on this
computation but refer to [19] for its details.

III. MIN-REG RETIMING ALGORITHM

We introduce an algorithm for optimum unconstrained
minimum-register retiming that is based on an iterative
maximum network flow problem. This is motivated by the
observation that computing the maximum flow through a
network is an algorithmically and practically easier problem
than determining the minimum-cost circulation. Our algorithm
requires repeated iteration, but for practical circuits, the
number of iterations is typically quite small.

A. Single Iteration

The core of the algorithm consists of minimizing the number
of registers within a single combinational frame. Let us
consider only the paths through the combinational logic that lie
between two registers (thus temporarily ignoring the primary
inputs and outputs). The current position of the registers
clearly forms a complete cut through the network, immediately
at its inputs. The width of the cut is the initial number of
registers.

Consider retiming the registers in only the forward direction
through the circuit. As the registers are moved over any of the
combinational nodes, the corresponding cut moves forward
through the network and may grow or shrink in width as
registers are replicated and/or shared as dictated by the graph
structure. In the initial circuit, it is evident that any path in the
combined graph passes through exactly one register, and any

valid retiming must preserve this property. If this were not the
case, the latency of that path would be altered and the
sequential behavior of the circuit changed.

The problem of minimizing the number of registers by
retiming them to new positions within the scope of the
combinational frame is equivalent to finding a minimum width
cut. This is the dual of the maximum network flow problem,
for which efficient solutions exist. To construct the flow
problem, the flow source is connected to all register outputs,
and all of the edges to the register inputs are redirected to the
flow sink. For now, the capacity of all edges is assumed to be
one.

Solving the general maximum flow problem using the
preflow-based method proposed by Cherkassky and Goldberg

[4] is 




)2log(EVVEO in the worst case. Alternatively, the

classical augmenting path-based methods (e.g. [6]) are
bounded by the maximum length of an augmenting path times
the maximum flow, U: O(UE). Because the flow constraints in
our problem are of unit capacity, the width of the input to the
graph establishes a worst-case bound of O(RE), where R is the
initial number of registers. The worst-case bound on the
maximum flow problem using either the preflow- or
augmenting path-based algorithm is therefore asymptotically
faster than the best known bound on the minimum-cost flow
problem on an identical graph structure.

Once the maximum flow has been established, we have
available the residual graph that describes the remaining edge
capacities with respect to this flow. The residual graph is used
to generate a corresponding minimum cut. Via duality, the
width of this minimum cut is exactly the volume of the
maximum flow and the flow through the saturated edges
crossing the cut. To determine its location, the vertices in the
network are partitioned into two sets: S, those that are
reachable in the residual graph with additional flow from the
source, and R, those that are not. Generating this partition is
O(E) in the worst case. The partition must be complete cut,
because there is no additional flow path from the source to the
sink if the maximum has already been assigned. If there exists
an edge u v→ such that ()u S v R∈ ∧ ∈ , a register must be

Fig. 1. An example of the flow problem for a small circuit. The
combinational elements are light grey; the initial positions of the registers lie
to the left, and their inputs are replicated on the right. This is also an
example of a network where the minimum-cut in the directed graph is not a
valid retiming: the graph can be completely cut with exactly two registers (at
the outputs of c1 and c4), but this results in a path (R3→R1’) with altered
sequential latency.

 3

placed on the output of the gate associated with u. The
registers are removed from their current locations and placed
on the graphs edges that cross the minimum cut.

There may exist multiple cuts of minimum width, but this
method always generates the one that is unambiguously closest
to the source node. This results in the minimal movement of
the registers, simplifying the initial state computation and
minimizing the design perturbation.

However, as stated, this procedure may generate an illegal
retiming. A cut in a directed graph only guarantees that all
paths in the graph are cut at least once. This is a necessary but
not sufficient condition for the cut to be a valid retiming. We
seek the minimum cut in the graph such that all paths are
crossed exactly once. Figure 1 illustrates an example of this
problem. The network flow problem must be altered to
eliminate the possibility that a path is crossed more than once.

Reverse edges with unbounded capacity are added in the
direction opposite to the constrained edges in the original
network. These additional paths may increase the maximum
flow (and therefore the size of the minimum cut) but guarantee
that the resulting minimum cut will correspond to a legal
retiming. For a path in the original graph to cross the finite-
width cut more than once from S R→ , there must be at least
one edge that crosses from R S→ . If the unbounded reverse
edges are also present, this would imply an infinite-capacity
edge from S R→ , thus violating the finite cut-width
assumption and ensuring that such a cut will not be generated.

It is also needed to account for sharing registers along
hypergraph fan-out edges. This requires another simple
modification to the network flow problem. Each circuit node is
decomposed into two vertices: a receiver of all of the former
fan-in arcs and an emitter of all of the former fan-out arcs. The
flow constraints are removed from these edges; instead, a
single edge with a unit flow constraint is inserted from the
receiver to the emitter. Note that the reverse edges connect
pairs of receivers. As above, the unconstrained fan-out edges
can not participate in the minimum cut; only the internal edge
is available to make a unit contribution to the cut-width. Each
node will therefore require at most one register regardless of
its fan-out degree. This idea can also be extended to model
fan-in sharing as in [1].

The final network for computing the maximum flow
computation is depicted in Figure 2.

The unitary flow constraints can also be used to simplify the
implementation of the maximum flow solver such that the flow
network of Figure 2 need not be explicitly built. Both the
preflow- and augmenting path-based techniques can be
performed on the original circuit structure with only binary
flow marking. Because the flows on the non-unit arcs are
unconstrained, they need only be implicitly maintained with
pointers to the flow predecessors.

In summary, a single iteration of our retiming algorithm
involves computing the maximum flow through the
combinational frame, identifying the unique topologically
closest minimum cut, and moving the register boundary to the

new location.

B. Primary Inputs and Outputs

The primary inputs and outputs (PIOs) can be treated in
different ways, depending on the application. The allowed
locations of the minimum cut and the subsequent
insertion/removal of registers can be adjusted to either fix or
selectively alter the sequential behavior of the circuit.

In synthesis, the relative latencies at all of the PIOs is
assumed to be invariant. One way that this can be
accomplished is with the addition of a host node. In
verification applications, it is not necessary to preserve the
synchronization of the inputs and outputs. It may be desirable
to borrow or loan registers to the environment individually for
each PIO if the result is a net decrease in the total register
count.

To allow register borrowing, the external connections
should be left dangling. Registers will be donated to the
environment if the minimum cut extends past the dangling
primary outputs (POs); conversely, registers will be borrowed
if the minimum cut appears in the transitive fan-out region of
the dangling primary inputs (PIs). The inclusion of this region
introduces additional flow paths and introduces additional
possibilities for minimizing the total register count.

To disallow desynchronization with the environment, the
POs are connected to the sink and the transitive fan-out of the
PIs is blocked from participating in the minimum cut. All
paths through the combinational network that originate from a
PI have a sequential latency that must remain at zero. Inserting

Fig. 2. The original hypergraph circuit around the central node N in (i) is
expanded to form a network flow problem (ii) to compute a valid forward
retiming with maximal fan-out sharing. Each of the light nodes in (i) is
replaced with a pair of dark grey nodes in (ii), and the flow paths as
illustrated. The capacities of each path is labeled, with solid edges having
unit capacity and dashed edges having infinite capacity.

 4

a register anywhere in the TFO({PIs}) will alter this. To
exclude this region, one of two methods can be used: (i)
temporarily redirecting to the sink all edges e=(u,v) where
v∈TFO({PIs}), or (ii) replacing the constrained flow arc with
an unconstrained one, thus preventing that node from
participating in the minimum cut. Both methods exclude the
invalid portion from participating in the retiming solution.

Because register borrowing requires the initial values of the
new registers to be constrained to those reachable in the
original circuit, it is necessary to construct additional
combinational logic for computing the initial state. If the size
of this logic grows undesirably large, register borrowing can
be turned off at any point.

C. Multiple Iterations

This section shows how to compute the globally optimum
min-register retiming by iteratively applying the maximum-
flow algorithm of Section III.B.

Thus far, we have only considered forward retiming of
registers in the circuit. It is sufficient to consider only one
direction if the circuit is strongly connected (i.e. through the
use of a host node) and normalization is applied. However, in
general, the optimum minimum-register retiming requires both
forward and backward moves. The procedure for a single
iteration of backward retiming is essentially identical, except
that it computes the maximum flow from the register inputs
(sources) to the primary inputs and register outputs (sinks).

The overall algorithm consists of two iterative phases:
forward and backward. The procedure is outlined in Algorithm
1. In each phase, the single-frame optimization is repeated
until the number of registers reaches a fix-point. In terms of
the retiming lag function, each node’s lag is either unchanged
or changed by one in each iteration.

At no point during retiming is it necessary to unroll the
circuit or alter the combinational logic; only the register
boundary is moved by extracting registers from their initial
position and inserting them in the their final position.
However, this does change the definition of the combinational
frame and the connections to the flow source and sink.

The ordering of the two phases (forward and backward)

doesn’t affect the number of registers in the result, but we
chose to perform forward retiming first because in general
min-register retiming is not unique. This approach reduces the
amount of logic that has to be retimed backward, thereby
reducing the difficulty of computing a new initial state [19].

D. Proof of Correctness

Given a retiming lag function r(v): V → Z , consider

unrolling the sequential circuit by n cycles, where
max () min ()

VV
n r v r v

∀∀
> − . This corresponds to stacking multiple

combination frames, as illustrated in Figure 3.
The positions of the registers of the reference cycle after any

retiming r(v) can be expressed as a cut C in the edges of this
unrolled circuit. The elements of C are the register positions.
The unretimed cut, Cinit, (such that r(v)=0) lies at the base of
the unrolled circuit. The size of this cut, |C|, is the number
registers post-retiming, or equivalently, the number of
combinational nodes whose fan-outs hyper-edges cross the cut.

A cut C is a valid retiming if every path through the
combinational network passes through it exactly once. This
implies that for any two registers R1, R2∈C, R1∩TFO(R2)=∅
and vice versa. If this were not the case, additional latency
would be introduced and functionality of the circuit would be
altered.

Consider an optimal minimum register retiming and its
corresponding cut Cmin. While there exist many such cuts,
assume Cmin to be the one that lies strictly forward of the initial
register positions is topologically closest to Cinit. It can be
shown with Lemma 1 that there is one unambiguously closest
cut.

Theorem 1: Upon termination of our algorithm, the
resulting cut is exactly Cmin.

ALGORITHM 1: UNCONSTRAINED MIN-REGISTER RETIMING

 1 while(improvement) { // forward
 2 set up forward retiming flow network
 3 mark restricted locations
 4 compute maximum flow
 5 derive nearest minimum cut
 6 move registers to cut
 7 }
 8 while(improvement) { // backward
 9 set up backward retiming flow network
10 mark restricted locations
11 compute maximum flow
12 derive nearest minimum cut
13 move registers to cut
14 }
15 compute initial states

Fig. 3. The circuit in (i) is unrolled three times into (ii). Each copy
comprises a combinational frame, the first of which is dark gray, and the
register boundaries are labeled with the corresponding frame number. The
globally minimum width retiming cut of the registers in the reference frame
R0 is illustrated by the bold line. The minimum width retiming cut stretches
across multiple frames and would therefore require multiple iterations of our
algorithm.

 5

Proof. Our algorithm iteratively computes the nearest cut of
minimum width reachable within one combinational frame and
terminates when there is no change in the result. Let the
resulting cut after iteration i be Ci. The cut Ci at termination
will be identical to Cmin if the following two conditions are
met.

Condition 1. No register in Ci lies topologically forward of
any register in Cmin.

Condition 2. After each iteration, |Ci+1|<|Ci| unless Ci=Cmin.

Lemma 1. Let Ci and Cj be two valid retiming cuts, and {si,
ti} be {sj, tj} be a partitioning of each such that

()i js TFO s⊆ and ()j it TFO t⊆ . The cuts {si, tj} and {sj, ti}

are also valid retimings.
First, we should point out that this partitioning is valid and

that every element must fall into either s or t as defined.
Because Ci and Cj are valid retiming cuts, every path must
intersect them both. Given the points of intersection Ri∈Ci and
Rj∈Cj, their membership in either s or t is implied by their
topological order.

Now, consider some path p from the source to the sink of
the network. Because Ci and is a complete cut and a valid
retiming, the path must pass through exactly one of either si or
ti. Similarly for Cj. If p passes through si, it can not pass
through tj, because tj lies in strictly within TFO(ti), and p
would have had to intersect ti. Also, if p does not pass through
si, it can not intersect sj because sj lies strictly within TFO(si)
and so must pass through tj. Therefore, it must pass through
exactly one of si and tj, and {si, tj} is a valid retiming cut.
Similarly for {sj, ti}.

Proof of Condition 1. Consider a cut Ci that violates
Condition 1. Let {si, ti} be a partition of Ci and {smin, tmin} be a
partition of Cmin such that si is the subset of registers in Ci that
lie topologically forward of the subset smin of the registers in
Cmin. This is illustrated in Figure 4. By Lemma 1, we know that
both {si, tmin} and {smin, ti} are valid cuts.

Because a single iteration returns the closest cut of
minimum width within a frame, this Ci={si, ti} must be strictly
smaller than the closer {smin,ti}. This implies that |si|<|smin| and
that |{si, tmin}|<|{ smin,tmin}|=Cmin. This is impossible by
definition. Therefore, Condition 1 must be true.

Observation 1. Retiming by an entire combinational frame
does not change any of the register positions in the resulting
circuit and also represents a valid retiming cut. Because a
register is moved over every combinational node, the retiming
lag function is universally incremented. The number of
registers on a particular edge is a relative quantity, and the
result is structurally identical to the original.

Proof of Condition 2. We can use the minimum cut to
generate a cut that is strictly smaller than Ci and reachable
within a combinational frame. Consider the cut Cmin’ that is
generated from Cmin via Observation 1 such that its deepest
point is reachable within the combinational frame of Ci. Some
of the retiming lags may be temporarily negative. Let {si, ti}
be a partition of Ci and {smin, tmin} be a partition of Cmin’ such
that smin are the deepest registers in Cmin’ that lie topologically
forward of the subset si of the registers in Ci. smin≠∅ if Ci

≠Cmin. Using the reasoning from condition 1, both {si, tmin}
and {smin, ti} are valid cuts.

We know that |smin|<|si|, otherwise there would be implied
the existence of a topologically closer cut |{si, tmin}|≤Cmin.
Therefore, the cut {smin, ti} is strictly smaller than Ci and is
reachable within one combinational frame and would be
returned by a single iteration of the algorithm. Note that this
doesn’t imply that there aren’t other smaller cuts, only that
there must exist at least one that is strictly smaller. Therefore,
Condition 2 must also be true. ■

E. Complexity Analysis

As described in Section III.A, the complexity of computing
the minimum cut in each iteration of our algorithm is O(RE).
The maximum number of iterations can also be bounded by R
via Condition 2 in the above proof. The total worst-case
runtime is therefore O(R2E). While this is neither strictly less
nor greater than the best known bound for the equivalent
minimum-cost network flow problem [9], the results in Section
IV indicate that the average runtimes are smaller for the
considered circuits.

For the set of benchmarks that we examined, the number of
iterations required was small: the average was 2.7 with a
maximum of 15. Figure 5 illustrates the fraction of the total
register reduction that was contributed by each iteration.
Almost all of the reduction in the number of registers occurs
after the first iteration in either direction. The number of
iterations can be bounded to a small constant to fix the total
worst-case runtime to O(RE).

Fig. 4. Definitions of cut partitions for Section III.D.

3.1%0.4%0.5%

48.7%

3.5%

42.6%

1.1% 0.1%

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

1 2 3 4 5+
Iteration

S
h

ar
e

o
f

T
o

ta
l R

ed
u

ct
io

n

Forward

Backward

Fig. 5. The contribution of each iteration to the total reduction in the
number of registers.

 6

IV. EXPERIMENTAL RESULTS

We applied the proposed algorithm to a suite of gate-level
circuits derived from public-domain hardware designs [11].
Altera tools were used to extract and optimize the logic
networks. This optimization may have already included
reductions in the number of registers. These were then
minimally preprocessed by the ABC logic synthesis package
[2] as follows: the original hierarchical designs were (a)
flattened, (b) structurally hashed and (c) algebraically
balanced. From the set of 63 benchmarks, we removed one
combinational circuit and 19 circuits whose initial register

count was already minimum, leaving 43 circuits shown in
Table 1.

Our algorithm was implemented in C++. The maximum
network flow problem was internally solved using the HIPR
package available at [10] and described in [4].

Table 1 is divided into three groups of columns, each
describing the characteristics of a particular retiming. The first
section of Table 1 shows the statistics about the circuit with
the registers in their initial positions. The second section
describes the results of an incremental heuristic min-delay
retiming algorithm [18] implemented in ABC to provide
perspective on the area/delay tradeoffs. The third set of

TABLE 1: MINIMUM REGISTER RETIMING RESULTS ON REAL BENCHMARKS

 Original Circuit Min-Delay Retiming Min-Register R etiming
Name |AIG | A D A D T F-iter B-iter A D T

barrel16a 397 37 11 124 4 0.02 1 0 32 11 <0.01
barrel16 357 37 10 85 4 0.01 1 0 32 11 <0.01
barrel32 902 70 12 166 5 0.03 1 0 64 13 <0.01
barrel64 2333 135 14 422 5 0.06 1 0 128 14 <0.01

mux32_16bit 1851 533 9 873 4 0.05 1 1 505 11 0.01
mux64_16bit 3743 1046 13 1460 5 0.12 1 0 991 13 0.01
mux8_128bit 3717 1155 7 2297 3 0.18 1 1 1029 8 <0.01
mux8_64bit 1861 579 7 1145 3 0.07 1 1 517 8 <0.01

nut_000 1262 326 58 393 27 0.05 1 2 312 60 <0.01
nut_001 3179 484 93 558 57 0.08 2 2 435 109 0.03
nut_002 873 212 24 232 10 0.02 2 2 158 25 <0.01
nut_003 1861 265 37 304 24 0.04 3 1 228 46 0.01
nut_004 713 185 13 213 6 0.02 2 2 164 15 <0.01

oc_aes_core_inv 11177 669 25 669 25 0.25 1 1 658 25 0.04
oc_aes_core 8732 402 24 402 24 0.14 1 1 394 24 <0.01
oc_aquarius 23109 1477 207 1575 200 0.81 1 0 1473 206 0.08

oc_ata_ocidec1 1601 269 14 275 11 0.02 1 0 268 14 <0.01
oc_ata_ocidec2 1813 303 14 310 11 0.02 1 1 293 14 <0.01
oc_ata_ocidec3 3957 594 14 599 13 0.06 1 1 562 19 <0.01
oc_ata_vhd_3 3933 594 14 599 13 0.06 1 1 568 14 <0.01

oc_ata_v 838 157 14 169 10 0.02 1 0 156 14 <0.01
oc_cfft_1024x12 9498 1051 61 1672 26 0.91 12 1 704 346 0.70
oc_cordic_p2r 8430 719 55 975 45 0.26 1 0 718 55 0.01
oc_dct_slow 879 178 32 207 14 0.03 0 1 176 32 <0.01

oc_des_perf_opt 21281 1976 15 4656 14 1.27 15 0 1015 233 1.18
oc_fpu 16115 659 2661 1578 543 30.65 2 0 247 2712 0.12
oc_hdlc 2221 426 14 426 13 0.03 1 3 375 17 <0.01

oc_minirisc 1918 289 36 290 33 0.03 2 1 253 39 0.01
oc_oc8051 10315 754 92 757 87 0.19 1 1 743 92 0.01

oc_pci 10426 1354 46 1405 26 0.39 1 1 1308 46 0.02
oc_rtc 1093 114 41 114 29 0.02 1 0 86 41 <0.01

oc_sdram 860 112 13 109 12 0.02 1 0 109 12 <0.01
oc_simple_fm_rec 2300 226 66 276 40 0.05 0 1 223 75 <0.01

oc_vga_lcd 9086 1108 35 1126 25 0.24 2 1 1078 35 0.02
oc_video_dct 36465 3549 60 8525 16 12.84 1 1 2305 73 0.30

oc_video_huff_dec 1591 61 21 65 18 0.02 0 1 60 22 <0.01
oc_video_huff_enc 1720 59 19 90 13 0.02 1 0 47 32 <0.01

oc_wb_dma 15026 1775 19 1794 17 0.45 1 1 1751 34 0.08
os_blowfish 9806 891 79 906 61 0.30 1 0 827 78 <0.01
os_sdram16 1156 147 23 162 17 0.02 1 0 144 23 <0.01

radar12 38058 3875 110 3991 56 3.71 2 3 3754 110 0.21
radar20 75149 6001 110 6363 56 6.92 2 1 5364 110 1.34

uoft_raytracer 145960 13079 237 16974 208 23.70 3 2 11610 537 3.76
AVERAGE 1.0 1.0 1.41 0.66 0.89 1.56

 7

columns shows the results produced by the proposed min-
register retiming algorithm.

The following notation is used in the table. Columns labeled
“A” refer to the number of registers in the network (area).
Columns labeled “D” refer to the number of nodes on the
longest combinational path. Columns labeled “T” refer to the
cumulative runtime of the flow computations in seconds
measured on a 64-bit 2.0Mhz Pentium Xeon. For the minimum
register retiming algorithms, the number of forward and
backward iterations that are required before the fix-point is
reached are also listed (“F-iter” and “B-iter”, respectively).

Because these benchmarks are only of moderate size, a set
of larger artificial circuits was created by combining the
benchmarks in Table 1. These are described in Table 2. As the
number of retiming iterations required appears to be
independent of the circuit size—probably because the
maximum latency around any loop or from input to output is
also size independent—the circuits “large1” and “large2” were
constructed via parallel composition to preserve this property.
The 2 and 4 million gate circuits, “larger5” and “larger6”,
were generated similarly. In contrast, the two circuits “deep3”
and “deep4” were built by splitting and serial composition.

In Table 2, the results of our iterative maximum flow-based
algorithm are compared against a single minimum-cost flow-
based implementation as described by [4]. The latest CS2
package from [10] was used as the solver. In every case, the
iterative maximum flow-based implementation required less
time to complete.

V. CONCLUSIONS

This paper presented an application of a simplified
maximum flow computation to the problem of minimizing the
number of registers after retiming. The presented method is
very simple, straight-forward to implement, fast, memory
efficient, and scalable for large industrial circuits. Potential
applications of the method include sequential synthesis and
verification.

ACKNOWLEDGEMENTS
This work was supported by SRC contracts 1361.001 and

1444.001, and the California Micro Program with our
industrial sponsors Altera, Intel, Magma, and Synplicity.

REFERENCES
[1] J. Baumgartner and A. Kuehlmann, “Min-area retiming on flexible

circuit structures”, Proc. ICCAD’01, pp. 176-182.

[2] Berkeley Logic Synthesis and Verification Group, ABC: A System for
Sequential Synthesis and Verification, Release 61104.
http://www.eecs.berkeley.edu/~alanmi/abc/

[3] G. Cabodi, S. Quer and F. Somenzi, “Optimizing sequential
verification by retiming transformations,” Proc. DAC’01, pp. 601-606.

[4] B. V. Cherkassky and A. Goldberg, “On Implementing Push-Relabel
Method for the Maximum Flow Problem,” Algorithmica 19, 1997, pp.
390-410.

[5] J. Cong and C. Wu, “Optimal FPGA mapping and retiming with
efficient initial state computation”, IEEE Trans. CAD, vol. 18(11),
Nov. 1999, pp. 1595-1607.

[6] J. Edmonds and R. Karp, "Theoretical improvements in algorithmic
efficiency for network flow problems", Journal of the ACM, vol. 19
(2), 1972, pp. 248-264.

[7] G. Even, I. Y. Spillinger, and L. Stok, “Retiming revisited and
reversed”, IEEE Trans. CAD, vol. 15(3), March 1996, pp. 348-357.

[8] J. P. Fishburn, “Clock skew optimization”, IEEE Trans. Comp., vol.
39(7), July 1990, pp. 945-951.

[9] A. Goldberg, “An efficient implementation of a scaling minimum-cost
flow algorithm”, J. Algorithms 22, 1997, pp. 1-29.

[10] A. Goldberg, Network optimization library. (Software tools)
http://www.avglab.com/andrew/soft.html

[11] M. Hutton and J. Pistorius, Altera QUIP benchmarks.
http://www.altera.com/education/univ/research/unv-quip.html

[12] A. Kuehlmann and J. Baumgartner, "Transformation-based
verification using generalized retiming”, Proc. CAV’01.

[13] C. E. Leiserson and J. B. Saxe. “Retiming synchronous circuitry“,
Algorithmica, 1991, vol. 6, pp. 5-35.

[14] N. Maheshwari and S. Sapatnekar, “Efficient retiming of large
circuits”, IEEE Trans VLSI, 6(1), March 1998, pp. 74-83.

[15] P. Pan, “Continuous retiming: Algorithms and applications”. Proc.
ICCD ‘97, pp. 116-121.

[16] S. S. Sapatnekar and R. B. Deokar, “Utilizing the retiming-skew
equivalence in a practical algorithms for retiming large circuits”, IEEE
Trans. CAD, vol. 15(10), Oct.1996, pp. 1237-1248.

[17] N. Shenoy and R. Rudell, “Efficient implementation of retiming”,
Proc. ICCAD ’94, pp. 226-233.

[18] D.R. Singh, V. Manohararajah, and S.D. Brown, “Incremental
retiming for FPGA physical synthesis”, Proc. DAC ’05, pp. 433-438.

[19] H. J. Touati and R. K. Brayton, “Computing the initial states of
retimed circuits“, IEEE Trans. CAD, vol. 12(1), Jan 1993, pp. 157-
162.

TABLE 2: MIN-COST VERSUS ITERATIVE MAX-FLOW MINIMUM REGISTER RETIMING ON LARGE ARTIFICIAL BENCHMARKS

 Minimum-Register Retiming
 Original circuit Min-Cost Flow Iterative Max-Flow

Name |AIG| A A T F-iter B-Iter R Speedup
large1 1 006 k 72.9 k 66.9 k 147.9s 3 3 33.0s 4.48
large2 1 005 k 82.7 k 76.9 k 131.3s 3 3 24.5s 5.36
deep3 1 010 k 74.7 k 67.6 k 182.0s 3 21 34.2s 5.32
deep4 1 074 k 86.4 k 82.0 k 130.3s 3 3 17.9s 7.27
larger5 2 003 k 151.1 k 139.5 k 410.6s 3 3 67.2s 6.11
largest6 4 008 k 300.1 k 279.0 k 818.3s 3 3 139.9s 5.85

