Fast Minimum-Register Retiming via Binary
Maximum-Flow

Aaron P. Hurst, Alan Mishchenko, and Robert K. Brayton
University of California, Berkeley

Abstract— We present a formulation of retiming to minimize
the number of registers in a design by iterating amaximum
network flow problem. The retiming returned will be the
optimum one, which involves the minimum amount of egister
movement. Existing methods solve this problem as dnstance of
minimum-cost network flow, an algorithmically and practically
more difficult problem than maximum flow. Furthermore,
because all flows are unitary, the problem can beimaplified to
binary marking. Our algorithm has a worst-case bounl of
O(R%E), where R is the number of registers ancE the number of
edges. We demonstrate on a set of circuits that oformulation is
5x faster than minimum-cost-based methods.

Index Terms—Retiming, State
Minimization, Maximum Flow.

Sequential Verification,

I. INTRODUCTION

ETIMING [13] moves registers over combinational asd

in a logic network, preserving output functionaliyd
logic structure. Retiming can target a number gédives: (i)
minimize the delay of the circuitr(in-delay, (ii) minimize the
number of registers under a delay constraiohétrained min-

the computation can be bounded and still resultam
improvement. It was found experimentally that thestf
iteration of max-flow accounts on average for 90Pthe total
reduction in the number of registers. This can sduo trade
quality for runtime when a problem is large or whiast
computation is critical.

To support these claims, we provide experimentallte on
moderately-sized industrial benchmarks and a fewgela
artificial ones. They demonstrate the efficiencytoé new
algorithm: the optimum result can be generatedciotuits
with more than a million gates in less than a n@ratd much
faster than wusing existing methods. On pre-optithize
benchmark circuits, the average reduction in regisbunt was
11%, ranging between 0% and 63%.

An important feature of our algorithm is that itwalys
returns the minimum-register retiming that is ckisto the
current position of the registers. If a registethia input circuit
cannot be retimed to minimize the total registarmtpit is not
touched. This simplifies the computation of thetiahistates
and minimizes the total perturbation.

The paper is organized as follows. Section Il dbserthe

registe), and (i) minimize the number of registersbackground information and existing approaches itormum-
(unconstrained min-register Numerous approaches havearea retiming. Section Il describes the new atbari Section

been proposed to achieve these goals [13]-[18h mibst of
the emphasis on the first two objectives.

In this paper, we focus on unconstrained min-regist

retiming, which has several applications in logiothesis and
verification. In synthesis, minimizing the numbdtrregisters

IV reports experimental results.

Il. BACKGROUND

A circuit is modeled as a directed graph<V,E> whose
verticesV correspond to logic gates and directed edges

can save area and power or be used to ameliorat locorrespond to wires connecting the gates, decordpioge

congestion. Even if delay constraints are ignowften any
timing violations can be corrected with logic s@in
combinational resynthesis, or intentional clockvgkeg [8]. In

verification, min-register retiming minimizes theimber of
state variables [12], which reduces the size ofsbguential
verification problem and has been demonstrate@doae the
difficulty of the verification problem [3]. This nyabe critical

for proof completion.

Although retiming problems are traditionally exped as
general linear programs, they can be solved effiieas
minimum-cost network circulation problems using tabie
algorithms. Instead, we propose a retiming methuoat is
based on iterated binary maximum network flow, \uhie an
asymptotically and practically easier problem. Thenber of
iterations required appears to be quite small. Beeathe
result of each iteration is strictly better thae fhrevious one,

pair-wise connections from gate outputs to inputhie
circuit's external connections are represented tgitenal
primary input (Pl) and primary output (PO) vertice§he
termsnetwork graph andcircuit are used interchangeably in
this paper.

A node has zero or more fan-ins, i.e. nodes treadawing
this node, and zero or more fan-outs, i.e. node®ulby this
node. The transitive fan-out of a vertexs a subset of all
nodes of the network reachable through the faredges from
v, captured by the function TFQ(V—2".

A combinational frameof the circuit is comprised of the
acyclic network between the register outputs /dPid register
inputs / POs. An example of this is illustratedrigure 1; the
inputs (the register outputs) lie on the left, aimel outputs (the
register inputs) on the right. The registers arplidated for
the ease of illustration.

A. Retiming

The problem of retiming is to relocate the registar a
circuit to optimize some circuit characteristic iehpreserving
output functionality and optionally meeting somediidnal
constraints. The repositioning is captured bretaming lag

function r(v):V — Z that describes the number of registers

moved backward over each combinational node. Tlaeee
several formulations of the retiming problem, botr the
purposes of this paper, we utilize the linear paogr(LP) in
Equations 1-2 from [13]. wi(e) is the initial number of
registers present on edge

min Zr(v)—r(u) s.t. 1)
Oe=(uy)
r(u)-r(v)<w(e Oe=(u,v) ()

The dual of this LP is a minimum-cost network clation
problem and can be solved efficiently using spémadl
algorithms. Using the method described by Goldljgtgthe
minimum-cost flow can be computed

O(VE|og(v2/E)|og(vc)) worst-case time, whereC is the

maximum cost on any edge. The number of verticesealges
in the corresponding network problem is proporticieathe
size of the combinational circuit.

After a retiming has been determined, an equivasentof
initial values must be computed for the registelsno such
initial state exists, the particular retiming mbst rejected or
the circuit otherwise altered. We discuss consecgeon this
computation but refer to [19] for its details.

. MIN-REGRETIMING ALGORITHM

in

C4 Rf\
- R.
s 2
SFC sink
C 3
LY R,

Fig. 1. An example of the flow problem for a smallrcuit. The
combinational elements alight grey; the initial positions of the registeie
to the left, and their inputs are replicated on tight. This is also &
example of a network where the minimum-cut in tireadedgraph is not

valid retiming: he graph can be completely cut with exactly twastegs (a
the outputs of cand @), but this results in a patiR{—R;’) with alterec
sequential latency.

valid retiming must preserve this property. Ifsthirere not the
case, the latency of that path would be altered ted
sequential behavior of the circuit changed.

The problem of minimizing the number of registeng b
retiming them to new positions within the scope tbé
combinational frame is equivalent to finding a minoim width
cut. This is the dual of the maximum network flpvoblem,
for which efficient solutions exist. To construttte flow
problem, the flow source is connected to all registutputs,
and all of the edges to the register inputs aregetd to the
flow sink. For now, the capacity of all edges ssuamed to be
one.

Solving the general maximum flow problem using the
preflow-based method proposed by Cherkassky andb@aj

[4] is O(VEIog(\/Z/ E)j in the worst case. Alternatively, the

We introduce an algorithm for optimum unconstraine@lassical augmenting path-based methods (e.g. Eh

minimum-register retiming that is based on an tteea
maximum network flow problem. This is motivated the
observation that computing the maximum flow through
network is an algorithmically and practically easgoblem
than determining the minimum-cost circulation. @igorithm
requires repeated iteration, but for practical wis; the
number of iterations is typically quite small.

A. Single Iteration

The core of the algorithm consists of minimizing tumber
of registers within a single combinational frameet Lus
consider only the paths through the combinationgikl that lie
between two registers (thus temporarily ignoring grimary
inputs and outputs). The current position of thgisters
clearly forms a complete cut through the netwarknediately
at its inputs. The width of the cut is the initiaimber of
registers.

Consider retiming the registers in only the forwenection
through the circuit. As the registers are moveer@any of the
combinational nodes, the corresponding cut movewdia
through the network and may grow or shrink in width
registers are replicated and/or shared as dictatgtie graph
structure. In the initial circuit, it is evidertat any path in the
combined graph passes through exactly one regster,any

bounded by the maximum length of an augmenting patés
the maximum flowlJ: O(UE). Because the flow constraints in
our problem are of unit capacity, the width of thput to the
graph establishes a worst-case boun®@E), whereR is the
initial number of registers. The worst-case bourd the
maximum flow problem using either the preflow-
augmenting path-based algorithm is therefore asyticptly
faster than the best known bound on the minimun-ttos/
problem on an identical graph structure.

Once the maximum flow has been established, we have
available the residual graph that describes thairgng edge
capacities with respect to this flow. The residyralph is used
to generate a corresponding minimum cut. Via dyathe
width of this minimum cut is exactly the volume tie
maximum flow and the flow through the saturated esdg
crossing the cut. To determine its location, tediges in the
network are partitioned into two set§ those that are
reachable in the residual graph with additionalvfliopom the
source, andR, those that are not. Generating this partition is
O(E) in the worst case. The partition must be comptete
because there is no additional flow path from therce to the
sink if the maximum has already been assignedhelfet exists
an edgeu - v such that(uO SOV R, a register must be

or

placed on the output of the gate associated withThe
registers are removed from their current locations and place
on the graphs edges that cross the minimum cut. 1 1
There may exist multiple cuts of minimum width, but this
method always generates the one that is unambiguously close , 00 @ |
to the source node. This results in the minimal movement o P 4
the registers, simplifying the initial state computation and oo:*.
minimizing the design perturbation. i
However, as stated, this procedure may generate an illegi
retiming. A cut in a directed graph only guarantees that al
paths in the graph are caitleastonce. This is a necessary but
not sufficient condition for the cut to be a valid retimiiige o i
seek the minimum cut in the graph such that all paths ar wiliw
crossedexactly once. Figure 1 illustrates an example of this 3
problem. The network flow problem must be altered to
eliminate the possibility that a path is crossed more than once
Reverseedgeswith unbounded capacity are added in the
direction opposite to the constrained edges in the origina
network. These additional paths may increase the maximur
flow (and therefore the size of the minimum cut) but guarantee : .
) - . (1) (i1)
that the resulting minimum cut will correspond to a legal
retiming. For a path in the original graph to cross thigefi Fig. 2. The original hypergraph circuit around tentral nodeN in (i) is
width cut more than once fror§ - R, there must be at least expanded to form a network flow problem (i) to qmtea valid forwar
one edge that crosses fron'—» S. If the unbOUdegq reverse. :gg:zgnegd Vat:h ”;a)g';}flgf"g;ﬁ: 3:’;‘;'?}% deiaﬁ]h ghmenggfvs p";tg's's
edges are also present, this would imply an infinite-capacityjustrated. The capacities of each path is laheteith solid edges having
edge from S - R, thus violating the finite cut-width unitcapacity and dashed edges having infinite cigpa
assumption and ensuring that such a cut will not be generated.]
It is also needed to account for sharing registers alof§W location.

hypergraph fan-out edges. This requires another simples. primary Inputs and Outputs
modification to the network flow problem. Each circuit nogle i The primary inputs and outputs (PIOs) can be treated in

?ecpmposed :jnto tvy; ve;uclias;rfﬁe?/erof afll of thte form_cla_:] different ways, depending on the application. The allowed
an-in arcs and aamitterot all orthe former fan-out arcs. The , ations of the minimum cut and the subsequent

ﬂ.OWI cor;lstralnt.fh are r?[n;lo ved fro;n 'thte'se.edgctas(;j 'fnStea::]’inéertion/removal of registers can be adjusted to either fix or
single edge with a unit Tlow constraint IS Inserted irora selectively alter the sequential behavior of the circuit.

receiver to the emitter. Note that the reverse edges connegt, synthesis, the relative latencies at all of the PIOs is
pairs of receivers. As above, the unconstrained fan-out ed%%%umed to be invariant One way that this can be

can not participate in the minimum cut; only the internal edgfccomplished is with the addition of a host node. In
is available to make a unit contribution to the cut-widthcli verification applications, it is not necessary to preserve the

.noie will thderefore riﬂylrfedat most ?ne geg|ster rdeg;rdlesss?fnchronization of the inputs and outputs. It may be alalsir
Its fan-out degree. Is idea can also be extended to mofjoeborrow or loan registers to the environment indiviquif

fan-in shgrlng asin [1]. i , each PIO if the result is a net decrease in the total register
The final network for computing the maximum ﬂowcount

computation is depicted in Figure 2. To allow register borrowing, the external connections

The unitary flow constraints can also be used to simpldy thshould be left dangling. Registers will be donated to the
implementation of the maximum flow solver such that the ﬂovfgnvironment if the minimum cut extends past the dangling

net\a/ork of I;lgure 2 nged not :i eXZ"C'ﬂy hbl,“lt' Both th rimary outputs (POs); conversely, registers will be hoed
preflow- and augmenting path-based techniques - can he minimum cut appears in the transitive fan-out regibn o

performed. on the original circuit structure with only binar the dangling primary inputs (Pls). The inclusion of tigigion
flow marking. Because the flows on the non-unit arcs ahﬁ

rainad. th 4 onlv be implicit intained wit troduces additional flow paths and introduces additional
unhconstrained, they nheed only be Implctly maintained With o sqipilities for minimizing the total register count.

pollnters to the flow pre:ﬂegessqrs. ; . lorith To disallow desynchronization with the environment, the
. nl summary, at' sing teh |terat|oq 0 ourﬂ retlmlplg aior'tthﬁbOs are connected to the sink and the transitive fan-out of the
INvolves —computing € mMmaximum flow roug €pis is blocked from participating in the minimum cut. All

c|c3mb|r:at|ppal framte, |(iljent|fy!ng t';\he “r."?“eb topc()jloglgallg/ aths through the combinational network that originate fom
closest minimum cut, and moving the register boundarydo g, 5y 5 sequential latency that must remakeat Inserting

a register anywhere in the TFO({PIs}) will alter this. To
exclude this region, one of two methods can be used:
temporarily redirecting to the sink all edges(u,v) where
VOTFO({PIs}), or (ii) replacing the constrained flow arc with .
an unconstrained one, thus preventing that node frc @
participating in the minimum cut. Both methods exclude th =
invalid portion from participating in the retiming soluti (i1) M i
Because register borrowing requires the initial values of tt
new registers to be constrained to those reachable in m

original circuit, it is necessary to construct additiona]
combinational logic for computing the initial state. If #iee ._ — _
of this logic grows undesirably large, register borrowag sre L |~ sink

be turned off at any point. —

WY A
's

C. Multiple Iterations L |

This section shows how to compute the globally optimui R’ R? R R’
min-register retiming by iteratively applying the maximum-
flow algorithm of Section III.B. Fig. 3. The circuit in (i) is unrolled three timésto (i). Each cop

Thus far, we have only considered forward retiming gfomprises a combinational frame, the first of whishdark gray and th

. L h ircuit. It i fici id ol register boundaries are labeled with the corresipgnftame number The
rgglstgrs _m the .CIrC.UIt_' t Is sufficient to Con'S| er ooiye globally minimum width retiming cut of the risgers in the reference fra
direction if the circuit is strongly connected (i.e. throigh R is illustrated by the bold line. The minimum widtetiming cut stretch
use of a host node) and normalization is applied. Howeaver,dcross multiple frames and wuld therefore require multiple iterations of
general, the optimum minimum-register retiming requires boftPm-
forward and backward moves. The procedure for a single®esn’t affect the number of registers in the result, but we
iteration of backward retiming is essentially identical, exceghose to perform forward retiming first because in general
that it computes the maximum flow from the register inputiin-register retiming is not unique. This approach reduces th
(sources) to the primary inputs and register outputsgsink amount of logic that has to be retimed backward, thereby

The overall algorithm consists of two iterative phaseseducing the difficulty of computing a new initial state][19
forward and backward. The procedure is outlined in Algorithm
1. In each phase, the single-frame optimization is repeated o] .
until the number of registers reaches a fix-point. In terins o Given a retiming lag functionr(v): V. —Z, consider
the retiming lag function, each node’s lag is either unchangedrolling the sequential circuit byn cycles, where
or changed by one in each iteration. n>max r{)- min r{). This corresponds to stacking multiple

av

At no point during retiming is it necessary to unrolé th o . —
P 9 9 y combination frames, as illustrated in Figure 3.

circuit or alter the combinational logic; only the register . .
: . X .=~ . The positions of the registers of the reference cycle after any
boundary is moved by extracting registers from their initial . . .
..) . : A .. _retimingr(v) can be expressed as a Quin the edges of this
position and inserting them in the their final position. T . .
unrolled circuit. The elements &f are the register positions.

However, this does change the definition of the combinationjflhe unretimed cutCyy, (such that(v)=0) lies at the base of
frame and the connections to the flow source and sink. Lo . . :
e unrolled circuit. The size of this cuf),|is the number

. {
The ordering of the two phases (forward and baCkVvar(rJé-jgisters post-retiming, or equivalently, the number of

(5). Proof of Correctness

ALGORITHM 1: UNCONSTRAINEDMIN-REGISTERRETIMING combinational nodes whose fan-outs hyper-edges cross the cut.
A cut C is avalid retiming if every path through the
; whi | e(i ”P;Ove”egt) {7 f]?IrWWd) combinational network passes through it exactly once. This
set up t1orwar retim ng ow net wor . . . _

3 mark restricted |ocations |mplle§ that for any tWO registei’;, R,UIC, RlﬂTFQ(Rz)—D
4 compute maxi mum flow and vice versa. If this were not the case, additional latency
5 derive nearest mininum cut would be introduced and functionality of the circuit woukd b
6 nove registers to cut
71 altered.
8 whi | e(i nprovement) { // backward Consider. an optimal minimum regi§ter retiming and its
9 set up backward retinming flow network corresponding cuC.,, While there exist many such cuts,
10 mark restricted |ocations assumeC;, to be the one that lies strictly forward of the initial
11 conmput e maxi mum fl ow . . . logicall | | b
12 derive nearest minimum cut register posmons is topological y closest (t?@.it.' t can be
13 nove registers to cut shown with Lemma 1 that there is one unambiguously closest
14} cut.

15 compute initial states Theorem 1: Upon termination of our algorithm, the

resulting cut is exactlZ .

C"_ _-_‘?’:T{n_"‘!.u i!\-\
nun

Fig. 4. Definitions of cut partitions for SectithD.

Proof of Condition 2. We can use the minimum cut to
generate a cut that is strictly smaller thgnand reachable
within a combinational frame. Consider the €, that is
generated fronC,,;, via Observation 1 such that its deepest
point is reachable within the combinational frani€€o Some
of the retiming lags may be temporarily negatiueet {s, t;}
be a partition ofS; and {syin, tmin} be a partition ofC,;,; such
that sy, are the deepest registersdp;, that lie topologically

Proof. Our algorithm iteratively computes the nearest cut dPrward of the subseg of the registers irGi. swl if G

minimum width reachable within one combinational frame an@Cmin-
Let tRBd {Smin i} are valid cuts.

terminates when there is no change in the result.
resulting cut after iteration be C;. The cutC; at termination
will be identical toCy,, if the following two conditions are
met.

Condition 1 No register irC; lies topologically forward of
any register irCn,.

Condition 2. After each iterationJ.1|<|Ci| unlessCi=Cin.

Lemma 1 LetC; andCj be two valid retiming cuts, and{

Using the reasoning from condition 1, botly {.i}

We know thatd,i,|<k|, otherwise there would be implied
the existence of a topologically closer cus, [fminl <Cmin
Therefore, the cutd,, t} is strictly smaller tharC, and is
reachable within one combinational frame and wobl
returned by a single iteration of the algorithniNote that this
doesn’t imply that there aren’t other smaller cuisly that
there must exist at least one that is strictly fmalTherefore,

t} be {s, t} be a partitioning of each such thatCondition 2 mustalso be true. .

§ O TFQ(s)and t; OTFO(t) . The cuts §, t} and {s, t}

are also valid retimings.
First, we should point out that this partitionirggualid and
that every element must fall into eithsror t as defined.

BecauseC; and C; are valid retiming cuts, every path mustvia Condition 2 in the above proof.

intersect them both. Given the points of intersed® [1C; and
ROC;, their membership in eithes or t is implied by their
topological order.

E. Complexity Analysis

As described in Section Ill.A, the complexity ofngputing
the minimum cut in each iteration of our algoritigrO(RE).
The maximum number of iterations can also be bouifgeR
The total wearase
runtime is therefor©(RPE). While this is neither strictly less
nor greater than the best known bound for the edgmt
minimum-cost network flow problem [9], the resuhsSection

Now, consider some pathfrom the source to the sink of IV indicate that the average runtimes are smaltar the
the network. Becaus€; and is a complete cut and a validconsidered circuits.

retiming, the path must pass through exactly oneitbers or
t. Similarly for C,. If p passes througly, it can not pass
through t;, because lies in strictly within TFO(), and p

For the set of benchmarks that we examined, thebauwf
iterations required was small: the average waswitid a
maximum of 15. Figure 5 illustrates the fractidntiee total

would have had to interset Also, if p does not pass through register reduction that was contributed by eachatiien.

s, it can not intersecy becauses lies strictly within TFO$)

and so must pass through Therefore, it must pass throughafter the first iteration in either direction.

exactly one ofs andt, and §, t} is a valid retiming cut.
Similarly for {s;, t}.

Proof of Condition 1.Consider a cutC; that violates
Condition 1. Let §, t} be a partition ofC; and {Syin, tmin} b€ @
partition of C,i, such thas is the subset of registers @Gthat
lie topologically forward of the subset;, of the registers in
Chin This is illustrated in Figure 4. By Lemma 1, weoly that
both {s, tmn} and {sm, t} are valid cuts.

Because a single iteration returns the closest afut
minimum width within a frame, thi€={s, tj} must be strictly
smaller than the closes{,ti}. This implies thatg|<|s,i and
that s, tmid|<H Smintmi|=Cmin- This is impossible by
definition. Therefore, Condition 1 must be true.

Observation 1 Retiming by an entire combinational frame

does not change any of the register positions énrésulting
circuit and also represents a valid retiming clBecause a
register is moved over every combinational node,rétiming
lag function is universally incremented. The numbsr
registers on a particular edge is a relative qtyarndéind the
result is structurally identical to the original.

Almost all of the reduction in the number of regist occurs
Theimber of
iterations can be bounded to a small constantxtéhg total
worst-case runtime O(RE).

60.0%
0,
50.0% | 48.7% B Forward
5 . 42.6% O Backward
S 40.0%
?
T 30.0% -
8
o
= 20.0% -
o . 35% 05% 0.4% 3.1%
£ 10.0% 1 1.1% 0.1%
0.0% .o .
1 2 3 4 5+
Iteration

Fig. 5. The contribution of each iteration to tbtal reduction in the
number of registers.

networks.

flattened,

IV. EXPERIMENTALRESULTS

We applied the proposed algorithm to a suite oédmrel 1able 1. _ _ _
circuits derived from public-domain hardware desiga1]. ~ Our algorithm was implemented in C++. The maximum
Altera tools were used to extract and optimize thgic ~Nnetwork flow problem was internally solved using tHIPR
This optimization may have already iden Package available at[10] and described in [4].
reductions in the number of registers. These wérent 1able 1 is divided into three groups of columnschea

minimally preprocessed by the ABC logic synthesiskage describing the characteristics of a particulammgtg. The first
[2] as follows: the original hierarchical designerer (a) Section of Table 1 shows the statistics about tmii€ with

(b) structurally hashed and (c) algefadhi the registers in their initial positions. The sedosection

balanced. From the set of 63 benchmarks, we removed describes the results of an incremental heuristic-dalay
combinational circuit and 19 circuits whose initiagister "€timing algorithm [18] implemented in ABC to praei

count was already minimum, leaving 43 circuits shoiw

perspective on the area/delay tradeoffs. The thet of

TABLE 1: MINIMUM REGISTER RETIMING RESULTS ON REAL BENCHMARKS

Original Circuit Min-Delay Retiming Min-Register R etiming
Name |AIG | A D A D T F-iter | B-iter A D T
barrell6a 397 37 11 124 4 0.0® 1 0 32 11 <0|01
barrel16 357 37 10 85 4 0.01 1 0 32 11 <001
barrel32 902 70 12 166 5 0.0 1 0 64 13 <0401
barrel64 2333 135 14 422 5 0.0 1 0 128 14 <0j01
mux32_16bit 1851 533 9 873 4 0.0 1 1 506 11 0{01
mux64_16bit 3743 1046 13 1460 5 0.1p 1 0 991 13 100
mux8_128bit 3717 1155 7 2297 3 0.18 1 1] 1029 k0.0
mux8_64bit 1861 579 7 1145 3 0.0y 1 1 517 g <0{01
nut_000 1262 326 58 393 27 0.06 1 2 312 6D <0.01
nut_001 3179 484 93 558 57 0.08 2 2 435 109 0.03
nut_002 873 212 24 232 10 0.0 2 2 158 25 <0j01
nut_003 1861 265 37 304 24 0.0# 3 1 228 45 0,01
nut_004 713 185 13 213 6 0.0 2 2 164 15 <0{01
oc_aes_core_inv 11177 669 24 669 25 0.p5 | i} 658 P5 0.04
oc_aes_core 8732 402 24 402 24 0.14 1 L 3p4 P4 1<p.0
oc_aquarius 23109 1477 20 157p 200 0.81 | 0 147306 2 0.08
oc_ata_ocidecl 1601 269 14 275 1] 0.02 1 D 268 14 0.01<
oc_ata_ocidec2 1813 303] 14 31d 1] 0.02 1 L 203 14 0.01<
oc_ata_ocidec3 3957 594 14 599 13 0.06 1 L 562 19 0.01<
oc_ata_vhd_3 3933 594 14 599 13 0.96 1] 568 14 01<0.
oc_ata_v 838 157 14 169 10 0.0p 1 0 156 1 <0.01
oc_cfft_1024x12 9498 1051 61 1671 26 0.91 12] 704 346 0.70
oc_cordic_p2r 8430 719 55 975 45 0.26 1 Q 718 55 0140.
oc_dct_slow 879 178 32 207 14 0.08 0 1 176 3R <0.01
oc_des_perf_opt 21281 1976 15 4656 14 1.p7 15 0 5101 233 1.18
oc_fpu 16115 659 2661 157§ 543 30.65 2 a 247 27112 .12
oc_hdlc 2221 426 14 426 13 0.0 1 3 375 1y <0j01
oc_minirisc 1918 289 36 290 33 0.0 2 1 253 3D 0{01
oc_oc8051 10315 754 92 757 87 0.19 1 1 743 92 0.01
oc_pci 10426 1354 46 1405 26 0.3p 1 1 1308 46 g.02
oc_rtc 1093 114 41 114 29 0.0 1 0 86 41 <0/01
oc_sdram 860 112 13 109 12 0.0p 1 0 109 12 <0.01
oc_simple_fm_rec 2300 226 66| 274 4Q 0.05 q] 223 75<0.01
oc_vga_lcd 9086 1108] 35 1124 25| 0.24 2 1 1078 35 02
oc_video_dct 36465 3549 60 852% 16 1284 1 | 2305 3 § 0.30
oc_video_huff_dec 1591 61 21 65 18| 0.02 0 1 60 22 0.0k
oc_video_huff_enc 1720 59 19 90 13| 0.02 1 g a7 32 0.0k
oc_wb_dma 15026 1775 19 1794 17 0.45 1] 1751 B4 08 0.
os_blowfish 9806 891 79 906 61 0.3p 1 0 827 7B k0.0
os_sdraml16 1156 147 23 162 17 0.2 1 q 144 23 <0.01
radarl2 38058 3875 110 3991 56 3.1 2 3 3754 110 21 0.
radar20 75149 6001 110 6363 56 6.92 2 1 5364 110 34 1.
uoft_raytracer 14596Q 13079 23 169714 208 23|70 3 211610 537 3.76
AVERAGE 1.0 1.0 141 0.66 0.89 1.56

TABLE 2: MIN-COST VERSUSTERATIVE MAX-FLOW MINIMUM REGISTERRETIMING ON LARGE ARTIFICIAL BENCHMARKS

Minimum-Register Retiming
Original circuit Min-Cost Flow I terative Max-Flow
Name |AIG| A A T F-iter B-Iter R Speedup
largel 1 006 k 729k 66.9 k 147.9s 3 3 33.0s 4.48
large2 1005 k 82.7k 76.9 k 131.3s 3 3 24.5s 5.36
deep3 1010k 747 k 67.6 k 182.0s 3 21 34.2s 5.32
deep4 1074k 86.4 k 82.0k 130.3s 3 3 17.9s 7.27
larger5 2 003 k 151.1 k 139.5 k 410.6s 3 3 67.2s 11 6.
largest6 4008 k 300.1 k 279.0 k 818.3s 3 3 139.9s| 5.85
columns shows the results produced by the proposied
register retiming algorithm. REFERENCES
The following notation is used in the table. Colsntebeled [1] J. Baumgartner and A. Kuehimann, “Min-area retinimglexible
“A” refer to the number of registers in the netwdidrea). circuit structures”Proc. ICCAD'0], pp. 176-182.
Columns labeled “D” refer to the number of nodestbha [2] Berkeley Logic Synthesis and Verification GroéBC: A System for
longest combinational path. Columns labeled “T’ereb the Sequential Synthesis and VerificatiGtelease 61104.
. . . - http://mww.eecs.berkeley.edu/~alanmi/abc/
cumulative runtime of the flow computations in sede . e .
. . . [3] G. Cabodi, S. Quer and F. Somenzi, “Optimizing sedjal
measured ona 64-bit 2..0MhZ Pentium Xeon. For timnmim verification by retiming transformationsProc. DAC’01, pp. 601-606.
register re‘_t'mm_g algorithms, the_ number of forVYamj!d [4] B.V.Cherkassky and A. Goldberg, “On Implementiush-Relabel
backward iterations that are required before tRepdiint is Method for the Maximum Flow Problem&lgorithmical19, 1997, pp.
reached are also listed (“F-iter” and “B-iter”, pestively). 390-410.
Because these benchmarks are only of moderatessiget, [5] J. Congand C. Wu, “Optimal FPGA mapping and retgnaith
£ ificial ci . d b ibin th efficient initial state computationtEEE Trans. CADvol. 18(11),
of larger art_| icial circuits was create | by comibgn the Nov. 1999, pp. 1595-1607.
benchmarks in Table 1. These are described in Tabls the 1) 5 Edmonds and R. Karp, "Theoretical improvementsigorithmic
number of retiming iterations required appears te b efficiency for network flow problems"Journal of the ACMyol. 19
independent of the circuit size—probably because th (2), 1972, pp. 248-264.
maximum latency around any loop or from input tdpoi is [7] G. Even, I. Y. Spillinger, and L. Stok, “Retimingvisited and
also size independent—the circuits “largel” andgé®” were reversed "EEE“Tra”S' CADvol. 15(3), March 1996, pp. 348-357.
constructed via parallel composition to presenie phoperty. (] ;;7')':';5}5ulrgéocéorfkgjkse_‘gsolp“m'za“O"EEE Trans. Compyol.
The 2 and 4 mll!lon gate circuits, “largers gn(i?r(i]erﬁ , [9] A. Goldberg, “An efficient implementation of a sicej minimum-cost
were generated similarly. In contrast, the twouitsc“deep3 flow algorithm”, J. Algorithms22, 1997, pp. 1-29.
and “deep4” were built by splitting and serial carsion. [10] A. GoldbergNetwork optimization library(Software tools)
In Table 2, the results of our iterative maximuowibased http://www.avglab.com/andrew/soft. html
algorithm are compared against a single minimunt-ttos/- [11] M. Hutton and J. Pistoriugitera QUIP benchmarks

based implementation as described by [4]. Thestla®S2
package from [10] was used as the solver. In evasg, the
iterative maximum flow-based implementation reggidess
time to complete.

V. CONCLUSIONS

This paper presented an application of a simplified]

maximum flow computation to the problem of minimigithe
number of registers after retiming. The presentedhod is
very simple, straight-forward to implement, fastemory
efficient, and scalable for large industrial citsuiPotential
applications of the method include sequential sssith and
verification.

ACKNOWLEDGEMENTS

This work was supported by SRC contracts 1361.0@l a [1°]
1444.001, and the California Micro Program with our

industrial sponsors Altera, Intel, Magma, and Sigitl

http://www.altera.com/education/univ/research/umipchtml

[12] A. Kuehlmann and J. Baumgartner, "Transformatioseba
verification using generalized retiming®roc. CAV'01

[13] C. E. Leiserson and J. B. Saxe. “Retiming synchusrarcuitry”,
Algorithmica 1991, vol. 6, pp. 5-35.

[14] N. Maheshwari and S. Sapatnekar, “Efficient retignifi large
circuits”, IEEE Trans VLSI6(1), March 1998, pp. 74-83.

P. Pan, “Continuous retiming: Algorithms and apgtiiens”. Proc.
ICCD ‘97, pp. 116-121.

S. S. Sapatnekar and R. B. Deokar, “Utilizing tetming-skew
equivalence in a practical algorithms for retimiamge circuits”,|EEE
Trans. CAD vol. 15(10), Oct.1996, pp. 1237-1248.

N. Shenoy and R. Rudell, “Efficient implementatimfretiming”,
Proc. ICCAD '94 pp. 226-233.

D.R. Singh, V. Manohararajah, and S.D. Brown, “émental
retiming for FPGA physical synthesig?yoc. DAC '05 pp. 433-438.

H. J. Touati and R. K. Brayton, “Computing the imlistates of
retimed circuits*JEEE Trans. CADvol. 12(1), Jan 1993, pp. 157-
162.

[16]

[17]

(18]

