Simulation and Satisfiability in Logic Synthesis'

Jin S. Zhang' Subarna Sinha’

Alan Mishchenko®

Robert K. Brayton® Malgorzata Chrzanowska-Jeske'

! Department of ECE, Portland State University, Portland, OR
2 Synopsys Inc., Mountain View, CA
? Department of EECS, UC Berkeley, Berkeley, CA

Abstract

Simulation and Boolean satisfiability checking (SAT) are
common techniques used in logic verification. In this paper, we
show how simulation and satisfiability (S&S) can be tightly
integrated to efficiently solve two computationally intensive
problems in logic synthesis: computing SPFDs for nodes in a
Boolean network, and computing sets of candidate nodes for
resubstitution. In the first application, simulation is used to
quickly enumerate some solutions while SAT is used to complete
the enumeration. In the second application, simulation is used to
filter out infeasible solutions while SAT is used to prove the
desired properties in the remaining candidates. Experimental
results confirm that the combination of simulation and SAT offers
a computation engine that outperforms BDDs, traditionally used
in similar applications. We also discuss how S&S can be applied
to other synthesis problems.

1. Introduction

Simulation has always played an important role in testing and
verification of digital designs. Its main advantage is that it can
catch many bugs very quickly; however, it is an incomplete
technique. On the other hand, Boolean satisfiability (SAT) is able
to prove, by an efficiently performed exploration of the search
space, that a certain property always holds. Because of its
exhaustive nature, SAT can be slow in solving large problems or
many instances of small problems. Recently, the remarkable
progress in SAT [15][24][6] has made it possible to extend its
range of applications.

The two methods, simulation and SAT (abbreviated S&S), make
a powerful combination, taking advantage of the strengths of each
method. Simulation quickly disproves properties, saving the
runtime that SAT would need to prove or disprove the properties
using exhaustive search. However, simulation quickly saturates, at
which point SAT can step in to solve the remaining instances.
When the computational resources are intelligently divided among
the methods, S&S becomes a formidable competitor to alternate
methods such as BDDs [5][1]. While S&S is widely used in
formal verification and ATPG, it is much less common in logic
synthesis.

Recent experience with re-implementing traditional logic
synthesis methods [25] showed that a surprising number of
computationally intensive problems can be re-formulated and
efficiently solved using S&S. Moreover, S&S almost always led
to more robust implementations compared to using BDDs.

BDDs and SAT appear to have complementary strengths. For a
detailed exposition, please refer to [13]. Overall, SAT appears to

! This work was supported in part by the NSF grant CCR-9988402

be more robust because most problems efficiently solved by
BDDs can also be efficiently solved by SAT. For example, BDD
sweeping [13], which detects functionally equivalent nodes in a
combinational circuit of limited logic depth, can be replaced by
SAT sweeping [14] without losing performance. In contrast, many
properties proved by SAT cannot be proved by BDDs because of
the BDD sizes encountered. A recent study in logic synthesis [21]
shows that a SAT-based don’t-care computation scales better than
a BDD-based one.

One reason why SAT outperforms BDDs is the following. On
many problems, although both BDDs and SAT require, in the
worst case, exponential time in the problem size, the BDD-based
approach starts by constructing the canonical representation for
the given functions. SAT starts by searching the solution space
immediately, relying on the available circuit to represent the
functions. Thus SAT avoids the overhead of constructing the
canonical representation, which can overwhelm BDDs in many
practical instances; the BDD size is large or dynamic variable
reordering is slow. Similar reasons for the development of SAT-
only combinational equivalence checkers are stated in [8].

In our applications, the SAT solver is called many times to
enumerate through the whole space for satisfying assignments
(ALL-SAT problem), which increases its complexity. However,
the input space is bounded, and simulation detects a significant
number of satisfying assignments, leaving SAT to work only on
the hardest ones. Therefore, solution enumeration works well in
practice, resulting in affordable runtimes for many benchmarks.
These results can be further improved by incorporating the recent
work on solving the ALL-SAT problem efficiently[11].

The main contribution of this paper is in presenting two new
algorithms based on S&S, to compute flexibilities in multi-level
Boolean networks. The flexibilities computed include SPFDs [30]
and node resubstitution [10]. Both computations are known to be
hard in practice. Experimental results show that S&S is an
effective solution for these problems.

We also review a number of Boolean problems in synthesis and
discuss how they might be solved efficiently using S&S without
reporting any experimental results. These problems include:

e identifying functionally equivalent nodes in a network

[71(14],

e computing don’t-cares [21] for a node in a network,

e detecting variables in the true support of a node in a

network,

e computing symmetries of Boolean functions, and

e checking the existence of a bi-decomposition [19].

The paper is organized as follows. Section 2 gives a brief
background on simulation and SAT. Sections 3 and 4 discuss how
S&S is used to compute SPFDs and derive resubstitutions,
respectively. Experimental results are also given in these sections.

Section 5 briefly reviews other applications of S&S in logic
synthesis. Section 6 concludes and suggests directions for future
work.

2. Background

2.1. Boolean network

Definition 2.1 A Boolean network N is a directed acyclic graph
(DAG) such that for each node i in N, there is an associated
representation of a Boolean function f; and a Boolean variable y;,
where y; = fi. A node i is a fanin of a node j if there is a directed
edge {7, j} and a fanout if there is a directed edge {j, i}. A node i
is a transitive fanin (TFI) of a node j if there is a directed path
from i to j and a transitive fanout (TFO) if there is a directed path
from j to i. The sources of the graph are the primary inputs (Pls)
of the network; the sinks are the primary outputs (POs). The
functionality of a node in terms of its immediate fanins is its /ocal/
function. Its functionality in terms of the primary inputs of the
network is its global function.

2.2. Simulation

Simulation computes the values of the internal signals of a
network, given the values of the PIs. One round of simulation
involves propagating one particular set of values through the
network. Its complexity is linear in the network size.

We consider both random simulation where values of the Pls
are assigned randomly, and guided simulation where Pls are
assigned based on certain information, such as that provided by a
SAT solver about assignments proving or disproving a property.
Guided simulation effectively provides additional coverage
beyond random simulation. Our applications currently use random
simulation.

To ensure the efficiency of simulation of logic networks, we
employ the following techniques in our implementation:

= Using AND-INV graphs (AIGs) [13] as our network

representation. These are compact and homogenous.
Simulating an AIG node involves bit-wise operations on
the simulation information of the fanins.

= Performing simulation in a bit-wise parallel fashion, that is,

simulating 32 or 64 bits simultaneously.

= Controlling the amount of simulation. Although the

amount of random simulation performed can be determined
dynamically by stopping when “saturation” is reached, in
the experiments for this paper we use a fixed amount of
simulation. The goal is to show that simulation works
leaving fine-tuning for future investigation.

= Allocating memory for storing the simulation information

in one large memory array. The nodes as well as the chunks
of memory associated with the nodes are ordered
topologically in a DFS order. This reduces the number of
cache misses and improves the speed of simulation-
intensive applications.

These techniques contribute differently to the efficiency of the
overall approach. Both bit-wise parallel simulation and AIG
representation lead to very noticeable speed-ups in computation.
Controlling the amount of simulation is application-dependent
and may lead to an additional 50% speed-up.

2.3. Satisfiability

Boolean satisfiability (SAT) [15][24] is a process of proving
that a given Boolean formula has a satisfying assignment.
Although solving a general SAT problem is NP-hard in the
problem size, many practical problems have properties, which
dramatically reduce the complexity. For example, if a SAT
problem is formulated for a circuit, using the circuit structure can
reduce the problem complexity [27].

The performance of SAT solvers has improved greatly in the last
few years. State-of-the-art SAT solvers, such as [24][6], are based
on techniques which dramatically speed up exploration of the
search space. The following are the most successful techniques:

e Non-chronological back-tracking [15] is a way of
exhaustively exploring the search tree by skipping some
branches.

e Dynamic variable ordering [24]. The branching variable
(on which the next decision is made) is determined based
on the “activity” of variables. The more active variables
participate more often in recent implications and conflicts.

o Two-literal watching [24]. The clause data-base is
organized in such a way that only a small number of
clauses are visited when literals are assigned, and no
clauses are visited when literals are unassigned.

3. Computing SPFDs

SPFDs (Set of Pairs of Functions to be Distinguished) [37][30]
express flexibilities of nodes in a multi-level network. They offer
greater flexibility by allowing not only the node function to
change, but also the function of its immediate fanout. SPFDs can
be seen informally as representing the “information flow” in a
network.

Modifying a node’s local function while preserving the
essential “information flow” may result in having to update all
node functions in the transitive fanout of the node. Limiting the
propagation of SPFDs to only a few levels of the TFO can control
the size of the area of change. Compatible observability don’t-
cares (CODCs) [28] can be used to block the propagation of
change.

SPFDs generalize observability don’t cares (ODCs) but differ
from the notion of multi-output Boolean relations [36]. Some of
the applications of SPFDs are presented in [31][33]. The
computation of SPFDs is complex and challenging. This section
proposes an efficient way of computing SPFDs using on S&S.

The following presentation of SPFDs is based on [30].

3.1. Background

Consider two networks N and N’ with identical structure. Let X
and X’ be their respective Pls, Z and Z’ be their respective POs.
For corresponding nodes n and n’ in network N and N’, denote
their output variables by y and y’ and fanins by Y and Y,
respectively. Let the local and global functions at n and n’ be
given by y=f(Y),y=g(X) and y =AY"), y’ = g(X’), respectively.

Definition 3.1 The global SPFD of node n, SPFD"(X, X’), is a
Boolean function over the product of PI spaces X x X', taking
value 1 for minterms x and x’ iff the value computed by node n
differs from the value computed by »

SPED(X, X) = g(X) ® g(X).

Similarly, the local SPFD of node n is:
SPED(Y, ') =f () ® f(Y").

For example, the local SPFD of an OR-gate is {(00,01), (00,10),
(00,11)}, i.e. the off-set minterm (00) has to be distinguished from
all the on-set minterms (01, 10, 11). Intuitively, a pair of minterms
(x, x’) in an SPFD of a node is an elementary unit of information
distinguished by the node, while the total SPFD of a node (the set
of input minterms it can distinguish) represents its information
processing capability.

Definition 3.2 A cut C of network N is a subset of nodes, such
that every path from the POs to the Pls passes through at least one
node in C.

Definition 3.3 A cut C is redundant if there exists n € C such
that C\n is a cut. Otherwise, the cut is irredundant.

Definition 3.4 Let C be an irredundant cut containing node #.
C\n is called a separator of n, denoted Sep(n).

Intuitively, a separator is a set of nodes whose information
combined with the information from node 7, contains the
information required at the POs.

Definition 3.5 Sep,(n) dominates Sep(n) if the union of SPFDs
of nodes in Sep,(n) contains the union of SPFDs of nodes in
Sepy(n):

Y. SPFD*(X)= Y SPFD’(X)
acSep (n) BeSepy (n)

Definition 3.6 The Ilargest (smallest) separator of n,
SePmax(min)(11), 18 the separator that dominates (is dominated by) all
other separators of n.

The largest separator of n is composed of all PIs not in TFI(x)
plus the nodes in TFI(n), which have a fanout outside TFI(n). The
smallest separator is composed of all POs not in TFO(#n) plus any
node with a fanout to TFO(n)\n.

Definition 3.7 The minimum global SPFD of n with respect to a
separator ¢ = Sep(n), SPFD!(X,X"), is the set of pairs of

minterms of the global SPFDs of the POs not contained in the
SPFDs of nodes in the separator:

SPFD'(X,X") = Y. SPFD“(X,X") n X SPFD’(X,X").
aePO Peo

Thus minterm pair (x, x’) belongs to the mininum global SPFD
of node n with respect to some separator o if x and x’ are
distinguished by at least one PO but not by any of the nodes in c.
Intuitively, o is a barrier through which information must flow to
get to the PO e TFO(n), and the minimum global SPFD is the

information provided by », but not available at any node of 6.
Definition 3.8 The minimum local SPFD of n with respect to a

separator ¢ = Sep(n), SPFD!(Y,Y'") , is the image of
SPFD!(X,X") in the local space of node :
SPFD!(Y,Y") :3){ X‘SPFD;(X,X')/\M(X,Y)AM(X',Y')

where M(X, Y) and M(X",Y’) are mappings from the PI spaces
into the fanin spaces Y and Y’ of nodes »n and n’ in networks N and
N’. Note that the minimum SPFD is always defined with respect
to a particular separator G.

Example 3.1. Consider the circuit shown in Figure 3.1. The
largest separator of node g; is {a, b, ¢}. The global SPFD of z; is
equal to {(1--, 0--)} (the minterms are in the form abc). The
global SPFD of a,b and ¢ are {(1--,0--)}, {(-1-, -0-)} and {(--1,--
0)}, respectively. All the minterm pairs of the global SPFD of z;
are contained in the global SPFD of a. Hence, the minimum SPFD
of g; with respect to the largest separator is empty. However, the

node is neither s-a-0 nor s-a-1 redundant. This is because nodes in
the transitive fanout of g; depend on the specific information flow
through node g;.

N

Figure 3.1. Example circuit.

The usefulness of the minimum SPFD is that the current
function at a node n can be replaced by any function that contains
the node’s minimum SPFD. After the replacement, in order to
preserve the functions of the primary outputs, the functions on the
output side of ¢ may need to be changed. The property of
minimum SPFDs guarantees that the new functions of these nodes
can always be derived.

If the minimum SPFD of » is empty, then n does not provide
any “useful” information not supplied by other nodes in o.
Therefore, n can be removed while other nodes can be re-
synthesized so that the network’s behavior remains unchanged.
The procedures used to re-synthesize nodes are described in [30].

In theory, it can be proved that minimum SPFDs provide more
optimization power than complete don’t cares or ATPG. Some
interesting applications of the minimum SPFD in logic synthesis
include node optimization using the windowing concept proposed
in [21] or combined rewiring and mapping during resynthesis
optimizations.

3.2. Computing SPFDs using S&S

Although the computation of SPFDs can be implemented using
BDDs by evaluating the formula in Definition 3.8, this limits the
applicability of SPFDs to medium-sized circuits. In [32], an
improvement computes the image using a SAT solver. Simulation
was not used and the problem formulation was not tuned for SAT.
As a result, although [32] can handle larger circuits than previous
approaches based entirely on BDDs, its runtime is also larger. In
this paper, we propose a much more efficient algorithm based on
S&S to compute SPFDs. It offers better runtimes than the
previous approaches and can be applied to larger circuits.

Q -

F N & A 4

;Q \\\\ 1=
FE T CFX TS
X '

 O————

5y
s

Figure 3.2. The specialized miter for computing SPFDs.

The minimum SPFD computation for a node initially builds a
miter for the node. The concept of a miter was introduced in [2]
and typically refers to a specialized circuit built such that the
output evaluates to 0 if and only if some property holds. The
following steps describe how the miter is constructed and used in
the S&S-based minimum SPFDs computation:

e Construct the miter cone M1 as shown in Figure 3.2. The
miter cone feeds PIs X into the first network N and PIs X~
into the second network N’. In addition, identical
separators ¢ of the node n and n’ are introduced in both
networks. The outputs of the nodes in the two separators
are connected pair-wise to form the miter cone M2. The
output of M2 is 1 if and only if the separator can
distinguish a PI minterm pair (x, x’). Finally the M1 output
is ANDed with the complement of the M2 output so the
final output is 1 if and only if the POs of the network can
distinguish (x, x’) but the separator cannot distinguish (x,
x’). By construction, the final output is 1 only for the
primary input minterm pairs that belong to the minimum
SPFD of n with respect to separator G.

e Perform bit-parallel simulation on the miter cone network.
Assign random simulation vectors at the PIs and propagate
them to the POs. Each pair of simulated minterms x and x’
in the primary input space has a corresponding pair of local
minterms y and y " in the local space Y and Y. If the output
of the network is 1, then the minterm composed of y and y’
belongs to SPFD!(Y,Y") . Currently a static simulation

model is used where a fixed number of input vectors are
tried. However, a dynamic model might also be used where
simulation is continued until it saturates, i.e. no new care
minterms are found.

e Convert the miter cone network into a SAT instance. The
local SPFD minterms (in Y,Y’) already computed (which
belong to the minimum SPFD) are complemented and
added to the SAT instance as breaking clauses, and SAT is
used to enumerate through the remaining satisfying (Y,Y")
assignments. When it returns “unsatisfiable”, the complete
minimum SPFD of the node is obtained. A more efficient
implementation of ALL-SAT can be used [11].

3.3. Experiment results

Both the S&S-based and BDD-based computation of the
minimum SPFDs with respect to the smallest separator, of each
node in the network, were implemented in SIS [29]. The smallest
separator is more useful for network optimization because it
allows for an efficient control of changes performed on the
network after resynthesis of the node. These changes are limited to
the transitive fanout cone of the node that is being resynthesized.
The detailed discussion about limiting the area of change and
modifications to the fanout nodes can be found in [30].

For S&S, the miter cone network was generated for each node
in the circuit and the minimum local SPFD was computed using
S&S. The BDD-based computation used BDDs for all the
computations, including building the global SPFDs of the PO
nodes and the nodes of the separator, constructing the minimum
global SPFD of the node, and the image computation.

In most examples, the limiting factor of the BDD-based method
was the construction of the minimum global SPFD of the node.
This implies that a combination of simulation and BDDs is not

suitable for computing the minimum SPFDs of nodes in the
network. Even if all the minterm pairs in a minimum SPFD can be
enumerated using simulation, the BDD-based computation needed
for ensuring the completeness of the minimum SPFD computation
could still encounter the same blowup problems.

The experiments were performed on a 4X “400MHz
UltraSparc 1I” with 4.0GB of RAM. The results comparing the
S&S-based and the BDD-based computation of the minimum
SPFDs are shown in Table 3.1. Columns 1 and 2 report the name
and the number of network nodes in each circuit, respectively. The
minimum SPFDs were computed for all network nodes. Columns
3 and 4 report the resulting runtimes for the BDD-based and the
S&S-based implementations, respectively. The overall time limit
was set to 4,000 seconds for each circuit. The gain in runtime is
reported in Column 5.

Circuit | #Nodes | BDD(s) | S&S(s) | Gain | Quitted | Quitted

(BDD) | (SAT)
dalu 1131] >4000 2914 >13.7 737 661
frg2 522) 1769.2 119.4 14.9 75 135
pair 824 323.9 97.8 3.3 289 119
C499 202 44.9 14.9 3.0 202 133
C880 357 | 3515.1 20.1 174.9 245 87
C1355 514) 1813.6 64.2 28.2 514 314
C1908 880 | 3980.4 177.7 22.4 638 492
C3540 1667 1>4000.0 554.4 >7.2 1663 1192
C6288 2416 |>4000.0 | 2446.7 >1.6 2416 2312
C7552 3266 |>4000.0 | 1651.4 >2.4 3256 1363
C5315 2288 1>4000.0 798.7 >5.1 2247 0
i10 2488 1>4000.0 | 1070.3 >3.7 2337 1117
Ave. >23.0

Table 3.1. Runtime Statistics of S&S-based versus BDD-
based minimum SPFD computation.

In the results shown above, S&S demonstrates an average
performance improvement of at least 23x compared to BDDs. In
general, the gain of S&S is much more, since the runtime of the
BDD-based implementation for some of the larger circuits is much
larger than the 4000 sec. timeout limit. The BDD-based
implementation is very slow for large circuits and hence
limitations on the size of the intermediate BDDs had to be
introduced. The largest size, to which an intermediate BDD is
allowed to grow, was set to 50,000 BDD nodes. To ensure some
fairness in comparison, the limit on the number of backtracks in
the SAT solver was set to 200. The number of network nodes, for
which these resource limits were reached, is reported in Columns
6 and 7 for BDDs and S&S, respectively. In addition, Column 6
includes the number of nodes that could not be processed when
the total runtime of the BDD-based computation exceeded the
4,000 sec. timeout. These numbers indicate that the BDD-based
computation is unable to process a larger number of nodes than
the S&S-based implementation for the same design. This could
become an issue when the minimum SPFDs are being used for
network optimization since the BDD-based approach might miss
some optimization opportunities.

The results in Table 3.2 summarize the contribution of
simulation to the S&S-based minimum SPFD computation.
Column 1 reports the name of each circuit. Column 2 reports the
total number of minterm pairs in the minimum SPFDs of the
nodes in the circuit. The number of minterm pairs identified by

simulation is reported in Column 3. The runtimes of simulation
and SAT in the S&S-based implementation are presented in
Columns 4 and 5, respectively.

Circuit #Total #Minterm SIM SAT
minterm pairs using Runtime Runtime
pairs SIM (s) (s)
dalu 3088 1329 5.8 288.0
frg2 8982 2867 354 84.6
pair 8450 3519 20.2 78.5
C499 458 178 2.4 12.2
C880 1584 697 4.7 15.2
C1355 596 238 5.9 57.9
C1908 2542 664 10.3 167.3
C3540 1278 615 10.2 540.4
C6288 324 162 20.3 2256.2
C7552 8758 3771 31.1 1593.9
C5315 5600 2522 22.6 764.3
il10 9896 2935 36.7 1025.7

Table 3.2. Contribution of simulation to S&S-based minimum
SPFD Computation.

The results above show that simulation can identify about 40%
of all minterm pairs in the minimum SPFD and contributes to a
small fraction of the total runtime. Thus, simulation plays a
significant role in the S&S-based minimum SPFD computation.
However, simulation has a worst-case quadratic complexity in the
number of patterns being simulated because it is necessary to
compare the pairs of the values of the POs and the separator
outputs. Hence, the simulation used in this application needs to be
carefully tuned to maintain the runtime improvements.

The two experiments demonstrate that S&S is better suited than
a pure BDD engine for the efficient computation of minimum
SPFDs, even for large circuits. In future work, we intend to use
this to better exploit the added flexibility provided by the
minimum SPFDs in an optimization framework.

4. Computing Resubstitutions

This section describes an S&S-based algorithm to compute sets
of nodes useful for Boolean resubstitution. Resubstitution plays an
important role in technology-independent [3] and technology-
dependent [17] logic synthesis. In particular, we focus on
speeding up resubstitution used in the re-synthesis flow [12].

4.1. Background

Definition 4.1 Resubstitution of a node in the network replaces
the node’s local function by a new local function, which depends
on a different set of fanins, but does not alter the functionality of
the network.

Resubstitution can be used to restructure the network to
minimize delay, area, routeability, or some other cost function.
Delay and routeablilty can be improved if the new fanin(s) arrive
earlier or are closer than those replaced. Area can be improved if
after resubstitution, some of the old fanins of the node have no
fanouts and, therefore, can be removed from the network.

The existence of a resubstitution is closely related to the concept
of functional dependency [10]. The definitions and the theorems
below are taken from that work, followed by a novel computation
procedure, which relies on S&S rather than BDDs, as in [10].
Another way of computing resubstitution functions is using
interpolation [18].

Definition 4.2 Given node n with global function g(X) and
nodes m,, my, ..., my; with global functions y,,(X), y,»(X), ...,
Vu(X), nodes my, m,, ..., m; can resubstitute node » if the global
function of n can be expressed as follows:

g(X) :F(le(X), ym2(X)’ cee ymk(X)) B

where F(yy, s, ..., V) 1S some Boolean function called a
resubstitution function.
Theorem 4.1 Nodes m;, my, ..., my with global functions

Y1(X)y Yma(X), ..., yu(X) can resubstitute node n with global
function g(X) if and only if there does not exist a minterm pair (x;
, X), such that g(x) # g(x,) but y,,,(x;) = y,,(x2), forall j: 1 < j< k.

Thus, resubstitution is possible if and only if the distinguishing
power (information) required of g (output) is not greater than the
union of the distinguishing powers of all the functions y,,
(inputs).

Example 4.1. Suppose the global function of node n is g =
(a @ b)(b v c), where a, b and ¢ are the Pls. Consider two sets of
resubstitution candidates with global functions: (y; = ab, y, =

abc) and (y; = a v b, y, = be). Table 4.1 shows the truth tables of
all the global functions. The set (v;, y4) is not a valid
resubstitution candidate for g because minterm pair (101, 110) is
distinguished by g but not by either y; or y,. On the other hand,
the set (yy, y,) satisfies Theorem 4.1 because all the minterm pairs
that are distinguished by g are also distinguished by at least one
node in the set.

Set 1 Set 2
abc g
y=ab | y,=abc y3=(atb) | ya=bc

000 0 0 0 0 0
001 0 0 0 0 0
010 1 1 0 1 0
011 1 1 0 1 1
100 0 0 0 1 0
101 1 0 1 1 0
110 0 0 0 1 0
111 0 0 0 1 1

Table 4.1. Truth table of g and the candidate sets.

Theorem 4.2 Let Y = {y, y,,...,)x}. Node n with global function
g(X) can be resubstituted using nodes mj, my, ..., my, each with

global functions y,,1(X), y,u(X), ..., (X, iff F"(NFY(Y) = 0,
where:

k
Fo’[f(Y) = Elx[g(X)/\ }:[lyjzymj(X)] >

k
F'(1) = 3, g0 1y,=,, (0]
J=
If this property holds, then any function F(Y) that agrees
(F"(Y)c F(Y)c F7(Y)) with the above incompletely

specified function (represented by its on-set and off-set) could be
the new resubstitution function for node #.

Example 4.2. Using the same functions as in the above
example, we compute the on-set and the off-set based on Theorem

4.2. with respect to local nodes y; and y,: F(Y) = ¥y, and
F(Y) = »», vV 7, . Minimizing this incompletely specified
Boolean function, we derive the simplest resubstitution function

for node # using candidates y, and y,: g=y, v y,= abv abc.

4.2. Computation using S&S

Given a node and a set of resubstitution candidate sets (derived
using the structural support of g(X)), the goal is to determine those
candidate sets that can be used for resubstitution. The following
steps describe the computation of feasible candidate sets:

1. Assign pairs of random vectors at the Pls corresponding to
minterms x; and x,. Perform bit-parallel simulation of the
network and compare the outputs for functions g and
resubstitution candidates y;, y», ...,). Using Theorem 4.1,
filter out the candidate sets that cannot be used for
resubstitution. Repeat random simulation for a pre-
determined number of rounds.

2. Apply SAT to each of the remaining candidate sets. SAT
is used to compute the on-set and off-set of F' (the images)
in Theorem 4.2 by enumerating the satisfying assignments
that were not filtered out by simulation. (The
combinations that appear during simulation at the root
node and the candidate nodes are complemented and
added to the solver as breaking clauses). If the images
computed by SAT satisfy Theorem 4.2, resubstitution
exists, and the resubstitution function is found by
minimizing the derived incompletely specified function.

4.3. Experimental results

The S&S-based and BDD-based resubstitution algorithms were
implemented in the resynthesis package of MVSIS [25]. The
following experiments were done using a Pentium 4 computer
with 1.8GHz CPU and 512MB RAM. The benchmarks were read
into MVSIS followed by technology mapping [23] using
mcnc.genlib from the SIS distribution [29]. Next the netlist was
re-synthesized to reduce area, with a total runtime limit of 3
minutes for the resubstitution of all nodes in the network. During
the resynthesis step, the S&S-based and BDD-based resubstitution
computations were compared for runtimes. The results of both
computations were verified against each other.

Table 4.2 gives the experimental results on a set of MCNC
[38], ITC [9], ISCAS [4] and PicoJava [35] benchmarks. Columns
1 and 2 list the names and the characteristics of each benchmark.
Column 3 is the runtime for the BDD-based approach. Columns 4,
5 and 6 give the runtimes (simulation, SAT, and total) for the
S&S-based approach. The runtimes include only the time to filter
out invalid candidates and do not include the runtime to select the
initial candidate sets or to perform the actual resubstitution after a
valid candidate set is chosen. Table 4.2 shows an average 29x
performance improvement of the S&S-based approach over the
BDD-based approach.

To give more insight into the S&S-based resubstitution in these
experiments, additional statistics are given in Table 4.3. Column 2
gives the total resynthesis runtime. Since the runs are limited to 3
minutes, for benchmark 577, resynthesis did not complete for the
whole circuit. However, the area improvements and the

resubstitution set counters are valid. Column 3 is the percentage
of area improvement due to re-synthesis. The total number of sets
of candidates (over all nodes) considered is reported in Column 4.
Column 5 (DSIM) and Column 6 (DSAT) give the percentages of
the candidate sets filtered out by simulation and SAT respectively.
Column 7 (PSAT) reports the percentages of the candidate sets
that SAT proved to be useful for substitution. The last column
(USAT) is the percentage of candidate sets not proved/disproved
by SAT due to a resource limit on the number of backtracks. Table
4.3 shows that an average 94% of the candidate sets are filtered
out by simulation, indicating that simulation plays a significant
role in S&S.

Name | In/Out/ Latch | BDD (s) Simulation & Sat (s) | Gain
SIM SAT | Total

dalu 75/16/0 | 78.74 1.38 2.12 3.50 22.5
des 256/245/0 | 104.66 348 12.75] 16.23 6.5
frg2 143/139/0 | 30.78 1.57 2.42 3.99 7.7
il0 257/224/0 | 172.99 2.24 2.34 4.58 37.8
k2 45/45/0 | 53.41 1.99 9.38] 11.37 4.7
pair 173/137/0 | 75.44 1.52 1.27 2.79 27.0
C432 36/7/0] 83.00 0.36 0.29 0.65 127.7
C2670 233/140/0 | 48.04 0.69 1.28 1.97 24.4
C5315 178/123/0 | 109.95 1.13 1.86 2.99 36.8
C7552 207/108/0 | 145.04 2.68 6.11 8.79 16.5
s15850 14/87/597 | 170.60 2.80 3.45 6.25 27.3
$35932 35/320/1728 | 40.45 1.40 1.28 2.68 15.1
pjl 1769/1063/0 | 163.90 3.98 4.82 8.80 18.6
bl4 32/54/245] 173.46 1.72 2.86 4.58 37.9
bl7 37/97/1414 | 274.01 2.46 3.93 6.39 42.9
b20 32/22/490 | 166.99 2.46 6.17 8.63 19.4
b22 32/22/703 | 169.49 1.81 3.98 5.79 29.3
Ave. 29.5

Table 4.2. Runtime comparison of S&S-based vs. BDD-based
resubstitution computation.

Run Area Total DSIM | DSAT | PSAT | USAT
Name | Time | Imp. | cand.sets | (%) (%) | (%) | (%)

) (%)
dalu 4.82] 13.96] 417,162] 94.68] 1.12] 4.20] 0.00
des 17.74] 2.94] 731,665] 89.32] 9.82] 0.83] 0.02
frg2 4.53] 15.41 341,118] 92.61] 0.04] 7.33] 0.01
il0 7.61] 7.58 825,859] 97.35 1.31] 1.33] 0.01
k2 11.12] 8.09] 313,343] 83.21] 14.14] 2.65] 0.00
pair 3.23] 12.35 399,039] 96.06] 0.00] 3.94] 0.00

C432 0.84] 7.68 97,375] 96.89] 1.79] 1.32] 0.00

C2670 2.18] 20.98 150,979] 93.44] 2.62] 3.86] 0.08

C5315 3.86] 13.15 369,656] 96.21] 0.25] 3.62] 0.01

C7552 9.87] 15.83 578,142] 92.12] 3.73] 4.10] 0.05

s15850 9.75] 11.45 825,209] 95.16] 2.64] 2.20] 0.01

$35932 5.711 3.21 451,714] 96.79] 0.00] 3.21] 0.00

pjl 66.79] 10.29] 3,988,250] 95.00] 2.99] 2.00] 0.01
bl4 25.56] 5.17] 2,367,501 96.64] 2.36] 0.97] 0.02
bl7 180.67] 8.44] 9,050,793] 93.20] 5.73] 1.05] 0.02
b20 61.93] 7.52] 5,672,596] 96.95] 1.64] 1.38] 0.03
b22 101.04] 7.14] 8,130,898] 96.69] 2.00] 1.26] 0.05

Ave. 10.07 94.25] 3.07] 2.66] 0.02

Table 4.3. Resynthesis statistics.

Tables 4.2 and 4.3 together demonstrate the power of using
S&S to solve this computationally hard problem in logic
synthesis.

We also performed an experiment to compute resubstitutions
using simulation and BDDs, instead of SAT. BDDs are used to
check the validity of the remaining 6% candidate sets after
simulation, as opposed to the case reported in Table 4.2 when
BDDs are used to check all candidate sets. In terms of runtime, the
overall results are: on the set of 17 benchmarks, BDD wins in 5
cases and SAT wins in 12 cases. The average SAT/BDD runtime
ratio is 0.79. This demonstrates that SAT wins over BDDs in
performance alone, without the advantages of simulation.

5. Other Applications of S&S in Logic Synthesis

S&S can be used in a variety of other applications in synthesis.
In this section, for completeness, even though the experiments are
not part of this paper, we discuss a number of these applications.
Some have been experimented with in other papers while others
remain for future experimentation.

5.1. Detecting functionally equivalent nodes

Detecting functionally equivalent nodes is important for both
formal verification and logic synthesis. It simplifies the
verification problem to be solved and reduces the area of the
implemented circuit. Many techniques, such as BDD sweeping
[13] or SAT sweeping [14], have been used to achieve functional
reduction as a post-processing step after the initial construction of
the AIG graphs.

In [22], an algorithm was proposed based on S&S, to perform
functional reduction during the AIG construction. Random
simulation is employed to create the simulation signature for each
node. When a new node is to be added to the AIG, the signature is
checked to see if it is unique. If it is, the node is added to the
network. Otherwise, SAT is used to check if the new node is
functionally equivalent to the nodes with the same simulation
signature. Experiments show that S&S can sweep away a
substantial amount of duplicated logic and that this improvement
is orthogonal with respect to other area optimization techniques.

5.2. Computing internal don’t-cares

Optimization of Boolean networks using don’t-cares [28][20]
plays an important role in technology independent logic synthesis
and incremental re-synthesis of mapped netlists. In [21], an
efficient method was proposed to compute complete don’t-cares
(CDCs) based on S&S. The algorithm uses a windowing scheme
to trade off quality and runtime. Random simulation with a fixed
number of simulation patterns is used to detect a subset of care
minterms. Then, a SAT solver enumerates through the remaining
satisfying solutions of the resulting problem representing the
remaining part of the care set. The complete don’t-care sets are
derived based on both simulation and SAT results.

Experiments show that the algorithm is faster than a similar one
based on BDDs. This makes it possible to compute CDCs for
large designs leading to the enhanced optimization quality and
reduced runtime, making the use of CDCs affordable for industry
designs.

5.3. Detecting the true support of a node

Definition 5.1 The functional support of a node in a network is
the set of primary inputs, such that the global function of the node
depends on each input.

Functional support is useful when Boolean functions are
represented as multi-level circuits. If a PI is not in the functional
support of a node, the circuit representing the node could be
simplified by propagating a constant instead of the PI. However,
in general, this PI cannot be removed from the network because it
may belong to the functional support of other nodes.

Simulation can be used to show that some variables belong to
the functional support. For each random pattern simulated, a
pattern with a complemented value for a given variable is also
simulated. If the outputs are different for at least one pattern, then
the variable belongs to the functional support. When simulation
saturates, the remaining variables are processed by SAT. In this
processing, the positive and negative cofactors of the function
with respect to each undecided variable are derived and the miter
circuit consisting of an XOR gate, that has the two cofactors as its
inputs, is constructed. If no satisfying assignment exists to cause
the output of the miter to be 1, then the variable does not belong
to the functional support.

5.4. Detecting symmetries

Many applications in EDA exploit symmetric functions to
achieve better results and/or improve performance.

Definition 5.2 Boolean function F{(...x;,..., xj ...) is symmetric
in variables x; and x; if and only if

F(...Xi,...,Xj) :F(...Xj,..., Xi,)

Theorem 5.1. Let Fy, Fy;, Fo and F}; be the four cofactors of
F with respect to variables x; and x; The symmetry in variables x;
and x; exists iff Fy; = F,.

Simulation can be used to show that some pairs of variables are
not symmetric. Random simulation is inefficient because we need
two input patterns that are swapped only in the values for
variables x; and x; to determine if they are not symmetric. Guided
simulation based on this requirement finds many non-symmetric
pairs. When SAT is invoked on the remaining pairs, two cofactors
with respect to two variables, Fy; and F}y, are compared by
constructing a miter similar to the one in Section 5.3, and solving
the resulting SAT problem.

A similar approach to the computation of symmetries using
simulation and ATPG was proposed in [26].

5.5. Detecting combinational redundancies

Detecting combinational redundancies (untestable faults) is a
well-studied area [16][34]. Random simulation is used to filter out
signals that are not redundant. If simulation cannot prove this,
SAT is employed. The redundant signals can be replaced by
constants in the netlist, resulting in savings.

5.6. Detecting feasible bi-decompositions

A method for performing Boolean decomposition of
incompletely specified functions proposed in [19] is known as bi-
decomposition because it decomposes the function into two logic
nodes, whose outputs feed into a two-input gate (AND, OR or
EXOR). This method produces good quality decompositions by

propagating don’t-cares through the decomposed network and
caching intermediate results.

The usefulness of bi-decomposition is limited because of its
prohibitive runtime. The bottleneck of this method is in
computing the subsets of variables, for which bi-decomposition is
feasible. This computation requires evaluating Boolean formulas
with quantifiers, which is done in [19] using BDDs. Our recent
experience suggests that S&S might provide a better solution for
this task, which may substantially speed-up bi-decomposition.
Providing a comprehensive S&S formulation of bi-decomposition
and evaluating it experimentally is deferred to the future work.

6. Conclusions and future work

We demonstrated that computationally hard problems in logic
synthesis could be solved more efficiently using a combination of
simulation and Boolean satisfiability. Two applications were
studied in detail: the computation of SPFDs, and the derivation of
sets of nodes that can be used to resubstitute a node in a multi-
level network. We also discussed briefly how a few other
applications have been or could be solved using S&S.

Future work will include evaluating the use and impact of these
computed flexibilities after technology independent optimization
and technology mapping, and developing new ways of using S&S
in re-synthesis. Our experience suggests that S&S can replace
BDDs in many applications in logic synthesis.

References

[11 K.S.Brace, R. L. Rudell, R. E. Bryant, “Efficient implementation of
a BDD package”, Proc. DAC ‘90, pp. 40-45.

[2] D. Brand, “Verification of large synthesized designs”. Proc. ICCAD
"93, pp. 534 -537.

[31 R. K. Brayton and C. McMullen, “The decomposition and
factorization of Boolean expressions,” Proc. ISCAS ‘82, pp. 29-54.

[4] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” Proc. ISCAS ’89.

[51 R. E. Bryant, "Graph-based algorithms for Boolean function
manipulation," JEEE TC, vol. C-35(8), Aug 1986, pp. 677-691.

[6] N. Eén, N. Sorensson, “An extensible SAT-solver”, Proc. SAT ‘03.
http://www.cs.chalmers.se/~een/Satzoo/

[71 F. Lu, L. Wang, K. Cheng, R. Huang. “A circuit SAT solver with
signal correlation guided learning”. Proc. DATE ‘03, pp. 892-897.

[8] E. Goldberg, M.Prasad, R.K.Brayton. “Using SAT for combinational
equivalence checking”. Proc. DATE ‘01, pp. 114 -121.

[91 ITC ’99 Benchmarks http://www.cad.polito.it/tools/itc99.html

[10] J-H. R. Jiang, R. K. Brayton, “Functional dependency for
verification reduction”, Proc. CAV '04, pp. 268-280.

[11] H.-S. Jin, H.-J. Han, F. Somenzi, “Efficient conflict analysis for
finding all satisfying assignment of a Boolean circuit”, Proc. TACAS
’05 (eds. N. Halbwachs and L. Zuck), LNCS 3440, pp. 287-300.

[12] V. N. Kravets and P. Kudva, “Implicit enumeration of structural
changes in circuit optimization”, Proc. DAC "04, pp. 438-441.

[13] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust
boolean reasoning for equivalence checking and functional property
verification”, IEEE Trans. CAD, Vol. 21(12), 2002, pp. 1377-1394.

[14] A. Kuehlmann, “Dynamic transition relation simplification for
bounded property checking”. Proc. ICCAD 04, pp 50-57.

[15] J. P. Marques-Silva, K. A. Sakallah, “GRASP: A search algorithm
for propositional satisfiability”, IEEE Trans. Comp, Vol. 48(5) ,
May 1999, pp. 506-521.

[16] T. Larrabee, "Efficient generation of test patterns using Boolean
difference", Proc. Intl. Test Conference ‘89, pp. 795-801.

[17] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic
decomposition during technology mapping,” IEEE Trans. CAD,
16(8), 1997, pp. 813-833.

[18] K.L. McMillan, “Interpolation and SAT-based model checking”.
Proc. CAV ‘03, LNCS 2725, Springer, 2003, pp. 1-13.

[19] A. Mishchenko, B. Steinbach, and M. Perkowski, "An algorithm for
bi-decomposition of logic functions," Proc. DAC '01, pp. 103-108.

[20] A. Mishchenko, R. K. Brayton. “Simplification of non-deterministic
multi-valued networks”. Proc. ICCAD ‘02, pp. 557-562.

[21] A. Mishchenko, R. K. Brayton. “SAT-based complete don’t-care
computation for network optimization”. Proc. IWLS 04, pp.353-360.

[22] A. Mishchenko, S. Chatterjee, R. Jiang, R. Brayton. “FRAIGs: A
unifying representation for logic synthesis and verification”.
Technical Report, ucC Berkeley, 2004.
http://www.ece.pdx.edu/~alanmi/publications/fraigs08_full.pdf

[23] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, T. Kam.
“Reducing structural bias in technology mapping”. To appear in
Proc. IWLS ‘05

[24] M. Moskewicz, C. Madigan, Y. Zhao, L.Zhang, S. Malik. “Chaff:
engineering an efficient SAT solver”. Proc. DAC 01, pp. 530-535.

[25] MVSIS Group. MVSIS: Multi-Valued Logic Synthesis System. UC
Berkeley. http://www-cad.eecs.berkeley.edu/mvsis/

[26] I Pomeranz and S.M. Reddy, “On determining symmetries in inputs
of logic circuits”, [EEE Trans. CAD, vol. 13(11), Nov. 1994, pp.
1428-1434.

[27] M. Prasad, P. Chong and K. Keutzer, "Why is ATPG Easy?", Proc
DAC’99, pp. 22-28.

[28] H. Savoj, R. K. Brayton, “The use of observability and external
don’t-cares for the simplification of multi-level networks”. Proc.
DAC” 90. pp. 297-301.

[29] E. Sentovich, et al. “SIS: A system for sequential circuit synthesis”,
Tech. Rep. UCB/ERI, M92/41, ERL, Dept. of EECS, Univ. of
California, Berkeley, 1992.

[30] S. Sinha and R. K. Brayton, “Implementation and use of SPFDs in
optimizing Boolean networks”, Proc. ICCAD 98, pp. 103-110.

[31] S. Sinha, S. Khatri, R. K. Brayton and A. Sangiovanni-Vincentelli,
“Binary and multi-valued SPFD-based wire removal in PLA
networks”, Proc. ICCD ’00, pp. 494-503.

[32] S. Sinha and R. K. Brayton, “Improved robust SPFD computations”,
Proc. IWLS "01, pp. 156-161.

[33] S. Sinha, A. Mishchenko and R.K. Brayton, “Topologically
constrained logic synthesis”, Proc. IWLS '02, pp. 13-20.

[34] P. R. Stephan, R. K. Brayton and A. L. Sangiovanni-Vincentelli,
“Combinational test generation using satisfiability,” IEEE Trans.
CAD, vol. 15(9) , September 1996, pp. 1167-1176.

[35] SUN Microelectronics. PicoJava Microprocessor Cores.
http://www.sun.com/microelectronics/picoJava/

[36] Y. Watanabe, L. Guerra and R. K. Brayton, “Logic optimization
with multi-output gates”, Proc. ICCD ‘93, pp. 416-420.

[37] S. Yamashita, H. Sawada, A. Nagoya, “A new method to express
functional permissibilities for LUT based FPGAs and its
applications”. Proc. ICCAD 96, pp. 254-261.

[38] S. Yang. Logic synthesis and optimization benchmarks. Version 3.0.
Tech. Report. Microelectronics Center of North Carolina, 1991.

