
1588 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

andTt and the technology parameters. For all cases, we observe that the
total latency is not significantly higher than the minimum source-sink
delay of 2739 ps (from Table I).

VI. CONCLUSION

Automated buffered routing is a necessity in modern very large-scale
integration design. The contributions of this paper are two new problem
formulations for buffered routing for single- and multiple-clock do-
mains. Both of these formulations address problems that will become
more prominent in future designs. Any computer-aided design (CAD)
tools currently performing buffer insertion will eventually have to deal
with synchronizer insertion. Furthermore, any SoC routing CAD tools
will have to handle routing across multiple clock domains due to the
increasing use of IPs.

We solve both problems optimally in polynomial time via the RBP
and GALS algorithms that build upon the fast path algorithm of [17].
Experimental results validate the correctness and practicality of the two
algorithms for an aggressive technology.

ACKNOWLEDGMENT

The authors would like to thank H. Zhou for supplying fast path code
and also to M. Thiagarajan for help with the figures and researching the
background material on the MCFIFOs.

REFERENCES

[1] C. J. Alpert, G. Gandham, J. Hu, S. T. Quay, J. L. Neves, and S. S. Sapt-
nekar, “Steiner tree optimization for buffers and blockages and bays,”
IEEE Trans. Comput.-Aided Design, vol. 20, pp. 556–562, Apr. 2001.

[2] L. Carloni, K. McMillan, A. Saldanha, and A. Sangiovanni-Vincentelli,
“A methodology for correct-by-construction latency insensitive design,”
Proc. IEEE Int. Conf. Computer-Aided Design (ICCAD), 1999.

[3] D. Chapiro, “Globally asynchronous locally asynchronous systems,”
Ph.D. dissertation, Stanford Univ., Stanford, CA, 1984.

[4] T. Chelcea and S. Nowick, “Robust interfaces for mixed-timing systems
with application to latency-insensitive protocols,” inProc. ACM/IEEE
Design Automation Conf. (DAC), 2001, pp. 21–26.

[5] P. Cocchini, “Concurrent flip-flop and repeater insertion for high per-
formance integrated circuits,”Proc. IEEE Int. Conf. Computer-Aided
Design (ICCAD), pp. 268–273, 2002.

[6] J. Cong, “Timing closure based on physical hierarchy,” inProc. Int.
Symp. Physical Design, 2002, pp. 170–174.

[7] J. Cong, J. Fang, and K.-Y. Khoo, “An implicit connection graph maze
routing algorithm for ECO routing,”Proc. IEEE Int. Conf. Computer-
Aided Design (ICCAD), pp. 163–167, 1999.

[8] J. Cong and Z. Pan, “Interconnect performance estimation models for
design planning,”IEEE Trans. Comput.-Aided Design, vol. 20, pp.
739–752, June 2001.

[9] S. Hassoun, “Optimal use of 2-phase transparent latches in buffered
maze routing,”Proc. IEEE Int. Symp. Circuits Syst., 2003.

[10] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson,
J. Obert, P. Ellervee, and D. Lundqvist, “Lowering power consump-
tion in clock by using globally asynchronous locally synchronous de-
sign style,” presented at theProc. ACM/IEEE Design Automation Conf.
(DAC), 1999.

[11] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner,
“Globally-asynchronous locally-synchronous architectures to simplify
the design of on-chip systems,” presented at theProc. 12th Annu. IEEE
Int. ASIC/SOC Conf., 1999.

[12] M. Lai and D. F. Wong, “Maze routing with buffer insertion and wire-
sizing,” inProc. ACM/IEEE Design Automation Conf. (DAC), 2000, pp.
374–378.

[13] R. Lu, G. Zhong, C. Koh, and K. Chao, “Flip-flop and repeater inser-
tion for early interconnect planning,” inProc. Design Automation Test
Europe Conf. (DATE), 2002, pp. 690–695.

[14] J. Rabaey,Digital Integrated Circuits. Englewood Cliffs, NJ: Prentice-
Hall, 1996.

[15] J.-N. Seizovic, “Pipeline synchronization,”Proc. IEEE ASYNC, 1994.

[16] L. P. P. P. van Ginneken, “Networks for minimal Elmore delay,”Proc.
IEEE Int. Symp. Circuits Syst., pp. 865–868, 1990.

[17] H. Zhou, D. F. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing
and buffer insertion with restrictions on buffer locations,”IEEE Trans.
Comput.-Aided Design, vol. 19, pp. 819–824, July 2000.

Fast Computation of Symmetries in
Boolean Functions

Alan Mishchenko, Member, IEEE

Abstract—Symmetry detection in completely specified Boolean functions
is important for several applications in logic synthesis, technology map-
ping, binary decision diagram (BDD) minimization, and testing. This paper
presents a new algorithm to detect four basic types of two-variable symme-
tries. The algorithm detects all pairs of symmetric variables in one pass over
the shared BDD of the multioutput function. The worst case complexity
of this method is cubic in the number of BDD nodes, but on typical logic
synthesis benchmarks the complexity appears to be linear. The computa-
tion is particularly efficient when the functions have multiple symmetries
or no symmetries. Experiments show that the algorithm is faster than other
known methods, and in some cases achieves a speedup of several orders of
magnitude.

Index Terms—Binary decision diagrams (BDDs), Boolean functions, re-
cursive procedures, symmetric variables, symmetry, zero-suppressed bi-
nary decision diagrams (ZBDDs).

I. INTRODUCTION

The problem of symmetry detection in Boolean functions has a
long history and many applications, such as functional decomposition
in technology-independent logic synthesis [6], [9], [11], Boolean
matching in technology mapping [12], [13], and binary decision
diagram (BDD) minimization [21].

Early methods to detect symmetries are based on checking the
equality of two-variable cofactors of the functionF01 = F10 and
F00 = F11. Decomposition charts [18] and truth tables [4] have been
used to compute and compare cofactors. Representing functions using
BDDs [1] improved the efficiency of cofactor computation. However,
computing multiple cofactor pairs is still expensive for large functions
because repeated cofactoring leads to creating and deleting a large
number of intermediate BDD nodes. In this paper, cofactor checking
is referred to as thenaïve methodto detect symmetries.

To bypass the cofactor computation, recent more sophisticated
approaches use dynamic BDD variable reordering [19], generalized
Reed–Muller forms [23], and analysis of shared BDDs [16]. The latter
approach was recently successfully applied to BDD minimization in
[21].

Here we review the symmetry detection algorithm described in [16]
and [21] as the most computationally efficient. This algorithm is based
on the observation that the absence of symmetry between a pair of
variables can, in many cases, be discovered without computing and
comparing the cofactors. To prove the absence of symmetry counting

Manuscript received July 16, 2002; revised December 23, 2002 and May 7,
2003. This work was supported by a research grant from Intel Corporation.

The author is with the Department of Electrical Engineering and Computer
Sciences, University of California, Berkeley, CA 94720 USA (e-mail:
alanmi@eecs.berkeley.edu).

Digital Object Identifier 10.1109/TCAD.2003.818371

0278-0070/03$17.00 © 2003 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 1589

minterms as well as several other specialized traversals of the shared
BDDs are performed. These traversals are relatively fast because they
only explore the available BDD structure, without building new BDD
nodes. In the end, the naïve symmetry check is applied to those vari-
able pairs for which the existence of symmetry could not be disproved.
This method is faster than the naïve method applied to all cofactor pairs.
However, it has the following limitations, which become noticeable for
functions with many inputs and large BDDs.

• It involves multiple BDD traversals.
• It often requires a substantial number of cofactors to be checked

using the naïve method.
• It takes a long time to process some functions to discover that

they have no symmetries.
• It detects only one type of “classical” two-variable symmetry and

does not detect other useful symmetry types (for example, single-
variable symmetries [6] or skew symmetries [23]).

The main contribution of this paper is in proposing a new algorithm
for symmetry detection from the shared BDDs. This method improves
on the previous approaches in several ways.

• It reduces the number of BDD traversals to one main traversal and
several additional traversals performed from the main traversal.

• It is particularly efficient for benchmarks with few symmetries
and no symmetries, leading to several order of magnitude
speedups, compared to other methods.

• It can simultaneously (in one pass) detect four basic symmetries
defined in [23].

The differences between the present work and the previous work [16],
[21] are the following.

• The previous work is based on “negative thinking.” It first de-
tects as many nonsymmetric pairs as possible, and then uses the
naïve check to prove that the remaining pairs are symmetric. The
present work is based on “positive thinking.” If the symmetries
exist, they are detected and added to the set of computed sym-
metries. There is no search for the nonsymmetric variable pairs
and no application of the naïve check to individually computed
cofactor pairs.

• As evidenced by Table II in [21, p. 92], the most efficient com-
ponent of the previous work is Idea 1 (counting minterms in the
cofactors of the functions and proving nonsymmetric those vari-
able pairs that have different minterm counts). The present work
does not rely on minterm counting at all, neither explicitly nor
implicitly.

• The present work is based on new BDD traversal procedures and
uses symmetry graphs, represented by zero-suppressed binary de-
cision diagrams (ZDDs), to efficiently store and manipulate the
symmetry information.

A straightforward application of the proposed method computes
symmetries individually for each output. A minor modification of the
algorithm allows for the computation of symmetries that are common
to all outputs, which is particularly useful for BDD minimization by
variable reordering.

Several generalizations of the classical two-variable symmetries
were proposed [2], [5], [10]. These methods incorporate classical
two-variable symmetries as a particular case and use them to compute
other symmetries. Therefore, the proposed efficient algorithm to
compute two-variable symmetries can also be used to enhance the
computation of the generalized symmetries.

The rest of the paper is organized as follows. Section II introduces
definitions and theoretical foundations. Section III presents the new
algorithm. Section IV discusses implementation issues. Section V
presents the experimental results. Section VI concludes the paper.

II. BACKGROUND

Functions discussed in this paper are Boolean completely specified
functions; variables are Boolean variables. The definitions and nota-
tions introduced in this section are based on [23].

The supportof F; supp(F), is the set of all variables on whichF
depends.

A cofactorof a functionF (. . . ; xi; . . . ; xj ; . . .)with respect to vari-
ablesxi andxj is the function resulting from the substitution intoF
of specific values forxi andxj . For example, the cofactor ofF with
respect toxi = 0 andxj = 1 is functionF (. . . ; 0; . . . ; 1; . . .), which
is denotedF01.

The Shannon expansion represents functionF in the formF =
�xF0 + xF1, whereF0 andF1 are the negative and positive cofactors
of the function F with respect to variablex.

Definition: Two variables xi and xj of function
F(. . . xi; . . . ; xj ; . . .) aresymmetricif the function does not change
when the variables are swapped

F(. . . ; xi; . . . ; xj ; . . .) = F(. . . ; xj ; . . . ; xi; . . .):

This symmetry is known as theclassical symmetry, or thenonskew
nonequivalence symmetry, denotedxi NE xj . The definition of this
symmetry translates into the following requirements for the cofactors
of the functionsF01 = F10.

Other relationships among the two-variable cofactors lead to other
symmetry types. Requiring the equality ofF00 = F11 yields the
nonskew equivalence symmetry, denotedxi E xj . Complementing
one of the cofactors in the equalitiesF01 = F10 andF00 = F11 yields
two skew symmetries: theskew nonequivalence symmetry, denoted
xi !NE xj (F01 = �F01), and theskew equivalence symmetry, denoted
xi !E xj (F00 = �F11).

For completeness, two other ways of generalizing two-variable
symmetries are mentioned. With four cofactors,F00; F01; F10, and
F11, it is possible to create 12 different cofactor equalities (six equali-
ties without complementation and six with complementation). Some
of them simply state that the function does not depend on a variable.
For example,F00 = F01 means that the function does not depend on
xj . Such symmetries are calledsingle-variable symmetries[6].

The above symmetries are defined using the relationship among co-
factor pairs. Another generalization considers cofactor groups that may
include more than two cofactors. This approach yields 30 different
symmetries [5], [2], which subsume all previously defined two-variable
symmetries. The concept of two-variable symmetries has also been ex-
tended to larger groups of variables [10], [15].

In this paper, we focus on the four basic two-variable symmetries:
NE; E; !NE; !E. The proposed method finds all pairs of symmetric
variables. Using this information, larger groups of symmetric variables
can be constructed by applying the transitivity.

Theorem 1 [23]: In each group of conditions below, any two of the
three conditions imply the third, as follows.

Group A: (1) xi NE xj ; (2) xj NE xk; (3) xi NE xk:

Group B: (1) xi E xj ; (2) xj E xk; (3) xi NE xk:

Group C: (1) xi !NE xj ; (2) xj !NE xk; (3) xi NE xk:

Group D: (1) xi !E xj ; (2) xj !E xk; (3) xi NE xk:

Group E: (1) xi !E xj ; (2) xj !NE xk; (3) xi E xk:

Theorem 1 does not hold for incompletely specified Boolean func-
tions.

Another useful property follows from the canonicity of the Shannon
expansion.

Theorem 2 [23]: Let F be a function andxi; xj , andxk be three
variables belonging to the support ofF . FunctionF is symmetric inxi

1590 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

Fig. 1. Pseudocode of a generic recursive algorithm.

andxj with any symmetries belonging to the setfNE; E; !NE; !Eg iff
both cofactors ofF with respect toxk are symmetric inxi andxj with
the same symmetries.

Next we define thesymmetry graph,GF (V;E), which is used in this
paper as a canonical representation of the symmetry information. The
vertices of the symmetry graph correspond to variables in the support
of the function, while the edges correspond to the two-variable sym-
metries. Each symmetry type corresponds to an edge type. Thus, if two
variables have several symmetries, the corresponding vertices are con-
nected by as many edges of different type.

Several graph operations are used in the sequel. Theunionandinter-
sectionare defined and denoted similarly to the set-theoretic union([)
and intersection(\) of the sets of edges. The Cartesian product(�) of
variablex by a set of variablesY results in a graph composed of edges
connecting the vertex of variablex with vertices of variables inY .

Two operations on variable sets are considered, the set difference
(�) and the number of elements in the set (denoted by vertical bars,
for examplejSj). Thus, the number of support variable is denoted
jsupp(F)j.

The concepts “symmetry graph,” “the set of edges in the symmetry
graph,” “symmetry information,” and “the set of pair-wise variable
symmetries” are used interchangeably in this paper.

III. SYMMETRY COMPUTATION ALGORITHM

This section presents the main contribution of the paper, a recursive
symmetry computation algorithm.

A. Generic Recursive Procedure

The symmetry detection algorithm falls into a general category of
recursive algorithms, which work by cofactoring the problem with re-
spect to a variable, solving the resulting subproblems, and then deriving
the solution of the initial problem. The pseudocode of the generic re-
cursive procedure is shown in Fig. 1.

If decision diagrams [1], [14] are used to represent the input param-
eters of a recursive procedure, the partial results are cached to pre-
vent multiple calls with the same input parameters. Caching is respon-
sible for the reduction of computational complexity from exponential
to polynomial in the sizes of the representation of the parameters. The
cache lookup is typically placed before Step 2 and the cache insertion
is placed before Step 5. To keep the pseudocode short, these steps are
omitted in this paper.

B. Computational Core

Recursive computation of symmetries is based on Theorem 2, which
allows us to compute the symmetries of the function if the symmetries
for the cofactors are known. The pseudocode shown in Fig. 2 illus-
trates this computation. The procedureComputeSymmetriestakes the
function whose symmetries should be computed. The internal recur-
sive procedureComputeSymmetriesrec takes the function and a set of
variables initialized to the support of the function. Both procedures re-
turn the symmetry graph, whose edges represent pair-wise symmetric
variables.

Fig. 2. Pseudocode of symmetry computation core.

Step 1) ProcedureComputeSymmetriesrecchecks the function for
being a constant. The constant function is symmetric in all
its variables. Therefore, the procedure returns thecomplete
symmetry graph with vertices representing variables inV .
This graph has edges between all vertex pairs.

Step 2) CofactoringF with respect to variablex 2 supp(F) is a
standard operation. When BDDs are used to represent the
function, cofactoring with respect to the topmost variable
in F is a constant time operation. Note that becauseF is
cofactored using a variable in its support, the cofactors,F0
andF1, are different Boolean functions. This is important
for procedureSymmetricVars, used later in the pseudocode.

Step 3) Computing symmetries recursively is performed by calling
ComputeSymmetriesrecwith the cofactors and the variable
set including the support ofF without the cofactoring vari-
ablex. However, if the first call returns no symmetries, the
second call is skipped, because, according to Theorem 2, if
one of the cofactors does not have symmetries, the function
does not have symmetries as well.

Step 4) The solution of the problem is found by augmenting the
intersection,S0\S1, with two symmetry graphs,S2 andS3.
The intersectionS0\S1 consists of edges common to both
subgraphs. According to Theorem 2, only the symmetries
of bothcofactors are the symmetries of the function.

The additional symmetries have two distinct origins. The symme-
tries inS2 involve the cofactoring variablex. These symmetries are
not included inS0 andS1 becausex is not in the supports of the co-
factors used in Step 3. Symmetries inS2 are found by pairingx with
all variablesy 2 Y , such thatF0 jy=1 = F1 jy=0. The setY satisfying
this condition is returned by procedureSymmetricVars. This step cor-
responds to finding all nonskew nonequivalence symmetries with vari-
able x. The extension to compute other symmetries is discussed later.

The second part of the additional symmetries(S3) is due to those
variables inV that are not in the support ofF . Pairs of these variables
are symmetric as far as functionF is concerned. Note that initially pro-
cedureComputeSymmetriesrec is called withV equal to the support
of F . In this case, the set of additional symmetriesS3 is empty. How-
ever, in later calls toComputeSymmetriesrec, the support of a cofactor
may not depend on all variables inRemainingVars. If setV �supp(F)
includes at least two variables, the set of symmetriesS3 is not empty.

The algorithm in Fig. 2 is particularly efficient when applied to func-
tions with multiple symmetries and no symmetries at all. The former is
true because the BDDs of symmetric and nearly symmetric functions

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 1591

Fig. 3. An example of symmetry computation.

Fig. 4. Computing the variables that are symmetric with a variable.

tend to be small and regular. This increases the cache hit rate and leads
to faster processing. The situation when the function has no symme-
tries is detected early in the process. Thus, when the computation for
one of the cofactors results in the empty set, the algorithm does not
compute symmetries for the other cofactor. This shortcut leads to sig-
nificant speedups for large benchmarks.

The worst case complexity ofComputeSymmetriesrec is cubic in
the number of the BDD nodes, because the complexity of this proce-
dure is linear while each call toSymmetricVars, performed insideCom-
puteSymmetriesrec, has the worst case quadratic complexity. How-
ever, for benchmark functions, the experimentally observed runtime is
close to linear in the number of the BDD nodes.

Example: The symmetry computation algorithm is illustrated for
Boolean functionF = ab+ �c+ �d. The tree of recursive calls toCom-
puteSymmetriesrec is in Fig. 3. Initially, ComputeSymmetriesrec is
called withF and its support:fa; b; c; dg. Cofactoring with respect to
a leads to two calls, with functionsF0 = �c+ �d andF1 = b+�c+ �d, etc.
Note that the trivial cases with one variable inV result in the empty set
of symmetries, while the trivial calls with two variables inV result in
returning the variable pairs.

C. Detecting Variables Symmetric With Variable

This section discusses procedureSymmetricVarswith the pseu-
docode shown in Fig. 4. The procedure takesF0 and F1, the two

cofactors ofF with respect tox and the set of candidate variables
Y (to avoid multiple indices, the cofactors are denotedG andH in
the pseudocode). The procedure returns the subset ofY such that, for
each variablez in this subset,F0jz=1 = F1jz=0. It means thatz is
symmetric withx in the original functionF .

Step 1) If functionsG andH are equal, so are their cofactors. As a
result, all variables inY satisfy the condition. If both func-
tionsG andH are (nonequal) constants, then their cofac-
tors are never equal. In this case, the procedure returns the
empty set.

Step 2) Any variablez in Y is selected and the functions are cofac-
tored with respect to this variable.

Step 3) For a variable to belong to the solution, it should belong
to the solution for both cofactors (this, again, follows from
the canonicity of the Shannon expansion). So if one of
the subproblems has the empty solution, there is no need
to attempt solving another one. This is another shortcut,
which accounts for efficient processing of functions without
symmetries.

Step 4) The resulting set of variables is the intersection of the vari-
able sets for the cofactors. Now we recall thatG = F0 and
H = F1. Therefore, conditionF01 = F10 translates into
G1 = H0. When this is true, variablez is added to the re-
sulting set. This completes the recursive call.

D. Computing the Complete Graph

The complete graph can be computed using procedureTuples(V; i),
wherei = 2. This procedure returns the set of subsets ofV composed
of exactlyi elements. The pseudocode of this procedure can be found
in [8, p. 66].

E. Detecting Multiple Symmetry Types

The extension to treat multiple symmetry types is straightforward.
In the pseudocode ofComputeSymmetriesrec, instead of implicitly
checking conditionF01 = F10 for the existence of the nonskew
nonequivalence symmetry inSymmetricVars, other conditions can
be checked as well. Thus, checking conditionF00 = F11 detects
the nonskew equivalence symmetry, while checking conditions
F01 = �F01 andF00 = �F11 detects the skew nonequivalence and the
skew equivalence symmetries, respectively.

1592 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003

TABLE I
COMPUTATION OF SYMMETRIES OF LARGE MCNC BENCHMARKS

The only part of the pseudocode in Figs. 2 and 4 that depends on a
symmetry type is Steps 1 and 4 of the procedureSymmetricVars. When
checking for skew symmetries, Step 1 should be modified to check
G =

�H . Furthermore, in Step 4, a variable should be added to the
resulting setR whenG0 = H1 (to check for the nonskew equivalence
symmetry) or whenG1 =

�H0 andG0 =
�H1 (to check for the skew

nonequivalence and the skew equivalence symmetries, respectively).
All four symmetry types can be computed by a modified version of

SymmetricVars. In this case, the procedure returns four sets of vari-
ables symmetric with a variable. Each set corresponds to each of the
four basic symmetry types. The next subsection shows an efficient im-
plementation of the procedure simultaneously returning four sets of
variables.

IV. I MPLEMENTATION ISSUES

In the implementation of symmetry computation, BDDs [1] rep-
resent Boolean functions and ZDDs [14] represent variable sets and
symmetry graphs. This choice is motivated by the following practical
considerations.

Using BDDs to represent the functions allows for a type of computa-
tion, which only explores the BDD structure without modifying it. The
algorithms in Figs. 2 and 4 work without building new BDD nodes.
This makes the proposed implementation very fast, as evidenced by
a similar implementation of operatorITE constant[7]. Additionally,
using BDDs allows for efficient caching of the intermediate results
across multiple recursive calls.

ZDDs, on the other hand, provide a canonical representation for the
combinatorial sets. The set representation can be extended to represent
symmetry graphs. A graph is seen as a set of pairs of vertices con-
nected by edges. This representation is used to solve a variety of graph
optimization problems [3]. Note that the ZDD representation of graphs
corresponds to the graph representation by adjacency lists, while the
better-known BDD representation of graphs by transition relations cor-
responds to the representation of graphs by the adjacency matrix. For
symmetry computation, the ZDD representation is more natural be-
cause it does not require encoding of the graph vertices necessary for

the construction of the transition relation. Also, symmetry graphs are
typically sparse, which makes the sizes of representations using ZDDs
significantly smaller.

In the ZDD representation, two variables are used for each primary
input variable of the function. These variables stand for the positive and
the negative literals. These two ZDD variables can be used to efficiently
represent four variable sets. Given four types of symmetries among two
primary input variables, the symmetry types can be encoded as follows:
11, 10, 01, and 00. The first number stands for the literal (positive or
negative) of the first variable, similarly for the second number.

It should be noted that, although the algorithm does not build new
BDD nodes, a small number of ZDD nodes is created to manipulate
the symmetry graphs and the variable sets in the recursive procedures.
However, the experiments show that the increase in the number of ZDD
nodes is negligible, compared to the size of the shared BDDs of the
original functions. The shared BDDs are constructed only once at the
beginning, possibly with the use of dynamic BDD variable reordering.
They are not modified during the symmetry computation.

V. EXPERIMENTAL RESULTS

The proposed algorithm was implemented in C with CUDD Decision
Diagram Package [22]. The source code is available as part of EXTRA
Library [17]. Table I summarizes the experiments conducted using the
largest MCNC benchmark circuits [24]. The program was run on a
933-MHz Pentium III PC under MS Windows 2000. The memory re-
quirements of the algorithm amounted to less than 10% of the memory
allocated by the CUDD package to construct the shared BDDs of the
benchmark functions.

The following notation is used in Table I. The first four columns
show the benchmark parameters: the name, the number of inputs and
outputs, and the number of BDD nodes after reading and reordering
by the sifting algorithm [22]. The next two columns show information
about symmetries. Column “pairs” gives the total number of all clas-
sical nonequivalent symmetric variable pairs in all outputs. Column
“ratio” lists the percentage of symmetric pairs to the total number of
variable pairs in all outputs. The values in column “ratio” were the same

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 22, NO. 11, NOVEMBER 2003 1593

for all the tested algorithms, and equal to the results reported in the last
columns of Table II in [16]. The fact that the symmetry information
computed using all the available algorithms is identical is the evidence
of the correctness of the proposed implementation.

The right part of Table I compares the runtimes of several symmetry
computation algorithms. Column “reading” gives the CPU time needed
to read the benchmark file, construct the BDD, and perform the re-
ordering. Other columns show the time needed to compute the symme-
tries from the shared BDD.

Column “naïve” shows the runtime of the naïve algorithm, which
derives the two-variable cofactors for all variable pairs and checks their
equality. Column “old” shows the runtime of an implementation using
CUDD of the symmetry detection algorithm reported in [16]. Column
“new” shows the runtime of the algorithm presented in this paper. These
three algorithms have been run independently, to prevent the reuse of
computed results stored in the internal cache of the CUDD package.

The last three columns show the runtime of symmetry detection re-
ported in [16], [21], and [23] using SPARC Station 2, SPARC Station
20, and DEC5000, respectively. The dash in the column of the table
means that the results are not available in the above publications.

Several words should be said about the fairness of these compar-
isons. The settings of the experiments conducted in [16] exactly cor-
respond to our settings. However, a different BDD package was used,
and the computer employed in 1993 (SPARC Station 2) was slower. In
order to compare the performance using the same BDD package and
the same computer, this algorithm was reimplemented with CUDD.
The runtime of this implementation is reported in column “old.”

The experiment conducted in [21] differs from the experiment in this
paper. However, the difference does not devalue the comparison. The
goal of symmetry detection in [21] is to minimize the BDD representa-
tion for partially symmetric functions. Therefore, only the symmetric
variable pairs, which are common forall outputs, are computed and
reported in [21]. Computingcommonsymmetries is considerably sim-
pler than computing symmetries for individual outputs (the way it was
done by the proposed algorithm) because if a variable pair is proved to
be nonsymmetric for one output, there is no need to test the same pair
for other outputs.

Finally, the experiment in [23] was performed using small bench-
marks. These benchmarks are not listed in Table I (except “des” and
“frg2”) because the proposed algorithm takes less than 0.01 s to process
them. It should also be noted that runtimes in [23] are given for single
outputs of the benchmark function (output #120 for benchmark “des,”
and output #134 for benchmark “frg2”), while runtimes of other algo-
rithms refer to all outputs of these benchmarks.

VI. CONCLUSION

In this paper, a new algorithm is presented to compute pair-wise sym-
metries of completely specified Boolean functions. The algorithm can
be briefly characterized as follows.

• It works on the shared BDD of multioutput functions and com-
putes the symmetry information for each output individually. The
worst case complexity of the algorithms is cubic in the number
of BDD nodes, but close to linear for the practical benchmarks.

• It exploits the compactness and canonicity of the ZDD represen-
tation of the combinatorial sets to store the symmetry information
computed for a node in the shared BDD.

• It computes four types of two-variable symmetries: the nonequiv-
alence symmetries and equivalence symmetries; both can be
skewed and nonskewed.

• It is particularly efficient when applied to multioutput Boolean
functions with multiple symmetries or no symmetries at all (see
benchmarks “c432,” “c499,” “c1355” in Table I).

Experimental results show that the overall performance of the algo-
rithm is significantly better than other algorithms reported in the liter-
ature.

Future work in this area includes extensions of the algorithms to
generalized symmetries [2], [5], [10] and applications to improve the
quality of functional decomposition and speedup Boolean matching.

REFERENCES

[1] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, pp. 677–691, Aug. 1986.

[2] M. Chrzanowska-Jeske, “Generalized symmetric variables,” presented
at the Int. Conf. Electronics, Circuits, and Systems, Msida, Malta, 2001.

[3] O. Coudert, “Solving graph optimization problems with ZBDDs,” in
Proc. Eur. Design and Test Conf., 1997, pp. 224–228.

[4] D. L. Dietmeyer and P. R. Schneider, “Identification of symmetry, re-
dundancy, and equivalence of Boolean functions,”IEEE Trans. Electron.
Comput., vol. EC-16, pp. 804–817, Dec. 1967.

[5] B. T. Drucker, C. M. Files, M. A. Perkowski, and M. Chrzanowska-
Jeske, “Polarized pseudo-Kronecker symmetry with an application to
the synthesis of lattice decision diagrams,” inProc. Int. Conf. Compu-
tational Intelligence and Multimedia Applications, 1998, pp. 745–755.

[6] C. R. Edward and S. L. Hurst, “A digital synthesis procedure under
function symmetries and mapping methods,”IEEE Trans. Comput., vol.
C-27, pp. 985–997, Nov. 1978.

[7] G. D. Hachtel and F. Somenzi,Logic Synthesis and Verification Algo-
rithms. Norwell, MA: Kluwer, 1996.

[8] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli,Synthesis
of Finite State Machines: Functional Optimization. Norwell, MA:
Kluwer, 1997.

[9] B.-G. Kim and D. L. Dietmeyer, “Multilevel logic synthesis of sym-
metric switching functions,”IEEE Trans. Computer-Aided Design, vol.
10, pp. 436–446, Apr. 1991.

[10] V. N. Kravets and K. A. Sakallah, “Generalized symmetries in Boolean
functions,” in Proc. Int. Conf. Computer Aided Design, 2000, pp.
526–532.

[11] V. N. Kravets, “Constructive multi-level synthesis by way of functional
properties,” Ph.D. dissertation, Univ. Michigan, Ann Arbor, 2001.

[12] Y.-T. Lai, S. Sastry, and M. Pedram, “Boolean matching using binary
decision diagrams with applications to logic synthesis and verification,”
in Proc. Int. Conf. Computer Aided Design, 1992, pp. 452–458.

[13] F. Mailhot and G. De Micheli, “Technology mapping using Boolean
matching and don’t care sets,” inProc. Eur. Design Automation Conf.,
1990, pp. 212–216.

[14] S. Minato, “Zero-suppressed BDDs for set manipulation in combinato-
rial problems,” inProc. Design Automation Conf., 1993, pp. 272–277.

[15] J. Mohnke, P. Molitor, and S. Malik, “Limits of using signatures for
permutation independent Boolean comparison,”Formal Methods Syst.
Des., vol. 21, no. 2, pp. 167–191, Sept. 2002.

[16] D. Möller, J. Mohnke, and M. Weber, “Detection of symmetry of
Boolean functions represented by ROBDDs,” inProc. Int. Conf.
Computer Aided Design, 1993, pp. 680–684.

[17] A. Mishchenko. EXTRA library of DD procedures. [Online]. Available:
http://www.ee.pdx.edu/~alanmi/research/extra.htm

[18] A. Mukhopadhyay, “Detection of total or partial symmetry of a
switching function with the use of decomposition charts,”IEEE Trans.
Electron. Comput., vol. 16, pp. 553–557, Oct. 1963.

[19] S. Panda, F. Somenzi, and B. F. Plessier, “Symmetry detection and dy-
namic variable ordering of decision diagrams,” inProc. Int. Conf. Com-
puter Aided Design, 1994, pp. 628–631.

[20] T. Sasao, “A new expansion of symmetric functions and their applica-
tion to nondisjoint functional decompositions for LUT-type FPGAs,” in
Proc. Int. Workshop Logic Synthesis, 2000, pp. 105–110.

[21] Ch. Scholl, D. Möller, P. Molitor, and R. Drechsler, “BDD minimization
using symmetries,”IEEE Trans. Computer-Aided Design, vol. 18, pp.
81–100, Feb. 1999.

[22] F. Somenzi. CUDD Package, Release 2.3.1. [Online]. Available:
http://vlsi.Colorado.EDU/~fabio/CUDD/cuddIntro.html

[23] C.-C. Tsai and M. Marek-Sadowska, “Generalized Reed–Muller forms
as a tool to detect symmetries,”IEEE Trans. Comput., vol. 45, pp. 33–40,
Jan. 1996.

[24] S. Yang, “Logic synthesis and optimization benchmarks user guide (ver-
sion 3.0),” Microelectronics Center of North Carolina, Research Tri-
angle Park, NC, 1991.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

