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andZ; and the technology parameters. For all cases, we observe that tfigs] L. P. P. P. van Ginneken, “Networks for minimal EImore deldxdc.

total latency is not significantly higher than the minimum source-sinkm] EEZEhlnt- gy";PWCiFCUiIIS EAVSLPP- 863—:62, '199(5)' |
. Zhou, D. F. Wong, I.-M. Liu, and A. Aziz, “Simultaneous routing
delay of 2739 ps (from Table ). and buffer insertion with restrictions on buffer locationdigEE Trans.
Comput.-Aided Desigrvol. 19, pp. 819-824, July 2000.

VI. CONCLUSION

Automated buffered routing is a necessity in modern very large-scale
integration design. The contributions of this paper are two new problem
formulations for buffered routing for single- and multiple-clock do-
mains. Both of these formulations address problems that will become
more prominent in future designs. Any computer-aided design (CAD)
tools currently performing buffer insertion will eventually have to deal
with synchronizer insertion. Furthermore, any SoC routing CAD tools
will have to handle routing across multiple clock domains due to the
increasing use of IPs.

We solve both problems optimally in polynomial time via the RBP  Apstract—Symmetry detection in completely specified Boolean functions
and GALS algorithms that build upon the fast path algorithm of [17is important for several applications in logic synthesis, technology map-

Experimental results validate the correctness and practicality of the tigg, binary decision diagram (BDD) minimization, and testing. This paper
algorithms for an aggressive technology. presents a new algorithm to detect four basic types of two-variable symme-
tries. The algorithm detects all pairs of symmetric variables in one pass over
the shared BDD of the multioutput function. The worst case complexity
ACKNOWLEDGMENT of this method is cubic in the number of BDD nodes, but on typical logic
synthesis benchmarks the complexity appears to be linear. The computa-
The authors would like to thank H. Zhou for supplying fast path cod®n is particularly efficient when the functions have multiple symmetries
and also to M. Thiagarajan for help with the figures and researching tieno symmetries. Experiments show that the algorithm is faster than other
background material on the MCFIFOs. knowr_1 n:jethods, and in some cases achieves a speedup of several orders of
magnitude.
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minterms as well as several other specialized traversals of the shared Il. BACKGROUND

BrETDs)?rle f)etr:]orm\:eoill. LTeEeDtlgavterrSTsrarsvirf':at“t/ilyngit br(]ec\zuBsg theI}-’unctions discussed in this paper are Boolean completely specified
only explore the avaiia e“ structure, out buriding ne unctions; variables are Boolean variables. The definitions and nota-
nodes. In the end, the naive symmetry check is applied to those va

r- . T -
. : . : Ions introduced in this section are based on [23].
able pairs for which the existence of symmetry could not be dlsproveé),rhe supportof F,supg F), is the set of all variables on which

This method is faster than the naive method applied to all cofactor pai&g.
: AT . . pends.
However, it has the following limitations, which become noticeable for - . .
functions with manv inouts and larae BDDs A cofactorof a functionF(..., zi,...,z;,...) with respect to vari-
yinp 9 ’ ablesx; andz; is the function resulting from the substitution inkd
* It involves multiple BDD traversals. of specific values for:; andx;. For example, the cofactor & with
« It often requires a substantial number of cofactors to be checkegbpect tar; = 0 andx; = 1 is functionF'(...,0,...,1,...), which
using the naive method. is denotedFy; .
« It takes a long time to process some functions to discover thatThe Shannon expansion represents funciomm the form F' =
they have no symmetries. 7Fy + »F1, whereF, and F; are the negative and positive cofactors

It detects only one type of “classical” two-variable symmetry andf the function F with respect to variable
does not detect other useful symmetry types (for example, singleDefinition: Two  variables «; and «; of function
variable symmetries [6] or skew symmetries [23]). F(...2,...,2;,...) aresymmetricf the function does not change

The main contribution of this paper is in proposing a new algorithitthen the variables are swapped
for symmetry detection from the shared BDDs. This method improves
on the previous approaches in several ways. F(o.o iz ) =F( oz, w0,

* Itreduces the number of BDD traversals to one main traversal andrpig symmetry is known as thassical symmetnor thenonskew
several additional traversals performed from the main traverseﬁllonequivalence symmetrgenotedr; NE ;. The definition of this
. . - ) . i ;-
* Itis particularly efficient for benchmarks with few symmetriesyy mmetry translates into the following requirements for the cofactors
and no symmetries, leading to several order of magnitudg e functionsFy, = Fio
speedulps, compared tp other methods. . . Other relationships among the two-variable cofactors lead to other
o It can sn_nultaneously (in one pass) detect four basic symmetr@?mmetry types. Requiring the equality 6tc = F1. yields the
defined in [23]. nonskew equivalence symmetdenotedz; E «;. Complementing
The differences between the present work and the previous work [180e of the cofactors in the equaliti€s, = Fio andFoo = F1y yields
[21] are the following. two skew symmetries: thekew nonequivalence symmetdenoted

) ) . . . z; INE z,; (Fo1 = Fo1), and theskew equivalence symmetdgnoted
* The previous work is based on “negative thinking.” It first de- (Foo = Fi1)

. . . . J
tects as many nonsymmetric pairs as possible, and then uses th‘—%or completeness, two other ways of generalizing two-variable

naive checktq prove that the re_n_waining pairs are Symmetric'_TQﬁnmetries are mentioned. With four cofactoRsy, For. Fio, and
prgsent work is based on “positive thinking.” If the symmetrle%n, it is possible to create 12 different cofactor equalities (six equali-
eX'St_‘ they are c_ietected and added 10 the set Of_ computed SY[B5 without complementation and six with complementation). Some
metries. Thgre IS no search .for the nonsymr_nc_etnc variable PaFthem simply state that the function does not depend on a variable.
and no applllcatlon of the naive check to individually computegd . exampleFy, = Fo, means that the function does not depend on
cofact_or pairs. . - x;. Such symmetries are callsthgle-variable symmetrig§].

* As evidenced by T_able IFin [_21’ p. 92], the most e_ffluent €OM" " The above symmetries are defined using the relationship among co-
ponent of the previous work is Idea} 1 (counting mlnterms in thf?\ctor pairs. Another generalization considers cofactor groups that may
cofacto_rs of the functpns and proving nonsymmetric those V8ihclude more than two cofactors. This approach yields 30 different
able pairs that have_ different m|r_1term counts). The Pre_s?“t W°§§mmetries [5], [2], which subsume all previously defined two-variable
does not rely on minterm counting at all, neither explicitly noEymmetries. The concept of two-variable symmetries has also been ex-

implicitly. tended to larger groups of variables [10], [15].

* The presentwork is based on new BDD traversal procedures ang, yhis naner, we focus on the four basic two-variable symmetries:
uses symmetry graphs, represented by zero-suppressed binaryge-r \NE 1£. The proposed method finds all pairs of symmetric

cision dlag_rams (ZPDS)’ to efficiently store and manipulate th\‘?ariables. Using this information, larger groups of symmetric variables
symmetry information. can be constructed by applying the transitivity.
A straightforward application of the proposed method computesThegrem 1 [23]: In each group of conditions below, any two of the
symmetries individually for each output. A minor modification of thgnree conditions imply the third, as follows.

algorithm allows for the computation of symmetries that are common
to all outputs, which is particularly useful for BDD minimization by Group A: (1) ; NEw;, (2)a; NExi, (3)z; NEayg.
variable reordering. GroupB: (1) #; Exj, (2)x; Exg,  (3) 2 NExy.

Several generalizations of the classical two-variable symmetries Group C: (1) a; INEx;, (2) @; INEak, (3) 2; NEag.
were proposed [2], [5], [10]. These methods incorporate classical Group D: (1) z; |Ez;, (2) 2; \E 2k,  (3) 2 NE 2.
two-variable symmetries as a particular case and use them to compute Group E: (1) #, IEz;, (2) z; INExk, (3)2: Eax.
other symmetries. Therefore, the proposed efficient algorithm to
compute two-variable symmetries can also be used to enhance th&heorem 1 does not hold for incompletely specified Boolean func-
computation of the generalized symmetries. tions.

The rest of the paper is organized as follows. Section Il introducesAnother useful property follows from the canonicity of the Shannon
definitions and theoretical foundations. Section Ill presents the nexpansion.
algorithm. Section IV discusses implementation issues. Section VTheorem 2 [23]: Let F' be a function and:;, «;, andx, be three
presents the experimental results. Section VI concludes the paper. variables belonging to the supportBf FunctionF is symmetric inz;
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solution RecursiveProcedure( problem P ) symmgraph ComputeSymmetries( function F )

Step 1: If P is a trivial case, return the solution. return ComputeSymmetries_rec( F, supp(F) );

Step 2: Cofactor P w.r.t. a variable to get subproblems Py and P;.

Step 3: Get_the partial solutions, Sp and S, of subproblem Py and P;.

Step 4: Derive S, the solution of P, from the partial solutions Sy and Sy. symmgraph ComputeSymmetries_rec( function F, varset V)

Step 5: Return S.

} Step 1: if ( Fis a constant function )

S return CompleteGraph( V' );
. . . . tep 2: X =supp( F);
Fig. 1. Pseudocode of a generic recursive algorithm. PR(F )
9 9 9 ( Fo, F1) = Cofactors( F, x );
Step 3: RemainingVars = supp( F) - x;
. . . ) _So = ComputeSymmetries_rec( Fo, RemainingVars );

andz; with any symmetries belonging to the §&E, E, INE, [E'} iff if(So=0)
both cofactors of” with respect ta:;. are symmetric in:; anda; with else Si=g;
the same symmetries. S1 = ComputeSymmetries_rec( F, RemainingVars );

Next we define theymmetry grapiG (V. E), which is used in this Step 4: \é =_Sym$et"cVar5( Fo, F1, RemainingVars );
paper as a canonical representation of the symmetry information. The So= ggm;,,e,eG,aph( V—supp(F));
vertices of the symmetry graph correspond to variables in the support S=(Son S1)U S U S3;
of the function, while the edges correspond to the two-variable sym- Step return S;

metries. Each symmetry type corresponds to an edge type. Thus, if two
variables have several symmetries, the corresponding vertices are 2.
nected by as many edges of different type.

Several graph operations are used in the sequelufifemandinter-
sectionare defined and denoted similarly to the set-theoretic ufiign Step 1) Procedur€omputeSymmetrigec checks the function for

Pseudocode of symmetry computation core.

and intersection) of the sets of edges. The Cartesian produwct of being a constant. The constant function is symmetric in all

variabler by a set of variable¥ results in a graph composed of edges its variables. Therefore, the procedure returnsctiraplete

connecting the vertex of variablewith vertices of variables iiy". symmetry graph with vertices representing variableg'in
Two operations on variable sets are considered, the set difference This graph has edges between all vertex pairs.

(—) and the number of elements in the set (denoted by vertical barsStep 2) Cofactoring” with respect to variable € supgF) is a

for example|S|). Thus, the number of support variable is denoted standard operation. When BDDs are used to represent the

|supg F)|. function, cofactoring with respect to the topmost variable
The concepts “symmetry graph,” “the set of edges in the symmetry in F" is a constant time operation. Note that becatisis

graph,” “symmetry information,” and “the set of pair-wise variable cofactored using a variable in its support, the cofactsss,

symmetries” are used interchangeably in this paper. and F1, are different Boolean functions. This is important

for proceduré&SymmetricVaraused later in the pseudocode.
Step 3) Computing symmetries recursively is performed by calling

IIl. SYMMETRY COMPUTATION ALGORITHM . . .
ComputeSymmetrigecwith the cofactors and the variable

This section presents the main contribution of the paper, a recursive set including the support df without the cofactoring vari-
symmetry computation algorithm. ablex. However, if the first call returns no symmetries, the
second call is skipped, because, according to Theorem 2, if
A. Generic Recursive Procedure one of the cofactors does not have symmetries, the function

does not have symmetries as well.
Step 4) The solution of the problem is found by augmenting the
intersectionS,N S, with two symmetry graphss, andSs.
The intersectiorb, N S, consists of edges common to both

The symmetry detection algorithm falls into a general category of
recursive algorithms, which work by cofactoring the problem with re-
spect to avariable, solving the resulting subproblems, and then deriving
the solution of the initial problem. The pseudocode of the generic re- . .

. . - subgraphs. According to Theorem 2, only the symmetries
cursive procedure is shown in Fig. 1.

L . . of both cofactors are the symmetries of the function.
If decision diagrams [1], [14] are used to represent the input param- " . . .

. : The additional symmetries have two distinct origins. The symme-

eters of a recursive procedure, the partial results are cached to pre- . ) . . .

. . . L ries in S involve the cofactoring variable. These symmetries are

vent multiple calls with the same input parameters. Caching is respon-". : . .

. . : . . not included inSy and.S; because: is not in the supports of the co-
sible for the reduction of computational complexity from exponenu?
a

to polynomial in the sizes of the representation of the parameters. F'lg\tlgrr?aﬁfsj '2 f,teguihfgg%m?mesjm; r|e fougi:g:;'rs'zgéfv;:;hg
1 0|ly=1 — 41 |y=0-

F:ache lookup is typically placed before Step 2 and the cache |nsert{ﬂlns condition is returned by procedussmmetricVarsThis step cor-
is placed before Step 5. To keep the pseudocode short, these steps are . . . . .
. S responds to finding all nonskew nonequivalence symmetries with vari-
omitted in this paper. . O
able x. The extension to compute other symmetries is discussed later.
The second part of the additional symmetriés) is due to those
variables in” that are not in the support &. Pairs of these variables
Recursive computation of symmetries is based on Theorem 2, while symmetric as far as functidnis concerned. Note that initially pro-
allows us to compute the symmetries of the function if the symmetrieedureComputeSymmetrigsc is called withV" equal to the support
for the cofactors are known. The pseudocode shown in Fig. 2 illusf F'. In this case, the set of additional symmetrigsis empty. How-
trates this computation. The proced@emputeSymmetrigdakes the ever, in later calls t€omputeSymmetrigec, the support of a cofactor
function whose symmetries should be computed. The internal recaray not depend on all variablesRemainingVarsif setV — supf F')
sive procedur€omputeSymmetrigec takes the function and a set ofincludes at least two variables, the set of symmet$ies not empty.
variables initialized to the support of the function. Both procedures re-The algorithm in Fig. 2 is particularly efficient when applied to func-
turn the symmetry graph, whose edges represent pair-wise symmaeidnos with multiple symmetries and no symmetries at all. The former is
variables. true because the BDDs of symmetric and nearly symmetric functions

B. Computational Core
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F=ab+c+d,V={a,b,c,d}
So=(c,d), $i = (c,d), $2=(a,b), S =D - S= {(a,), (c,d)}

&
a=0

F=b+¢+d,V={bcd}
So=(c,d), $1 = (c,d), $: =D, 8= - S=(c,d)

F=¢C+d,V={becd} h=1
$=0,85 =0, 8= (cd),Ss =T > S=(c,d)
c=10 \ =1
F=1,V={d} F=d,V={d} F=1,V={cd}
trivial case: § =& $=851=5=5=0->5=0 trivial case: S = (¢,d)
d=/ =1
F=1,V=0 F=0,V=0
trivial case: S= () trivial case: S =
Fig. 3. An example of symmetry computation.
E/arset SymmetricVars( function G, function H, varset Y) cofactors of F' with respect tor and the set of candidate variables
Step 1: if(G=H) Y (to avoid multiple indices, the cofactors are denoféénd H in
) return Y; the pseudocode). The procedure returns the subdétsafch that, for
(G ig‘t’;s:;,"d H = const) each variable: in this subsetfFy|.—1 = Fi|.—o. It means that is
Step 2: z=Var(Y), symmetric withz in the original functionF'.
ﬁgg g: )):ggff:ccttgr':(( SZZ)) Step 1) If functionss andH are equal, so are their cofactors. As a
Step 3: Ro = SymmetricVars( Go, Ho, Y-z ); result, all variables i” satisfy the condition. If both func-
if(Ro=a) tionsG and H are (nonequal) constants, then their cofac-
else Ri=2; tors are never equal. In this case, the procedure returns the
Ri = SymmetricVars( G, Hy, Y-z ); empty set.
Step 4: R=RonRy; Step 2) Any variable inY is selected and the functions are cofac-
(G ;’f ,)?U . tored with respect to this variable.
Step 5: return R; ' Step 3) For a variable to belong to the solution, it should belong
to the solution for both cofactors (this, again, follows from
Fig. 4. Computing the variables that are symmetric with a variable. the canonicity of the Shannon expansion). So if one of
the subproblems has the empty solution, there is no need
tend to be small and regular. This increases the cache hit rate and leads to attempt solving another one. This is another shortcut,
to faster processing. The situation when the function has no symme- which accounts for efficient processing of functions without
tries is detected early in the process. Thus, when the computation for symmetries.
one of the cofactors results in the empty set, the algorithm does noBtep 4) The resulting set of variables is the intersection of the vari-
compute symmetries for the other cofactor. This shortcut leads to sig- able sets for the cofactors. Now we recall that= Fy and
nificant speedups for large benchmarks. H = F,. Therefore, conditiorfy; = F), translates into
The worst case complexity d@omputeSymmetrigec is cubic in G1 = Hy. When this is true, variable is added to the re-
the number of the BDD nodes, because the complexity of this proce- sulting set. This completes the recursive call.

dure is linear while each call ®ymmetricVarperformed insid€om- ]

puteSymmetriegec, has the worst case quadratic complexity. HowP: Computing the Complete Graph

ever, for benchmark functions, the experimentally observed runtime isThe complete graph can be computed using procetupiesV, i),

close to linear in the number of the BDD nodes. wherei = 2. This procedure returns the set of subsets afomposed
Example: The symmetry computation algorithm is illustrated forof exactly: elements. The pseudocode of this procedure can be found

Boolean functionF’ = ab 4 4 d. The tree of recursive calls tom- in [8, p. 66].

puteSymmetriesec is in Fig. 3. Initially, ComputeSymmetrigec is

called with F" and its support{«, b, ¢, d}. Cofactoring with respect to E. Detecting Multiple Symmetry Types

a leads to two gqlls, with fun.ctionEo =C+d andFy =b+ec+d, etc. The extension to treat multiple symmetry types is straightforward.
Note that the trivial cases with one variabldirresultin the empty set |, ihe pseudocode dEomputeSymmetrigsc, instead of implicitly

of symmetries, while the trivial calls with two variableslinresult in checking conditionFo; = Fio for the existence of the nonskew
returning the variable pairs. nonequivalence symmetry iBymmetricVarsother conditions can

be checked as well. Thus, checking conditiby, = Fi; detects
the nonskew equivalence symmetry, while checking conditions

This section discusses procedusgmmetricVarswith the pseu- Fy, = Fy, andFyy = Fi; detects the skew nonequivalence and the
docode shown in Fig. 4. The procedure tadesand F;, the two skew equivalence symmetries, respectively.

C. Detecting Variables Symmetric With Variable
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TABLE |
COMPUTATION OF SYMMETRIES OF LARGE MCNC BENCHMARKS

Benchmark Statistics Symmetries Runtime, s

name ins |outs||BDD]| | pairs |ratio,% readiné naive | old | new | [16] | [21] | [23]

alu2 10 | 6 | 231 4 3.17 1 0.01 | 0.01 | 0.01 | 0.01 - - -
alu4 14 | 8 | 1182 6 1.71 | 0.02 | 0.02 | 0.01 | 0.01 - -
dalu 75 | 16 | 1402 | 982 | 7.83 | 0.55 | 0.92 | 0.16 | 0.07 | 32.5 | 0.60 -
des 256 |245| 3238 | 1264 | 6.95 | 1.57 ] 0.51 | 0.27 | 0.05 | 52.5 | 5.60 | 3.60
frg2 143 | 139 1907 [ 1353 | 932 | 0.18 | 0.23 | 0.10 | 0.02 | 5.3 | 2.70 | 14.15
i10 257 22449387 | 3746 | 3.39 |20.48]285.42| 3.89 | 1.63 - - -

k2 45 | 45 | 1316 | 338 | 3.61 | 0.22 | 0.57 | 0.04 | 0.07 - - -
pair 173 [ 137 | 4976 | 1910 | 5.24 | 3.29 | 2.08 | 0.65 | 0.08 - 3.80 -
rot 135 {107 | 6004 | 364 | 1.87 | 1.78 | 7.12 | 0.32 | 0.14 - 5.70 -

too large | 38 | 3 839 17 | 092 | 0.18 ] 0.20 | 0.01 | 0.02 | 3.8 | 0.50 -
C1355 41 | 32 129578 O 0.00 [18.64]61.45]52.96 | 0.02 - 2.90 -
C1908 33 1 25]9519 | 248 | 223 | 1.13 | 4.71 | 2.08 | 0.06 |1126.5] 0.70 -
C2670 233 | 140 | 4971 | 1547 | 4.78 | 2.84 | 25.63 | 3.25 | 0.16 - 7.20 -

C3540 50 | 22 | 24475] 81 0.60 116.43]27.36 | 1.14 | 0.67 - 3.00 -
C432 36 | 7 | 1226 0 0.00 | 0.11 | 0.86 | 0.04 | 0.01 | 23.2 - -
C499 41 |32 (27472 O 0.00 | 3.59 |57.03|51.18 | 0.02 - 4.00 -

C5315 178 | 123| 2492 | 521 | 0.83 | 1.38 | 2.79 | 0.84 | 0.13 ] 636.7 | 2.10 -

C7552 | 207 | 108 | 10674 | 1879 | 1.31 | 8.14 |42.77 | 13.19 | 0.32 - 9.30 -
C880 60 | 26 | 17755] 262 | 4.01 | 1.81 | 848 | 0.34 | 0.19 | 7.7 - -
Total 82.351528.16({130.48| 3.68

Ratio, % 16.0 | 100.0 | 24.7 | 0.7

The only part of the pseudocode in Figs. 2 and 4 that depends otha construction of the transition relation. Also, symmetry graphs are
symmetry type is Steps 1 and 4 of the proceddymmetricVarsWhen typically sparse, which makes the sizes of representations using ZDDs
checking for skew symmetries, Step 1 should be modified to chesignificantly smaller.

G = H. Furthermore, in Step 4, a variable should be added to theln the ZDD representation, two variables are used for each primary
resulting set? whenGo = H; (to check for the nonskew equivalenceinput variable of the function. These variables stand for the positive and
symmetry) or wherG; = Ho, andGy = H; (to check for the skew the negative literals. These two ZDD variables can be used to efficiently
nonequivalence and the skew equivalence symmetries, respectivelyfpresent four variable sets. Given four types of symmetries among two

All four symmetry types can be computed by a modified version gfrimary input variables, the symmetry types can be encoded as follows:
SymmetricVarsin this case, the procedure returns four sets of vari-1, 10, 01, and 00. The first number stands for the literal (positive or
ables symmetric with a variable. Each set corresponds to each of tiggative) of the first variable, similarly for the second number.
four basic symmetry types. The next subsection shows an efficient im4t should be noted that, although the algorithm does not build new
plementation of the procedure simultaneously returning four sets BPD nodes, a small number of ZDD nodes is created to manipulate
variables. the symmetry graphs and the variable sets in the recursive procedures.

However, the experiments show that the increase in the number of ZDD
IV. | MPLEMENTATION |SSUES no_d_es is neg_ligible, compared to the size of the shared BDDs of the
original functions. The shared BDDs are constructed only once at the

In the implementation of symmetry computation, BDDs [1] repbeginning, possibly with the use of dynamic BDD variable reordering.
resent Boolean functions and ZDDs [14] represent variable sets agey are not modified during the symmetry computation.
symmetry graphs. This choice is motivated by the following practical
considerations.

Using BDDs to represent the functions allows for a type of computa-
tion, which only explores the BDD structure without modifying it. The The proposed algorithm was implemented in C with CUDD Decision
algorithms in Figs. 2 and 4 work without building new BDD nodesDiagram Package [22]. The source code is available as part of EXTRA
This makes the proposed implementation very fast, as evidencedLliyrary [17]. Table | summarizes the experiments conducted using the
a similar implementation of operatdfE_constant[7]. Additionally, largest MCNC benchmark circuits [24]. The program was run on a
using BDDs allows for efficient caching of the intermediate result833-MHz Pentium Il PC under MS Windows 2000. The memory re-
across multiple recursive calls. quirements of the algorithm amounted to less than 10% of the memory

ZDDs, on the other hand, provide a canonical representation for #hiécated by the CUDD package to construct the shared BDDs of the
combinatorial sets. The set representation can be extended to representhmark functions.
symmetry graphs. A graph is seen as a set of pairs of vertices conThe following notation is used in Table I. The first four columns
nected by edges. This representation is used to solve a variety of grapbw the benchmark parameters: the name, the number of inputs and
optimization problems [3]. Note that the ZDD representation of graplasitputs, and the number of BDD nodes after reading and reordering
corresponds to the graph representation by adjacency lists, while llyethe sifting algorithm [22]. The next two columns show information
better-known BDD representation of graphs by transition relations c@bout symmetries. Column “pairs” gives the total number of all clas-
responds to the representation of graphs by the adjacency matrix. §ical nonequivalent symmetric variable pairs in all outputs. Column
symmetry computation, the ZDD representation is more natural Beatio” lists the percentage of symmetric pairs to the total number of
cause it does not require encoding of the graph vertices necessarytotable pairs in all outputs. The values in column “ratio” were the same

V. EXPERIMENTAL RESULTS
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for all the tested algorithms, and equal to the results reported in the lasExperimental results show that the overall performance of the algo-
columns of Table Il in [16]. The fact that the symmetry informationithm is significantly better than other algorithms reported in the liter-

computed using all the available algorithms is identical is the evidenature.
Future work in this area includes extensions of the algorithms to

of the correctness of the proposed implementation.

The right part of Table | compares the runtimes of several symmeggneralized symmetries [2], [5], [10] and applications to improve the
computation algorithms. Column “reading” gives the CPU time needegality of functional decomposition and speedup Boolean matching.

to read the benchmark file, construct the BDD, and perform the re-
ordering. Other columns show the time needed to compute the symme-
tries from the shared BDD. [1]

Column “naive” shows the runtime of the naive algorithm, which
derives the two-variable cofactors for all variable pairs and checks their2]
equality. Column “old” shows the runtime of an implementation using
CUDD of the symmetry detection algorithm reported in [16]. Column [3]
“new” shows the runtime of the algorithm presented in this paper. These
three algorithms have been run independently, to prevent the reuse Jfl]
computed results stored in the internal cache of the CUDD package.

The last three columns show the runtime of symmetry detection re-[5)
ported in [16], [21], and [23] using SPARC Station 2, SPARC Station
20, and DEC5000, respectively. The dash in the column of the table
means that the results are not available in the above publications.

Several words should be said about the fairness of these compar[-G]
isons. The settings of the experiments conducted in [16] exactly cor-
respond to our settings. However, a different BDD package was used}|7]
and the computer employed in 1993 (SPARC Station 2) was slower. In
order to compare the performance using the same BDD package ant$!
the same computer, this algorithm was reimplemented with CUDD.
The runtime of this implementation is reported in column “old.”

The experiment conducted in [21] differs from the experiment in this
paper. However, the difference does not devalue the comparison. The
goal of symmetry detection in [21] is to minimize the BDD representa-{10]
tion for partially symmetric functions. Therefore, only the symmetric
variable pairs, which are common fal outputs, are computed and
reported in [21]. Computingommorsymmetries is considerably sim-
pler than computing symmetries for individual outputs (the way it wasj1 2]
done by the proposed algorithm) because if a variable pair is proved to
be nonsymmetric for one output, there is no need to test the same pair
for other outputs. [13]

Finally, the experiment in [23] was performed using small bench-
marks. These benchmarks are not listed in Table | (except “des” anﬂ 4
“frg2”) because the proposed algorithm takes less than 0.01 s to process
them. It should also be noted that runtimes in [23] are given for singlg15]
outputs of the benchmark function (output #120 for benchmark “des,”
and output #134 for benchmark “frg2”), while runtimes of other algo-
rithms refer to all outputs of these benchmarks. [

(11]

[17]
VI. CONCLUSION
[18]
In this paper, a new algorithm is presented to compute pair-wise sym-
metries of completely specified Boolean functions. The algorithm ca
. : o)
be briefly characterized as follows.

« It works on the shared BDD of multioutput functions and com-
putes the symmetry information for each output individually. The [20]
worst case complexity of the algorithms is cubic in the number

of BDD nodes, but close to linear for the practical benchmarks. [21]
It exploits the compactness and canonicity of the ZDD represen-
tation of the combinatorial sets to store the symmetry information
computed for a node in the shared BDD. [22]
It computes four types of two-variable symmetries: the nonequiv-
alence symmetries and equivalence symmetries; both can g3l
skewed and nonskewed.

It is particularly efficient when applied to multioutput Boolean [24]
functions with multiple symmetries or no symmetries at all (see
benchmarks “c432,” “c499,” “c1355” in Table I).
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