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Abstract 
Optimization algorithms used in binary multi-level logic 

synthesis, such as network simplification, logic extraction, 
and resubstitution, have been treated independently and did 
not share computational procedures. Using multi-valued 
logic synthesis, some common conceptual and 
computational cores underlying these algorithms can be 
identified.  

We present an overview of a Boolean paradigm1 in multi-
valued logic synthesis. The Boolean algorithms are 
generalizations of the usual ones and can replace these and 
the traditional algebraic algorithms, offering improved 
trade-offs between computation speed and optimization 
quality. 

1 Introduction 

Traditional technology-independent logic synthesis flow 
exemplified by SIS [18] consists of transformations applied 
to a multi-level binary logic network. The transformations 
attempt to improve the sum of literal counts in factored 
forms of binary nodes as well as other cost functions. 

Multi-level logic synthesis research of the 1980’s [3][5] 
led to so-called algebraic optimization algorithms. These 
modify the SOP representation of the nodes in a restricted 
way, without using the identities of Boolean algebra, such 
as a ∧  a = a and a ∧  a = 0, nor do they give due to network 
structure. Algebraic transformations work well for many 
practical circuits but they are inferior in optimization 
quality to Boolean transformations, which use the complete 
scope of functional properties. 

Improvements in algebraic techniques [8][10] and their 
Boolean counterparts [9][20] were developed later but their 
use has been restricted to experimental tools. This 
restriction occurs because of their inherent complexity 
and/or lack of good functional representations. This paper 
presents a common view of  a set of network optimization 

                                                           
1 In this paper, Boolean is contrasted with algebraic, and binary is 
contrasted with multi-valued. As a result, it is possible to speak of a 
Boolean paradigm in multi-valued logic synthesis. These concepts are 
explained in the introduction. 

algorithms used in multi-level logic synthesis. The 
distinctive aspects of this approach are: 
•  It exposes some relations among the algorithms (node 

simplification using internal don’t-cares, logic 
extraction, decomposition-mapping, resubstitution, and 
encoding). 

•  The algorithms considered are essentially Boolean; 
they can make use of complete don’t-cares2 generated 
during synthesis and could improve optimization 
quality. 

•  A common computational core of the algorithms is 
outlined and expressed in terms of Boolean 
satisfiability.  

In our experience, formulating optimization problems in 
terms of multi-valued logic [4] has helped in exposing 
relations among algorithms. Although the main algorithms 
shown in Figure 1 are usually considered essentially 
independent in the binary domain, it may be useful to view 
these in the multi-valued logic domain with a common 
theory and computational core (Boolean satisfiability).  

 
 
 
 
 
 
 
 
 

 
Figure 1. Relationship among algorithms. 

Exploring common features of these algorithms may open 
new avenues for efficient implementation. The practical 
complexity of these procedures depends on the use of don’t-
cares and the type of optimization performed. Ignoring 
don’t-cares, limits optimization to the current functions at 
the nodes but enables efficient heuristic solutions by 
reducing most of the algorithms from general Boolean 
satisfiability to graph coloring or other more efficient 
                                                           
2 Don’t cares in the MV domain are generalized to “partial cares” which 
are a form of non-determinism. 
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methods. The new paradigm involves exploration of 
efficient runtime trade-offs between constraint-based SAT 
or branch-and-bound procedures versus present methods.  

A serious limitation of Boolean methods is their greater 
computational complexity resulting in excessive runtime. 
This limitation can be addressed potentially by developing 
efficient partitioning algorithms and applying Boolean 
methods to individual parts in an iterative fashion. 
Experiments show that the loss of quality due to partitioning 
for some optimization problems does not exceed a few 
percent [7]. In other problems, controlling the size of 
partitions may be used to trade optimization quality for 
runtime. 

The paper is organized as follows. Section 2 elaborates on 
the use of internal don’t-cares. Section 3 discusses some 
optimization algorithms in more detail. Section 4 relates 
one of these, minimum disjoint decomposition of an MV 
relation, to Boolean satisfiability. Section 5 concludes and 
outlines future work. 

For definitions of multi-valued functions, multi-valued 
networks, and the flexibility derived for a node in the 
network, please refer to [12].  

2 Internal Don’t-Cares in Logic Synthesis 

The optimization algorithm, full_simplify, in SIS [18] uses 
a subset of Observability Don’t-Cares (ODCs) called 
Compatible Observability Don’t-Cares (CODCs) [17]. 
These together with Satisfiability Don’t-Cares (SDCs) are 
computed for each node in a multi-level network and used 
to simplify the node representations. 

Recently it was shown that Complete ODCs [12] could be 
used to improve optimization results. Complete ODCs are 
not compatible, meaning that the set of don’t-cares 
computed for a node is valid only as long as other nodes 
remain unchanged. Experimental results [12] show that the 
reasonable amount of computational overhead for Complete 
ODCs is justified by the improved quality of node 
simplification. 

Generally, there are two cases, (1) when no flexibility is 
used, and (2) when either CODCs or Complete ODCs are 
used. In the first case, which is typically used, 
computational complexity is lower and it is often possible to 
achieve good results by applying a greedy algorithm. The 
second case constitutes the main topic of this paper. 

3 Optimization Algorithms 

This section presents Boolean formulations of several 
network optimization algorithms. The order, in which they 
are considered, is chosen to facilitate presentation of a 
common theme. 

3.1 Network Optimization using Complete 
Flexibility at a Node 

An initial network is shown in Figure 2 (left). Global 
functions F1(x),…, Fk(x) are expressed in terms of the 
primary input (PI) variables x.  Node η is the node under 
consideration. 

The flexibility at η is computed by cutting the network at 
the output of η and introducing a new primary input 
variable z to replace the output of η. Then the global 
functions Fz

1(x,z),…, Fz
k(x,z) in terms the PIs and z are 

computed for the new network, as shown in Figure 2 (right).  
The condition that the original specification should 

contain the behavior of the network modified by introducing 
additional variable z is transformed into relation Rη(x,z) 
representing the complete flexibility at node η in terms of 
the PIs. This relation is then imaged into the local input 
space of η to derive the complete flexibility used for node 
optimization. In general, in the MV domain, this relation is 
non-deterministic and contains partial cares, meaning that 
under a given minterm, the output value of the node can 
take any of the allowed subset of values. Details of this 
algorithm are presented in [12]. 

 
 
 
 
 
 
 
Figure 2. Computation of complete flexibility at a node. 

The remaining algorithms of encoding decomposition 
extraction and substitution will be treated using this 
flexibility. 

3.2 Partial Encoding 
The problem of partial encoding is to reduce the number 

of values of a given multi-valued output node in a network 
by using already existing nodes in the network, or by using 
new but simple nodes. 

This problem can be solved using a branch-and-bound 
algorithm coupled with a specialized decision diagram 
operators [13]. A partial encoding is optimal if as many 
coding functions as possible can be used which belong to 
functions already present in the network and hence can be 
replaced by a single “wire”. 

Instead of encoding the current function at a node, better 
results can be obtained by partially encoding the complete 
flexibility relation at a node shown in Figure 3 (left). 
Generally, a partial encoding splits relation R into two 
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relations R1 and R2 shown in Figure 3 (right) such that the 
total number of binary code-bits does not increase3:  

log2 |v2| + log2 |v1| ≤ log2 |v|.   
When the number of binary code-bits remains the same, a 
tie-breaking condition is that the total number of values 
does not increase: |v2|+ |v1|≤ |v|. We call such encodings 
value reducing partial encodings. 

 
 
 
 
 

 

Figure 3. Encoding for value reduction. 

In MV network optimization, we are interested in finding 
a partial encoding that leads to a simplified representation 
of blocks R1 and R2 compared to the original block R.  

One approach to this problem restricts the MV relation R2 
to a wire or to an MV cube depending on a subset of the x 
variables. Thus we are looking for a new simple function to 
be used in the partial encoding. The characteristic function 
of the relation, R1(x,p),  with respect to all possible cubes 
selected for R2 can be computed using one binary variable 
pki for each value appearing in the cube variables; pki is set 
to 1 if value i is present in the literal of variable k of the 
cube. A selection of values for the pki provides a particular 
cube for R2. Note that R1 is derived from R, the complete 
flexibility at the node. 

The resulting partial encoding problem is thus 
parameterized using variables p and the complete 
flexibility. A solution is found as a set of assignments to p, 
which reduces the number of values in relations R1.  

3.3 Non-Disjoint Decomposition and Encoding 
The MV node to be decomposed is represented by its MV 

complete flexibility relation F(x), shown in Figure 4 (left). 
A bound set xB is selected and a disjoint decomposition is 
performed, yielding a new block, B1, depending on xB , and  
function F1 as shown in Figure 4 (center). The number of 
values v1 of block B1 is simply assumed to be the product of 
the number of values of all variables in xB

4. Next, we 
compute the complete flexibility relation RB1(x,z) of block 
B1 in the new network, where B1 and F1 have replaced F. 
This flexibility depends on input variables xB and an output 
variable z having the |v1| values of B1.  

Now, we apply partial encoding to the flexibility relation 
RB1(x,z). If a value-reducing encoding exists using a code 
function that is a fanin variable xC, a partial encoding is 
found. Variable xC remains in the support of B2 but also 

                                                           
3 We use |v| to denote the number of values that signal v has. 
4 The column compatibility problem in B1 is not considered. 

becomes part of the free set xF, as shown in Figure 4 (right), 
leading to a non-disjoint decomposition.  

 
 
 
 
 
 

Figure 4. Decomposition and encoding. 

Because this transformation is value-reducing, the number 
of values of |v2| of block B2 satisfies log2 |v2| + log2 |vC| ≤ 
log2 |v1| or  |v2|+ |vC|≤ |v1|. 

3.4 Resubstitution 
The partial encoding technique can be used to search for a 

decomposition with an arbitrary function G(xB) instead of 
the particular case G(xB) = xC, shown in Figure 4. In this 
case, the decomposition-through-encoding problem 
becomes that of resubstitution.  

Let G(xB) and F(x) be two functions in the MV network 
such that xB ⊆  x. We extract block B1 depending on xB from 
F as shown in Section 3.3 but now try G(xB) as one of the 
decomposition functions for block B1. If a value-reducing 
decomposition exists, the relation resulting from collapsing 
B2 into F2 is compared with the original representation of F. 
If the result is smaller, the resubstitution is accepted. If it is 
not smaller, the decomposition using B1 is kept. 

It may be possible to perform resubstitution directly by 
trying G(xB)  as a Boolean divisor of F. However, the above 
approach shows some relations between resubstitution, 
decomposition, and encoding. 

3.5 Common Logic Extraction 
Common logic has been traditionally extracted by 

intersecting sets of kernels generated for logically related 
Boolean nodes [5]. An improvement is a specialized 
algorithm to manipulate double-cube and two-literal single-
cube divisors [16]. However, these approaches are 
algebraic, limited to binary networks, and do not use 
flexibilities inherent in the network structure. 

We propose a Boolean formulation of logic extraction 
based on matching common sub-functions (cofactors) in the 
MDD representing several logically related Boolean nodes. 
The matching procedure is similar to the one developed for 
BDD minimization [19], and is also related to the 
discussion of Section 4. 

The idea is to find a set of functions (the merging set) that 
may have good common Boolean divisors. These functions 
are merged into a single MV node η, which replaces the 
merging set of nodes.  

The flexibility relation for η in the new network is derived 
and represented as an MDD (Multi-Valued Decision 
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Diagram)5, with the last few variables in the order encoding 
the values of the function (Figure 5). After variable 
reordering on this MDD, we look at the cofactors 
depending on a fixed number (say, four) of the last fanin 
variables, which become the divisor variables.  

Each cofactor is an MV relation. We can find a maximal 
set of compatible cofactors using a technique similar to the 
one presented in Section 4 for disjoint decomposition. The 
compatible cofactors are merged to form a common divisor. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5. Extracting Boolean divisors of an MV relation. 

If the divisor reduces the cost function, it is introduced 
into the network as a new node6 and divided into η using 
Boolean division. Several compatible cofactors can be 
computed and tested in a sequence. Finally, η can be 
partially encoded.  

Note that the original nodes in the merging set can be 
represented simply as literals of the variable representing η. 
This set represents one way to encode η, but we have the 
option of not using these and replacing them with new 
functions that encode η, first using partial encoding, and 
then possibly completing it to obtain a full binary encoding.  

4 Disjoint Decomposition of an MV Relation 
and SAT 

We reformulate the problem of finding a support-reducing 
disjoint decomposition of an MV relation as a SAT 
instance. Such decomposition with the bound set xB exists 
iff the n columns in the decomposition table with variables 
xB on top can be colored with no more than n/2 colors.  

The SAT formulation uses two types of MV variables: 
•  n variables ic , 1 ≤ i ≤ n, to encode the coloring of 

columns. A columns may be colored with more than 
one color. Value j belongs to the value set of variable 
ci, if the corresponding column, i, can be colored with 
the color j. The range of ci is n /2. 

                                                           
5 Actually, if we merge binary nodes and use their bits to encode the 
values, then the MDD is exactly the Boolean relation of these binary 
nodes.  
6 Note that this node is multi-valued, in general, with at most, the number 
of values in the merged MV node. 

•  m variables dij, one for each entry in the table that can 
take more than one value. These variables represent 
subsets of original values, which are in agreement 
with the selected decomposition. The range of these 
variables is the range ρ of the relation. 

The SAT clauses are now derived in a relatively 
straightforward way, as illustrated by the decomposition 
table in Figure 6. The table has entries Sij, which are subsets 
of the range ρ. To find a support-reducing decomposition 
with two colors, we need four binary variables cj to encode 
the coloring of the columns and, in general, 16 MV 
variables dij with range ρ to encode the remaining subsets of 
values in each entry of the table. However, some of the 
original subsets may be single values, so no variable is 
introduced for them, because the remaining subsets can only 
be composed of the same value. 

 C0 C1 C3 C2  
cd\ab 00 01 10 11  

00 S00 S01 S02 S03  
01 S10 S11 S12 S13  
10 S20 S21 S22 S23  
11 S30 S31 S32 S33  

Figure 6. Support-reducing decomposition as SAT problem. 

In the resulting coloring, each column has a color because 
in the satisfying assignment each MV variable takes at least 
one value. Incompatibility between two columns is enforced 
by the constraints depending on variables dij. For example, 
columns C0 and C1 are incompatible if at least one pair of 
MV variables di0 and di1 does not have a common value. 
This leads to the condition: 

 )()( 1010 ccdd iii
≠= ⇒∅∩∨  

Finally, for all pairs of columns j and k, for which there 
exists a row i, such that Sik ∩ Sij = ∅ , we immediately have 
cj ≠ ck. The MV expression for a pair of columns can be 
converted into the CNF form. The SAT instance is derived 
by taking the product of the constraints corresponding to all 
pairs of columns. 

It is not surprising that we can formulate this as a SAT 
problem; the question is for how large a problem it is 
possible to perform decomposition this way. 

Since SAT instances with 200 variables and 10,000 
clauses are readily solved by present-day SAT solvers [14], 
it is reasonable to apply this approach if the nodes being 
decomposed are limited to about ten fanins.  

There may be several cases, which can, in practice, 
dramatically reduce the size of the SAT instance. First, for 
any column, which is not compatible with any other column, 
we just give its own color and do not introduce additional 
variables. Second, if two columns can only be compatible 
with each other, we give these columns their own color and 
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do not introduce variables associated with these columns. 
Third, the decomposition problems we encounter may only 
have a small percentage of entries, which have multiple 
values so the number of variables dij may be limited. 

An extension is to find a decomposition in terms of a set 
of functions, like those representing gates from a gate 
library during technology mapping. This problem is similar 
to that discussed in [9] for binary functions. 

5 Conclusions  
This paper outlines a way of looking at several multi-level 

logic operations and discusses commonalities among 
network optimization, encoding, decomposition, 
resubstitution, and common logic extraction. A SAT-based 
formulation of one of these, decomposition, is given as an 
example. 

The paradigm is Boolean because it uses the functional 
properties of nodes and is not limited to algebraic divisors 
generated from an SOP representation. 

The distinctive features are: 
•  A more general theory (MV logic vs. binary logic) 

helps reveal some underlying relationships among the 
procedures. 

•  An efficient implementation may be possible due to a 
common computational cores based on a BDD 
package and a SAT solver. 

•  The Boolean operations operate on general MV 
relations that are derived from the network structure. 

A optimization flow based on these methods could lead to 
improved optimization quality since: 

•  The use of multi-valued logic leads to searching a 
larger space of solutions. 

•  Boolean (not only algebraic) properties of nodes are 
exploited. 

•  The complete sets of don’t-cares (partial cares) give 
greater flexibility for optimizing the nodes of the 
network. 

•  The SAT-based formulation is not limited to one 
particular encoding or coloring. 

•  Functional decomposition can be performed 
concurrently with technology mapping. 

There is a lot of future work in this area since only the 
ideas of the paradigm have been outlined. We need to 
implement the proposed algorithms and simultaneously 
refine the ideas to see which heuristics work best on an 
extensive set of benchmarks. 
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