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Abstract1 

The problem of encoding arises in several areas of logic 
synthesis. Due to the nature of this problem, it is often difficult to 
systematically explore the space of all feasible encodings in order 
to find an optimal one.  

In this paper, we show that when the objects to be encoded are 
Boolean functions, it is possible to formulate and solve the 
problem optimally. We present a general approach to the 
encoding problem with one or more code-bit functions having 
some desirable properties. The method allows for an efficient 
implementation using branch-and-bound procedure coupled with 
specialized BDD operators. 

The proposed approach was used to synthesize look-up table 
(LUT) cascades implementing Boolean functions. Experimental 
results show that it finds optimal solutions for complex encoding 
problems in less than a second of CPU time.   

1 Introduction 

A binary encoding can be represented by a mapping from the set 
of objects into the set of all subsets of minterms of the Boolean 
space, Bw = {0,1}w, where µ is the number of objects and 
w ≥ log2µ. An additional requirement is that the subsets of 
minterms used for the codes do not overlap.  

The encoding problems have been extensively studied for state 
assignment of finite state machines (FSMs), in particular, in 
asynchronous synthesis [15], generation of minimum-area PLAs 
[6], and design of state-event systems [3]. In these applications, 
the objects to be encoded are FSM states.  

In several other areas, the objects to be encoded are Boolean 
functions. These areas include Ashenhurst-Curtis decomposition 
of binary and multi-valued relations [10], functional 
decomposition for FPGAs [5], and binary encoding of multi-
valued networks [3]. 

Previous approaches to encoding Boolean functions relied on 
encoding with input and output constraints from state assignment 
of FSMs [8][3], the use of heuristics [10][1], or Boolean 
satisfiability [9][5]. Although the latter two approaches tend to 
work better because they search a larger solution space, they are 
often slow due to large representations for all encoding choices. 

                                                           
1 The first author has been partially supported by a research grant from 
Intel Corporation. 

This paper continues research started in [12] and presents a 
general solution to encoding of Boolean functions with the 
following optimality criteria: (1) the resulting code-bit functions 
have small support sizes, or (2) the resulting code-bit functions 
belong to a certain class of functions. The first requirement is 
typical in the decomposition for FPGAs because functions 
depending on a single variable are implemented as a wire without 
a LUT. The second type occurs in technology-dependent logic 
synthesis when the Boolean network is decomposed/mapped into 
a standard-cell library. 

To experimentally evaluate the proposed encoding algorithm, 
we apply it to synthesis of the LUT cascade representation of 
Boolean functions [11]. Experimental results show that the new 
encoding algorithm significantly reduces the number of LUTs 
compared to random encoding. A similar study has been recently 
performed using fast heuristic encoding algorithm [2]. 

 The rest of the paper is organized as follows. Section 2 defines 
the encoding problem and introduces the notation. Section 3 
derives and compares the number of strict and non-strict 
encodings. Section 4 presents the theoretical background of the 
paper. Section 5 discusses the efficient implementation of the 
algorithm using branch-and-bound search and specialized BDD 
operators. Section 6 shows the application of the encoding 
algorithm to LUT cascade synthesis. Section 7 gives experimental 
results. Section 8 draws conclusions and outlines future work. 

2 Definitions  

Given a set of objects {oi}, 1 ≤ i ≤ µ, and a set of Boolean 
variables, {zj}, 1 ≤ j ≤ w, w ≥ log2 µ, a strict encoding is an 
assignment of a unique minterm mi(z) to each object oi. A non-
strict encoding is an assignment of a unique function ci(z) to each 
object oi in such a way that the functions ci(z) are pair-wise 
disjoint. The encodings discussed in this paper are always non-
strict unless stated otherwise. 

Parameter w is code length. Variables zj are code bits. Minterm 
mi(z), or function ci(z), are the code of object oi.  

A strict encoding is straight-binary (natural) if the codes are 
minterms representing integer indices of the objects. The 
minimum length of the code needed to encode µ objects is 
log2 µ. An encoding with w = log2 µ bits is a minimum-length 
(or logarithmic) encoding.   

Example 1. Table 1 gives examples of a strict and a non-strict 
encodings of objects {o1, o2, o3} using binary variables {z1, z2}. 



The strict encoding is a straight-binary encoding with the unused 
code 21zz . 

Table 1. Examples of strict and non-strict encodings. 

Objects Strict encoding Non-string encoding 

o1 21zz  21zz  

o2 21zz  21zz ∨  21zz  

o3 21zz  21zz  

In this paper, we consider the encoding problem when the 
objects to be encoded are non-overlapping (disjoint) Boolean 
functions, fi(x), 1 ≤ i ≤ µ. When this problem arises in functional 
decomposition, the parameter µ is called column multiplicity.  

An encoding of a set of functions can be represented by the 
encoding relation, C(x, z), mapping the domain of the functions 
into the domain of the code variables. The encoding relation is the 
sum of the products of functions fi(x) by their codes ci(z): 
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The code-bit functions (or simply, code functions) express each 
bit of the code in terms of support variables of fi(x). The code-bit 
functions are derived by cofactoring C(x, z). The j-th code-bit 
function zj(x) is the positive cofactor of C(x, z) w.r.t. zj = 1, with 
the remaining code bit variables existentially quantified: 

zj(x) = ∃ z [C(x, z) | zj=1]. 
Example 2. Let objects {o1, o2, o3} in Example 1 be functions 

{ x1x2, 21xx , 1x }. For the strict encoding shown in Table 1, the 
encoding relation and code-bit functions are: 

C(x, z) = x1x2 21zz  ∨   21xx 21zz  ∨   1x 21zz , 

z1= 1x ∨  2x ,  z2= 1x ∨   x2. 
Given a set of functions fi(x), 1≤ i ≤ µ, and a function g(x), 

which may belong to the set, the number of functions in fi(x) that 
overlap with g(x) is denoted Count(fi, g).  

Consider functions fi(x), 1 ≤ i ≤ 3, in Example 2 and the 
function g(x) = x2. Count( fi, g ) = 2, because g(x) = x2 does not 
overlap with f2 = 21xx , but overlaps with f1 = x1x2 and f3 = 1x .  

3 Number of Encodings 

This section considers the number, NE(µ, w), of different 
encodings of the set of µ objects using w-bit codes.  

If µ = 2w, the number of encodings is equal to the number of 
different permutations of µ minterms, NE(µ, w) = µ!.  

If µ < 2w, for each out of µ! encodings, there are 
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w
ways of choosing minterms used in the codes, 

which yields the total of NE(µ, w) = 
)!2(

!2

µ−w

w
.  

In the case of non-strict encodings, the number is even larger. 
Let us assign µ minterms to µ functions, which gives µ! 
encodings. The remaining 2w – µ minterms can either be assigned 
to one of the functions or left unused. This gives an upper bound 
on the number of different non-strict encodings:  

NE(µ, w) ≤ µµµ −+ w2)1(! . 
The formulas are illustrated in Table 2. The table shows that the 

number of different encodings is extremely large. 

Table 2. The number of strict and non-strict encodings. 

µ w 
Strict 

encodings 
Non-strict 
encodings 

3 2 24 96 
5 3 6720 25920 

10 4 2.9 ⋅ 1010  6.4 ⋅ 1012 
20 5 5.5 ⋅ 1026 1.8 ⋅ 1034 
40 6 2.0 ⋅ 1065 4.2 ⋅ 1086 

100 7 1.2 ⋅ 10186 1.2 ⋅ 10214 

4 Theoretical Background 

The encoding algorithm is based on the following theorem.  
Theorem 1. Let fi(x), 1 ≤ i ≤ µ, be Boolean functions and the 

encoding variables be zj, 1 ≤ j ≤ w, w ≥ log2 µ. An encoding of 
function fi(x) using variables zj with the given code-bit function 
g(x) exists if and only if 

Count(fi, g) ≤ 2w-1  and Count(fi, g ) ≤ 2w-1. 
Proof. (Sufficiency) Suppose a non-strict encoding with 

function g(x) exists. Setting the code-bit to 1 gives Count(fi, g) 
functions to be encoded by the remaining w-1 bits. It means that 
there are no more than 2w-1 functions, that is, Count(fi, g) ≤ 2w-1.   

Similarly, it is proved that Count(fi, g ) ≤ 2w-1. 
(Necessity) If the above limits on the number of overlapping 

functions are true, then each group of functions can be encoded 
using w-1 encoding bits. Taken together with the code-bit of g(x), 
these bits create a non-strict encoding. Q. E. D. 

A theoretical result similar to Theorem 1 was formulated in [5] 
(Property 1) without proof and used to implicitly enumerate 
support-reducing encoding choices. In this paper, we consider 
another application of the same result. 

Example 3. Consider five non-overlapping functions depending 
on four variables. Figure 1 shows the Karnaugh map. The 
minterms in the map are labeled by the functions covering these 
minterms. Let us encode these five functions using variables 
{z1, z2, z3} and assume that the given code-bit function is g(x) = x1. 

     
 x1x2 g(x)=0 g(x)=1  

x3x4  00 01 11 01  
 00 f5 f2 f1 f5  
 01 f5 f2 f1 f3  
 11 f4 f1 f1 f3  
 10 f4 f1 f1 f4  
       

Figure 1. Example illustrating Theorem 1. 



The code-bit function g(x) splits the Boolean space into two 
parts (to the left and to the right of the double line). In each part, 
there are minterms of four different functions ({f1, f2, f4, f5} on the 
left, {f1, f3, f4, f5} on the right). These four minterms can be 
encoded using two remaning two bits.  

Suppose the functions on the left and on the right of the double 
line are encoded as shown in Table 3. (The dash indicates that a 
function is missing in this part.) The resulting encoding is shown 
in column “Code”. Note that this encoding is non-strict because 
the codes of f1, f4, and f5 contain more than one minterm. 

Table 3. Encoding of functions in Example 3. 

Function 
Left part 
(z1 = 0) 

Right part 
(z1 = 1) Code 

f1 32zz  32zz  32zz  

f2 32zz  - 321 zzz  

f3 - 32zz  321 zzz  

f4 32zz  32zz  321 zzz ∨  321 zzz  

f5 32zz  32zz  321 zzz ∨  321 zzz  

5 Implementation Issues 

5.1 Considering Multiple Code-Bits 
In practical applications it is often important to find an 

encoding, in which not one, but the largest possible number of 
code-bit functions are one-variable functions. To achieve this, 
Theorem 1 is applied iteratively, as long as a feasible non-strict 
encoding exists.  

Suppose we applied Theorem 1 for the first time and found the 
first code-bit function equal to the input variable xi1. Next, the 
functions are cofactored w.r.t. variable xi1, and Theorem 1 is 
applied to the set of positive cofactors and the set of negative 
cofactors. If a feasible encoding with a simple code-bit function 
exists for both cofactors, we continue searching for the next code 
bit, and so on.  

The iterative computation scheme can be realized as a branch-
and-bound search. At each branching point, we try all input 
variables that are not used as simple code-bit function. If a 
variable can be a code-bit function, we branch to the next level. If 
on some level, we tested all input variables and none of them 
worked, the branch-and-bound procedure backtracks to the 
previous level.  

The runtime of the branch-and-bound procedure can be 
significantly reduced using upper and lower bounds updated 
dynamically as computation proceeds. 

The branch-and-bound algorithm can solve the encoding 
problem exactly in the following sense. If there exists an encoding 
with u out of w code-bits, u ≤ w, represented by the simple 
functions (functions depending on one variable, or functions 
implementing library gates), this encoding is found, and u is 
guaranteed to have the largest value.  

5.2 Encoding Steps 
The encoding algorithm takes a set of functions to be encoded, 

fi(x), and a set of preferred code-bit functions, gk(x). The algorithm 
tries to find a feasible encoding with the largest number of code-
bit functions in the given set. The resulting encoding is in the form 
of the encoding relation.  

The following steps are performed repeatedly in the above 
branch-and-bound procedure:  

(1) Count the number of functions in the set fi(x) that are 
overlapping with the function g(x), Count(fi, g). 

(2) Cofactor all the functions belonging to a set w.r.t. a 
variable. 

(3) Extract the individual codes from the encoding relation. 
The naïve implementation iterates through all the functions in 

the set to perform operations (1) and (2). This leads to a noticable 
slow-down when the number of functions is large (say, 1000).  

In a more efficient implementation, the set of functions is 
represented by the encoding relation assuming a natural encoding 
of functions. This representation reduces operation (1) to counting 
minterms, and operation (2) to cofactoring the encoding relation. 
Count(fi, g) can be computed as follows: 

Count(fi, g) = mintz( ∃ a[C(x, z)∧ g(x)] ), 
where mintz(h(z)) is the number of minterms in function h(z) 
depending on variables z. 

Given a set of functions, computing the encoding relation is 
trivial; deriving codes from the encoding relation is not. The naïve 
implementation evaluates the following formula for each function 
in the set: 

ci(z) = ∃ a[C(x, z) ∧  fi(x)] 
This leads to µ computations of the product with quantification, 
which is inefficient for large µ.  

5.3 Deriving Codes from Encoding Relation 
A more efficient way of deriving codes requires only two partial 

traversals of the BDD of C(x, z) but assumes that the code-bit 
variables z are ordered above variables x. For clarity, BDDs 
without complement edges are considered in the sequel.  

Each BDD node is annotated with the cofactors (node->else and 
node->then), the labeling variable (node->var), and the following 
additional data members: an integer counter (node->count), and 
the Boolean OR of the incoming BDD paths (node->sum). The 
exclamation mark (!) stands for complementation. 

The goal of the first traversal (Figure 2) is to count the number 
of incoming edges of the nodes labeled with variables z in the 
BDD of C(x, z). This is achieved by associating a counter with 
each BDD node and incrementing the counter when the node is 
visited. Only the first visit to a node is followed by visiting the 
node’s children. For this reason, each node is visited no more than 
once. The computational complexity of this traversal is linear in 
the number of BDD nodes labeled with variables z.  

The second traversal (Figure 3) is more complicated. It involves 
computing the sum of the BDD paths converging into a node. 
Each visit to a node corresponds to a new path, which is added to 
the variable node->sum associated with the node (initially, it is set 
to the zero Boolean function for all nodes). Each time the node is 
visited, its counter of incoming edges, computed by the first 
traversal, is decremented. Upon the last traversal, the counter 



becomes zero, meaning that we traversed all the paths leading to 
the given node and can now propagate the resulting sum of paths 
to the node’s children.  

The computation terminates at the nodes labeled by variables x. 
At this point, the computed sums of paths are equal to the codes of 
functions represented by the nodes. 

 
CountEdges( bdd node ) 
{     
     if ( node->count == 0 ) {  
           if ( node->var ∈  code-bit variables ) { 
                 CountEdges( node->else ); 
                 CountEdges( node->then ); 
           } 
     } 
     node->count = node->count + 1; 
} 

Figure 2. Counting the number of incoming edges of the BDD nodes 
labeled by the code-bit variables. 

 
ComputePaths( bdd node, bdd paths ) 
{     
     node->sum = node->sum ∨  paths; 
     node->count = node->count - 1; 
     if ( node->count == 0 ) {  
           if ( node->var ∈  code-bit variables ) { 
                 ComputePaths( node->else,  node->sum ∧  !(node->var) ); 
                 ComputePaths( node->then,  node->sum ∧    node->var ); 
           } 
     } 
} 
Figure 3. Computing OR of BDD paths leading to the BDD nodes 

labeled by the code-bit variables. 

5.4 Counting Overlapping Functions 
Profiling of the encoding algorithm has shown that most of the 

runtime is spent in computing Count(fi, g). It is possible to speed-
up this computation several times by developing a specialized 
BDD operator to count the number of minterms involving 
variables z, without evaluation of the formula for Count(fi, g), 
which includes the product and the existential quantification. 

The pseudo-code of this operator is shown in Figure 4. 
It traverses BDDs of C(x, z) and g(z) without building new nodes 
and returns the number of minterms in the product C(x, z) ∧  g(z). 
For this operator to work, variables z should be ordered below 
variables x. The procedure CountMintSimple(C) returns the 
number of minterms in C depending only on code-bit variables z. 

CountMintSpecialized( bdd C, bdd g ) 
{     
     v = TopMostVar( C, g ); 
     if ( v is a code-bit variable ) { 
          assert( g = 0 || g = 1 ); 
          if ( g = 0 )          return 0; 
          else                     return CountMintSimple(C); 
    } 
    // otherwise,  v is a functional variable  
    (C0, C1) = Cofactors( C, v ); 
    (g0, g1)   = Cofactors( g, v ); 
    return CountMintSpecialized(C0, g0) + CountMintSpecialized(C0, g0); 
 } 

Figure 4. A specialized BDD operator to count the number of 
overlapping functions. 

6 Application to LUT Cascade Synthesis 

6.1 LUT Cascade 
LUT cascade is a programmable device for evaluation of 

completely specified Boolean functions [11]. LUT cascade is 
approximately ten times faster than branching programs, even 
though it requires more memory. This observation gives LUT 
cascade a unique place among programmable devices and makes it 
a practical alternative to FPGAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Architecture of LUT cascade. 
 
LUT cascade consists of an array of look-up tables, denoted 

“Memory” in Figure 5, the control unit, the distributor, and 
several additional registers: the memory address register (MAR), 
the memory buffer register (MBR), and the input register to store 
the values of input variables. The distributor is an n-bit register 
storing the bit-vector applied to one stage of LUTs in each 
clocking period.  

An k-input LUT can be programmed to implement any single-
output Boolean function of k variables. A cascade of k-input LUTs 
can implement a single-output Boolean function if its BDD width 
(µ), defined as the number of different cofactors on a level, is such 
that log2 µ < k.  

The evaluation of the function implemented in the LUT cascade 
is performed as follows. The input vector, for which the function 
is evaluated, is loaded into the input register. This vector is split 
into several parts loaded into the distributor at the successive 
clocking periods. Variables belonging to each part are determined 
during synthesis.  

In the first clocking period, MAR is filled with the values of 
variables feeding into the first stage of the cascade. In the 
following clocking periods, one part of MAR is filled with the 
outputs of LUTs from the previous period; while the remaining 
part is filled with the input variables values. The evaluation 
continues until the last LUT is reached. This LUT produces the 
output value of the function. 

Example 4. Consider function F = (ab ∨  c)d. This function can 
be realized using a cascade of two-input LUTs. The structure of 
the cascade is found by mapping the BDD of F into three two-
input LUTs. The K-maps of functions programmed in the LUTs 
are shown in Figure 6. 

LUT-1 takes values of variables a and b and implements the 
function x(a, b) distinguishing among the two cofactors in the 

Memory 

Distributor 

Control 
Unit 

MAR 

Input Register 

MBR 



BDD on the level of variable c. The second stage of the cascade 
(LUT-2) depends on x and c and implements the function y(x, c) 
distinguishing among the two cofactors in the BDD on the level of 
variable d. Finally, the last LUT (LUT-3) takes y and d and 
produces the output value of F.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. LUT cascade for F(a,b,c,d) = (ab ∨  c)d. 

If the function has multiple outputs, they are encoded using 
additional variables. The resulting single-output function is called 
Encoded Characteristic Function for Non-zero outputs (ECFN) 
[11]. The evaluation of a particular output is performed by setting 
values of the additional variables to the code of this output. Using 
this method one output is evaluated at a time. 

6.2 Encoding in LUT Cascade Synthesis 
The theory and algorithms for LUT cascade synthesis are 

developed in [11]. Similar to the above example, LUT cascade 
synthesis is reduced to the decomposition of the BDD (or ECFN) 
of the function into a number of n-input blocks, each implemented 
by a LUT. Synthesizing one stage of the cascade involves 
encoding the cofactors found in the BDD below a certain level.  

Different cofactor encodings lead to different cascade 
implementations. A reduction in the LUT count can be achieved 
by selecting decomposition subfunctions so that as many as 
possible are single-variable functions. The number of such 
subfunctions is equal to the number of LUTs replaced by a wire in 
the LUT cascade implementation.  

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Synthesis of one stage of LUT cascade. 

Encoding of cofactors is performed for each stage of the LUT 
cascade. Consider synthesis of stage i of the cascade in Figure 7. 

Suppose the number of cofactors coming from the previous stage 
i-1 is µi-1. These cofactors can be encoded using wi-1 = log2 µi-1 
bits. Then, k-input LUTs at stage i depend on wi-1 outputs z of the 
previous stage and k - wi-1 primary input variables x. Knowing the 
codes assigned to the cofactors at stage i-1, we label the nodes c1

i-

1, c2
i-1,…, cµi-1

i-1 with their codes and compute the sums of the 
BDD paths through stage i for nodes c1

i, c2
i,…, cµk

i the same way 
it was done in the procedure ComputePaths() in Figure 3.  

The resulting path functions, Pµi
i(x, z), depend on code-bit 

variables z at stage i-1 and the primary inputs x coming to stage i. 
The support size of Pµi

i(x, z) does not exceed the number of LUT 
inputs. During the encoding, we perform a branch-and-bound 
procedure using variables in the support of Pµi

i(x, z) and find the 
largest number of one-variable code-bit functions. 

7 Experimental Results  

The algorithm was programmed in C and included in EXTRA 
Library [7] extending the functionality of CUDD Release 2.3.1 
[13]. The algorithm was tested on benchmarks used in [11].  

The number of inputs in the LUTs was set to 15. For a function 
to be implementable using 15-input LUTs, each stage of the 
cascade should have at least one primary input variable, which 
makes the upper bound on the number of encoding bits equal to 
14. The limit on the depth of branch-and-bound search was set to 
5. This saved up to 5 LUTs in one stage due to encoding. 

The following notation is accepted in Table 3. SBDD stands for 
the number of nodes in the shared BDD (w/complement edges) 
after reading and reordering. For some benchmarks, good variable 
orders [14] were used to build the BDDs for LUT cascade 
synthesis. ECFN is the number of nodes in the encoded 
characteristic function for non-zero outputs (w/o complement 
edges). W_SBDD is the maximum width of the shared BDD. 
W_ECFN is the maximum width of the ECFN.  

Stages is the number of stages in the synthesized cascade. This 
number is equal to the number of 15-bit encoding problems 
solved. Strict is the number of LUTs using strict encoding. 
Non-str is the number of LUTs with non-strict encoding. Read is 
the time to read the benchmark from file. Dec is the time for 
decomposition without encoding. Enc is the time for encoding.  

The last column of the table N lists the number of LUTs used in 
[11]. It should be noted that the experimental settings in [11] were 
different from ours. The latter work assumes a natural encoding of 
cofactors but considers the problem of encoding the outputs of the 
function in ECNF and the problem of finding a good variable 
order to reduce the BDD width. In our work, on the other hand, 
the main emphasis is on finding a non-strict encoding of cofactors, 
while the encoding of the outputs in ECNF was natural and 
variable reordering did not aim at reducing the BDD width.  

The ECFNs and the LUT cascades derived by our program are 
written into the output BLIF files. Verification was not performed 
for “C7552.blif” because of the very large size of the output BLIF. 
For all other benchmarks, verification was successful. 

In summary, columns Strict and Non-str show that the new 
encoding algorithm allows for saving up to 25% of LUTs. The 
runtime of the algorithm is comparable to the time needed for 
reading the benchmark. Taking into account the number of 14-bit 
encoding problems solved for each benchmark (column Stages), 
this runtime does not seem large. 
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8 Conclusions  

This paper presents optimal non-strict encoding for sets of 
Boolean functions. An encoding is optimal if as many code-bit 
functions as possible are single-variable functions, or implement 
gates from a library. In LUT cascade synthesis, single-variable 
functions are implemented by a wire. As a result, the non-strict 
cofactor encoding reduces the numbers of LUTs in the LUT 
cascades by 25% on average, compared to the natural encoding. 

The future work includes the application of the optimal non-
strict encoding in the functional decomposition and technology-
dependent decomposition-mapping of logic functions. 
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Table 3. Experimental results for LUT cascade synthesis with non-strict encoding. 

Benchmark Node Count Width LUT Cascade Runtime, c [11] 
Name Inputs Outputs SBDD ECFN W_SBDDW_ECFN Stages Strict Non-Str Read Dec Enc N 
C432 36 7 1064 950 102 100 4 20 18 0.08 0.06 0.08 20 
C499 41 32 25866 27216 2112 2176 8 63 58 3.47 2.51 4.87 60 
C880 60 26 4053 4098 467 467 8 53 43 1.64 0.24 0.53 51 

C1908 33 25 5526 7449 595 620 5 36 33 1.04 0.57 1.61 35 
C2670 233 140 1850 2639 373 416 31 224 148 2.04 0.18 1.26 170 
C3540 50 22 23828 34712 4264 5414 17 194 144 16.45 3.08 28.01 107 
C5315 178 123 1719 2566 176 258 23 161 121 0.96 0.20 0.64 142 
C7552 207 108 2213 2939 177 193 26 176 147 6.17 0.20 0.86 156 
apex3 54 50 902 980 174 186 7 45 31 0.23 0.05 0.32 28 
apex7 49 37 304 346 101 87 6 29 20 0.01 0.01 0.08 21 

b9 16 5 78 93 30 30 2 5 5 0.00 0.00 0.00 14 
dalu 75 16 689 581 147 147 10 64 41 0.41 0.04 0.39 40 
des 256 245 2945 3024 622 363 36 268 172 1.26 0.36 2.13 235 

duke2 22 29 387 386 58 60 3 11 11 0.01 0.02 0.01 10 
e64 65 65 133 200 66 66 7 33 22 0.03 0.02 0.06 25 
ex4 128 28 509 534 71 49 12 47 41 0.02 0.01 0.05 32 
k2 45 45 1246 1299 274 262 6 36 31 0.16 0.05 0.19 28 
rot 135 107 5922 7401 694 788 20 151 122 0.69 0.41 1.40 125 

spla 16 46 637 616 99 95 2 7 6 0.30 0.03 0.02 8 
Total       233 1623 1214 34.97 8.04 42.51 1307 

Ratio, %        100.0 74.8    80.5 

 


