
Board-Level Multiterminal Net Assignment
Xiaoyu Song1, William N. N. Hung2, Alan Mishchenko1, Malgorzata Chrzanowska-Jeske1,

Alan Coppola3 and Andrew Kennings4

1Department of ECE, Portland State University, Portland, Oregon, USA
2Intel Corporation, Hillsboro, Oregon, USA

3Cypress Semiconductor, Beaverton, Oregon, USA
4Department of ECE, University of Waterloo, Waterloo, Ontario, Canada
ABSTRACT
The paper presents a satisfiability-based method for solving the
board-level multiterminal net routing problem in Clos-Folded
FPGA based logic emulation systems. The approach transforms the
FPGA board-level routing task into a single, large Boolean equation
with the property that any assignment of input variables that satis-
fies the equation specifies a valid routing. The approach considers
all nets simultaneously and the absence of a satisfying assignment
implies that the layout is unroutable. We use two of the fastest SAT
solvers: Chaff and DLM to perform our experiments. Empirical re-
sults show that the method is time-efficient and applicable to large
layout problem instances.

1. INTRODUCTION
There has been ever-increasing interest in computing engines based
on field programmable gate array (FPGA) [2]. These engines make
possible high-speed reconfigurable prototyping [6] and emulation
systems [15]. An FPGA-based computing system consists of
multiple FPGAs which require interconnections among them. To
implement circuits that cannot fit onto a single FPGA chip, the field
programmable interconnect chip (FPIC) was introduced [1]. Large
circuits are divided into several parts, and each part is implemented
in a separate FPGA chip. An FPIC is used to interconnect these
FPGAs on a printed circuit board. Each external pin (I/O pin) of the
FPGA is connected to an FPIC pin through a trace on the board. An
FPIC does not implement any logic function, rather, it provides
interconnection paths between pins. The FPIC offers a quick and
reprogrammable means for inter-FPGA connections and permits
fast modification of large circuits [5].

Successful design methodologies require design verification to be
an integral part of the design process. As much as 80% of time spent
on designing a system is devoted to the design verification. One of
the important verification methods is logic simulation. Logic
simulation software reports on how the circuit under design will
respond to a sequence of input vectors, so the designer can judge
whether the circuit behaves as expected over the input sequence. As
the circuit complexity increases and the time to market shortens,
inadequate simulation speed becomes a major bottleneck in the

design process. Currently, the fastest simulation-based verification
is done with a hardware emulator such as QuickTurn [3]. A
hardware emulator consists of a large number of FPGAs
interconnected either directly or indirectly through FPICs [4]. A
hardware emulator can be configured as the circuit under design.
Even running at a few hundred kilohertz, a hardware emulator still
evaluates input vectors much faster than a simulation software does
(as much as 105 times faster). As a result, FPGA-based logic
emulators can verify large designs that otherwise are not verifiable
by software simulators. Therefore, FPGA-based hardware
emulation is becoming indispensable in many state-of-the-art VLSI
design projects [3, 5, 7].

There are two major steps in logic emulation: (1) a large design is
partitioned into parts which can fit inside a single FPGA on the
logic emulator [12]; (2) board-level routing is performed to connect
the signals between the FPGA chips [8, 9]. In logic emulators such
as the Realizer system [3] and the Enterprise Emulation system [5],
the set of FPGAs implementing the logic are interconnected by a set
of small full crossbars. The interconnection crossbars only connect
to the FPGAs but not to each other. The I/O-pins of each FPGA are
evenly divided into proper subsets. The pins of a crossbar can be
connected only to the same subset of pins on each FPGA.

In this paper, we present a new satisfiability-based method for
solving the board-level multiterminal net routing problem in Clos-
Folded FPGA based logic emulation systems. The problem was
also referred to as the “partial crossbar interconnection structure” in
[3]. The problem was studied using different approaches [8, 9, 10,
13, 23], where no experimental results for large problems were
reported. Our satisfiability-based approach transforms the FPGA
routing task into a single, large Boolean equation with the property
that any assignment of input variables that satisfies the equation
specifies a valid routing. The fixed routing resources in an FPGA
and their rigid structure make it particularly easy to model the
problem of net assignment in the Boolean domain. The method
considers all nets simultaneously and the absence of a satisfying
assignment implies that the layout is unroutable.

The remainder of this paper is organized as follows. In Section 2,
we review related work and formally define the problem. In Section
3, a novel approach based on satisfiability is presented.
Experimental results are presented in Section 4. Section 5
concludes the paper.

2. PRELIMINARIES AND PRIOR WORK

2.1. Previous Work
Some heuristics were proposed for solving the BLRP in [3, 4].
Optimal algorithms for board-level routing, when all nets are two-
terminal nets and the I/O-pin subset size is even, were proposed

independently by Chan and Schlag [13] and Mak and Wong [9]. An
O(N2)-time algorithm for solving any two-terminal BLRP was
presented in [9], where N is the number of nets. An I/O pin capacity
constraint was proposed to assure the existence of a solution. The
algorithm was based on the iterative computation of Euler circuits
in graphs of BLRPs. They also proved that the multiterminal
routing problem is NP-complete.

Mak and Wong [9] showed how multiterminal nets can be handled
by decomposition into two-terminal nets, and how the
decomposition problem can be modeled as a bounded-degree
hypergraph-to-graph transformation problem where hyperedges are
transformed to spanning trees. A network flow-based algorithm that
solves both problems was proposed. It determines if there is a
feasible decomposition and gives one whenever such a
decomposition exists.

The assignment problem for multiterminal nets can be solved in two
ways. One is to tackle the multiterminal nets directly. The other is
to transform all multiterminal nets into two-terminal nets and solve
it using a polynomial algorithm. Although the latter approach has
better scalability since two-terminal nets can be routed in
polynomial time, it is just a heuristic because the original problem
is transformed into a different problem in which more pins are
required. If the only solution to the original problem uses up all pins
of all FPGAs, then a solution to the transformed problem will not
be feasible to the original problem. Moreover, in practice, the
utilization of logic FPGAs is usually very low, and the utilization of
pins is very high. The increase in pin count can make it impossible
to configure an emulation system. Therefore, it is preferable to take
the former approach.

To handle routing constraints that may arise from certain timing
requirement, Mak and Wong [11] proposed a performance-driven
routing algorithm for the board-level routing problem that can
handle additional routing constraints and reduce the delay of the
routing solutions. It is an optimization algorithm based on
minimum cost flow computation.

Devadas [14] was the first to use satisfiability techniques to address
the physical design problems. Satisfiability-based approaches in
[18, 19] have been proposed for FPGA detailed and global routing.

2.2. Problem Formulation
The FPGAs are referred to as chips. Let us assume that all chips are
identical and the interconnection crossbars are used only to connect
to the chips but not to each other. Let F be a set of p identical FPGA
chips, numbered by 1, 2, ..., p. A chip has a set of I/O ports. I/O ports
of each chip are evenly divided into k groups of size m: S1, S2, ...,
Sk. We assign a distinct type for each group, Si, i = 1,..., k. We use
labels: A, B, C, ..., to represent their types. An I/O port in a group
Si possesses the type of Si. In other words, we say I/O ports of each
chip are evenly divided into k groups of size m such that (i) type(S1),
type(S2),, type(Sk) are pairwise distinct; (ii) size(S1) = size(S2)
=...= size(Sk) = m.

In terms of the number of terminals per net, two kinds of board-
level routing problems (BLRPs) are identified: (i) two-terminal
BLRP where all nets are two-terminal nets; and (ii) multiterminal
BLRP where at least one net has more than two terminals.

A two-terminal board level routing problem (2BLRP) is defined as
follows. Given a set of two-terminal interchip nets M={n1, n2, ...,
nN}, where nt = <i, j>, i ≠ j, i, j ∈ {1, ..., p}, and t=1, 2, ..., N, we want
to find an assignment of M to I/O ports of F such that, for each net
nt = <i, j>, type(i) = type(j), i≠j, i, j ∈ {1, ..., p}, and t = 1, 2, ... , N.

Note that no net can have its two terminals in the same chip. Any
two I/O ports of the same type on different chips can be connected
by a FPGA crossbar switch. Since we have a one-to-one
correspondence between the terminal (the ending point of a net) and
its chip, we use the chip number to identify the ends of a net.

In the following, m is the number of the pins having the same type
in each chip, k is the number of types in each chip which represents
the number of crossbars, and p is the number of FPGA chips. Pins
of each chip are evenly routed to k crossbar switches using N nets.
A 2BLRP with parameters m, k, p and N is denoted by 2BLRP(m,
k, p, N). An instance of the 2BLRP(2, 2, 4, 8) is shown in Figure 1,
where m = 2, k = 2, p = 4 and N = 8.

Figure 1. An instance of 2BLRP(2, 2, 4, 8).

A multiterminal board level routing problem (BLRP) is defined as
follows. Given a set of multiterminal interchip nets M={n1, n2, ...,
nN}, where nt = {i1, ..., is}, ig ≠ ih, ig, ih ∈ {1, ..., p}, g, h ∈ {1, ..., s},
t = 1, 2, ..., N, find an assignment of M to I/O ports of F such that,
for each net nt = {i1, ..., is}, type(ig) = type(ih), ig ≠ ih, ig, ih ∈ {1, ...,
p}, g, h ∈ {1, ..., s}, and t = 1, 2, ..., N.

For routability, consider 2BLRP(2, 2, 3, 6) in Figure 2 where the
nets are divided into three groups, connecting each pair of chips,
each group consisting of two nets. Without losing generality,
assume that nets n1 and n2 connect chips 1 and 2, nets n3 and n4
connect chips 2 and 3, while nets n5 and n6 connect chips 1 and 3.

Figure 2. An instance of 2BLRP(2, 2, 3, 6).

If we start routing the nets as shown in Figure 3, by connecting chip
1 and chip 2 with two nets of the same type, and next connecting

AA B B

chip 1

AA B B

chip 2

AA B B

chip 3

AA B B

chip 4

crossbar A crossbar B

n1 n1n2 n2n3 n3n4 n4n5 n5n6 n6n7n7 n8n8

AA B B

chip 1

AA B B

chip 2

AA B B

chip 3

crossbar A crossbar B

n1

n2

n3
n4

n5

n6

chip 2 and chip 3 with two nets of another type, the problem has no
solution. The remaining two nets connecting chips 1 and 3 cannot
be routed, because the unused pins on these chips have
incompatible type. Figure 4, on the other hand, represents a feasible
solution.

Figure 3. A unfeasible net assignment for the instance in Fig. 2.

Figure 4. A feasible routing for the instance in Fig. 2.

3. BLRP(M, K, P, N) VIA SATISFIABILITY

3.1. Introduction
A satisfiability problem (SAT) is defined as follows. Given a set of
n clauses {C1, C2, ..., Cn} on m variables x={x1, x2, ..., xm}, xi∈ {0,
1}, where each clause Ci consists of only logical OR connected
variables (positive literals) or negations of variables (negative
literals), and a Boolean formula in conjunctive normal form (CNF),
which is logical AND of clauses:

C1 ∧ C2 ∧ ... ∧ Cn (1)
The problem is to find an assignment of values to the variables so
that (1) evaluates to be true or prove its infeasibility if (1) has no
satisfying assignments. A clause is satisfied if at least one of its
literals is true. The entire Boolean expression is satisfied if all its
clauses are simultaneously satisfied, given a particular assignment
to the variables. SAT lies at the core of many practical application
domains including EDA automatic test generation, formal
verification, and logic synthesis. SAT was one of the central NP-
complete problems [17]. As the best NP-complete algorithms have
exponential time complexity, NP-complete is generally considered
to mark the boundary between tractability and intractability.
Nevertheless, a large amount of research in recent years has shown
that satisfiability problems can often be solved efficiently in
practice [20, 21], and numerous solver algorithms have been
proposed and implemented. A SAT solver is complete if it can
guarantee to find a satisfying assignment if one exists or prove
unsatisfiability. Otherwise it is incomplete.

3.2. SAT Formulation
In order to reduce BLRP to the satisfiability formula, it is necessary
to encode the problem by introducing Boolean variables and
formulating Boolean constraints in terms of SAT clauses. Given the

problem with N multiterminal nets and k types of I/O ports, it is
reasonable to introduce N×k Boolean variables to encode the
problem. Each variable represents the possibility to route the given
net using one of k possible pin types. If the variable is 1, the routing
includes the given possibility; if the variable is 0, this possibility is
not used.

To express the constraints, consider the set of requirements for a
feasible solution. The requirements are of two types: (1) the
covering constraints, and (2) the closure constraints. The first group
of constraints ensures that each net is routed at least once. The
second group ensures that (2a) no net is routed more than once, and
that (2b) for each chip and each pin type, the number of associated
nets does not exceed the number of available pins.

SAT-based formulation of the FPGA board-level routing problem
consists of finding and solving a single, large Boolean equation
with the property that any assignment of input variables that
"satisfies" the equation specifies a valid routing. The formulation
considers all nets simultaneously and the absence of a satisfying
assignment implies that the layout is unroutable.

3.2.1 Covering constraints
For each net n, there is only one covering constraint. This constraint
relates all the variables associated with this net in the following
way:

As discussed above, this formula means that the net can be routed
using any pin type.

3.2.2 Closure constraints
The first type of closure constraints requires that each net was
routed no more than once. In other words, among each pair of
variables (xn

i, xn
j), at least one is assigned to zero:

, ∀ i, j ∈ {1, 2, …, k}, i ≠ j.

Let be a Boolean variable representing a net ni connecting

chips a and b using pin type k. We need to introduce the set of

variables Xc
k corresponding to nets connecting chip c with other

chips using the pin type k. More formally, we have:

.

The second type of closure constraints combines all variables Xc
k

that correspond to all nets connecting chip c with other chips using
the pin type k. Among variables belonging to Xc

k there should be no
more than m variables equal to 1. In other words, in every group of
m+1 variables belonging to Xc

k , there should be at least one
variable equal to 0.

To formulate these constraints, it is necessary to create the set Xc
k

for each chip and each pin type, and next take all possible
combinations of m+1 variables in the negative polarity. The
illustration of this type of constraints is given below.

AA B B

chip 1

AA B B

chip 2

AA B B

chip 3

n1 n2 n5 n6 n1 n2 n3 n4 n5 n6 n3 n4

AA B B

chip 1

AA B B

chip 2

AA B B

chip 3

n1 n5 n2 n6 n1 n3 n2 n4 n3 n5 n4 n6

xn
1

x∨ n

2
… xn

k∨ ∨ 1=

xn
i

xn
j∨ 1=

xab ni–
k

Xc
k

xab ni–
k

a c=() b c=()∨

=

3.2.3 An Example
We use the example in Figure 2 to show our SAT formulation. The
variables are introduced as follows. There are 12 variables totally.
The solution shown in Figure 4 corresponds to the following
assignment:

Chips 1 and 2: .

Chips 2 and 3: .

Chips 1 and 3: .

The constraints can be expressed as follows.

The covering constraints for all nets:

;

;

;

;

;

.

The first set of closure constraints for all nets:

;

;

;

;

;

.

The second set of closure constraints is:

Chip 1 with pin type A, ,

,

,

,

.

Chip 1 with pin type B, ,

,

,

,

.

Similarly, the other four sets of closure constraints can be obtained
for chips 2 and 3 with A and B, respectively, and each of them
contains 4 constraints. It is easy to verify that the assignments of
variables corresponding to the solution in Figure 4 satisfies the
given set of constraints.

3.2.4 Complexity
The bottleneck of the proposed approach is in the number of the
closure constraints of the second type. It grows exponentially with
the number of nets involving the given chip. However, it is
polynomial for small m. Assumming that all pins of the chips are
used, there are z = k*m nets connecting each chip. Then, the total
number of clauses can be approximated as follows:

For example, if p = 50, k = 4, m = 4, altogether there are 800 pins.
Assuming the 4-terminal nets and that all the available pins are
used, there are 200 nets. The number of variables is 200 *4 = 800,
the number of clauses is 200 + 1200 + 873,600 = 875,000.

4. EXPERIMENTAL RESULTS
We initially attempted to use BDD-based method to solve the
Boolean equations representing BLRP. However, the BDD-based
implementation failed due to the excessive BDD size for problems
involving more than 60 Boolean variables. Thus, we could not solve
even the smallest examples out of those that are listed in the
experimental results section below.

We subsequently formulated the routing constraints as CNF
formulas that were checked by SAT solvers. We used two of the
fastest solvers [21] from the numerous available SAT solvers: Chaff
[22] and DLM [20], which are complete and incomplete solvers,
respectively. Chaff employs a conflict resolution scheme that is
philosophically very similar to GRASP [21], using the same type of
conflict analysis, conflict clause addition. DLM is a discrete
Lagrange-multiplier-based global-search method for solving
satisfiability problems. In contrast to clause weight schemes that
rely only on the weights of violated constraints to escape from local
minima, DLM uses the value of an objective function to provide
further guidance. The dynamic shift in emphasis between the
objective and the constraints is the key of Lagrangian methods. One
of the major advantages of DLM method is that it has very few
algorithmic parameters to be tuned by users and the search
procedure can be made deterministic. DLM often performs as one
of the best existing methods and can achieve an order-of-magnitude
speedup for some problems.

x12 n1–
A

1 x12 n1–
B

0= x12 n2–
A

0= x12 n2–
B

1=, , ,=

x23 n3–
A

1 x23 n3–
B

0= x23 n4–
A

0= x23 n4–
B

1=, , ,=

x13 n5–
A

1 x13 n5–
B

0= x13 n6–
A

0= x13 n6–
B

1=, , ,=

x12 n1–
A

x∨ 12 n1–

B
1=

x12 n2–
A

x12 n2–
B∨ 1=

x23 n3–
A

x23 n3–
B∨ 1=

x23 n4–
A

x23 n4–
B∨ 1=

x13 n5–
A

x13 n5–
B∨ 1=

x13 n6–
A

x13 n6–
B∨ 1=

x12 n1–
A

x12 n1–
B∨ 1=

x12 n2–
A

x12 n2–
B∨ 1=

x23 n3–
A

x23 n3–
B∨ 1=

x23 n4–
A

x23 n4–
B∨ 1=

x13 n5–
A

x13 n5–
B∨ 1=

x13 n6–
A

x13 n6–
B∨ 1=

Xc
k

x12 n1–
A

x12 n2–
A

x13 n5–
A

x13 n6–
A, , ,

=

x12 n1–
A

x12 n2–
A

x13 n5–
A∨ ∨ 1=

x12 n1–
A

x12 n2–
A

x13 n6–
A∨ ∨ 1=

x12 n1–
A

x13 n5–
A

x13 n6–
A∨ ∨ 1=

x12 n2–
A

x13 n5–
A

x13 n6–
A∨ ∨ 1=

Xc
k

x12 n1–
B

x12 n2–
B

x13 n5–
B

x13 n6–
B, , ,

=

x12 n1–
B

x12 n2–
B

x13 n5–
B∨ ∨ 1=

x12 n1–
B

x12 n2–
B

x13 n6–
B∨ ∨ 1=

x12 n1–
B

x13 n5–
B

x13 n6–
B∨ ∨ 1=

x12 n2–
B

x13 n5–
B

x13 n6–
B∨ ∨ 1=

N 1× N
k k 1–()×

2
--------------------------× p k× k m×

m 1+
 ×+ +

Our test results presented in Table 1 are of great importance since
we have the first experimental results for the problem studied in [8].
Benchmark is the name of a generated benchmark. P is the number
of chips. K is the number of pin types. M is the number of pins of
each type. Max is the largest number of terminals (size) of a net. Ave
is the average size of all nets. Vars is the number of variables
needed to encode the problem for the SAT solver. Clauses is the
number of clauses given to the SAT solver. Literals is the number of
positive and negative polarity literals in all clauses. Prep is the time
needed to transform the problem into a SAT instance. DLM is the
time needed to solve the problem by DLM SAT solver. Chaff is the
time needed to solve the problem by the zChaff SAT solver. The
runtime is in seconds on 850MHz PentiumIII with 1GB RDRAM
(only small part of memory has been used). The run time can be
improved by fine-tuning the SAT solver parameters. All solutions
have been automatically verified using a built-in verifier.

For the same parameters of P, K and M, we increase N (number of
nets) gradually. It is pretty clear that the number of variables,
clauses and literals generated in our satisfiability formulation also
increases with N. However, the time it takes for the DLM SAT
solver does not necessarily increase with the rising N. The same
phenomenon can be observed for the number of chips (P).
Increasing P (and N) results in more variables, clauses and literals.
But the time it takes to solve the problem does not necessarily
increase with P. Since DLM transforms the routing problem into
discrete Lagrangean domain, the time it takes to solve the problem
is not directly proportional to the number of constraint clauses. We
have tested two sets of problems: M = 2 and M = 3. It takes longer
time to solve the problem for M = 3 than for M = 2. This is
understandable as more pins implies more complexity for the
problem.

For the majority of cases, Chaff takes longer to compute than DLM.
This does not necessarily mean that Chaff is in general slower than
DLM. There are a lot of other parameters that could be tuned by
these SAT checker implementations to speed up the runtime for
particular types of problems. In addition, Chaff is a complete SAT
checker that is able to confirm unroutability. This is very important
as heuristic methods and local searches (like DLM) runs forever
under those circumstances.

5. CONCLUDING REMARKS
We have studied a satisfiability-based method for solving the
board-level multiterminal net routing problem in Clos-Folded
FPGA based logic emulation systems. The approach transformed
the FPGA routing task into a single, large Boolean equation with
the property that any assignment of input variables that satisfies the
equation specifies a valid routing. Experimental results
demonstrate its time-efficiency and applicability to large layout
problem instances.

Incremental redesign is an increasingly essential step in any
complex design. Our formulation allows for an incremental
approach to BLRP. If the problem is not satisfiable, a feasible
routing does not exist. In this case, it is possible to relax some of the
constraints, and remove them from the constraint database, while
leaving most of the constraints intact. Since the crossbars are
distributed over different locations on a board, the distances a net
signal needs to travel when a net is routed via different crossbars

can be largely different. For some highly critical nets, there should
be some restrictions as which crossbars each can be routed through
to satisfy certain timing constraints. If we are given some nets with
stringent timing requirement, and thus can only be routed via
certain crossbars, it is possible to tighten the constraints by
assigning nets in a different way. If only a small number of nets are
changed, there is no need to regenerate all the constraints in the SAT
constraint data base.

6. ACKNOWLEDGMENTS
The first author would like to thank Dr. W. Mak for helpful
discussions on the problem.

7. REFERENCES
[1] M. Khalid and J. Rose, "A Hybrid Complete-Graph Partial-
Crossbar Routing Architecture for Multi-FPGA Systems," Proc.
ACM Symposium on FPGAs, Feb 1998, pp. 45-54.
[2] S. D. Brown, R.J. Francis, J.Rose, and Z. G. Vranesic, Field
Programmable Gate Arrays, Norwell, MA: Kluwer, 1992.
[3] J. Varghese, M. Butts, and J. Baatcheller, “An efficient logic
emulation system,” IEEE Trans. VLSI Systems, Vol. 1(2), pp. 171-
174, 1993.
[4] M. Slimane-Kadi, D. Brasen, and G. Saucier, “A fast FPGA
prototyping system that uses inexpensive high-performance FPIC,”
Proc. ACM/SIGDA Int. Workshop FPGAs, 1994.
[5] L. Maliniak, “Multiplexing enhances hardware emulation,”
Electronic Design, pp. 76-78, 1992.
[6] S. Walters, “Computer-aided prototyping for ASIC-based
systems,” IEEE Design Test, pp. 4-10, 1991.
[7] K. Yamada, H. Nakada, A. Tsutsui, and N. Ohta, “High-speed
emulation of communication circuits on a multiple-FPGA system,”
Proc. ACM/SIGDA Int. Workshop FPGAs, 1994.
[8] W.K. Mak, and D.F. Wong, "Board-Level Multi-Terminal
Net Routing for FPGA-based Logic Emulation," Proc. International
Conference on Computer Aided Design, pp. 339-344,1995.
[9] W.K. Mak and D.F. Wong, “On optimal board-level routing
for FPGA-based logic emulation,” IEEE Trans. CAD, Vol. 16(3),
1997.
[10] S. Lin, Y. Lin, and T. Hwang, “Net Assignment for the FPGA-
Based Logic Emulation System in the Folded-Clos Network
Structure,” IEEE Trans. CAD, Vol. 16(3), 1997.
[11] W.K. Mak, and D.F. Wong, "Performance-Driven Board
Level Routing for FPGA-based LOgic Emulation," Proc.
International Conference on Computer Design, pp. 199-201,1998.
[12] N.C. Chou, L.T. Liu, C. K. Cheng, W.J. Dai, and R. Lindelof,
"Circuit Partitioning for Huge Logic Emulation Systems," Proc.
ACM/IEEE Design Automation Conference, pp. 244-249,1994.
[13] P.K. Chan, and M.D.F. Schlag, “Architectural Trade-offs in
Field-Programmable-Device Based Computing Systems,” Proc.
IEEE Workshop on FPGAs for Custom Computing Machines, pp.
138-141, April 1993.
[14] S. Devadas, “Optimal layout via Boolean Satisfiability,” Proc.
ACM/IEEE ICCAD, 1989, pp. 294-297.
[15] M. Gokhale, W. Holmes, A. Kopser, S. Lucas, R. Minnich,
and D. Sweely, "Building and using a highly parallel programmable
logic arrays," Computer, Vol. 24., pp. 81-89, Jan. 1991.
[16] P. Berlin, D. Roncin, and J. Vuillemin, "Programmable active
memories: A performance assessment," Proc. 1st Int. Workshop
FPGAs, Feb. 1992, pp. 57-59.

[17] M.R. Garey, and D.S. Johnson, Computers and Intractability,
A guide to the Theory of NP-completeness, W.H. Freeman, 1979.
[18] Gi-Joon Nam, Karem A. Sakallah and Rob. A. Rutenbar,
"Satisfiability-Based Layout Revisited: Detailed Routing of
Complex FPGAs Via Search-Based Boolean SAT," Proc. ACM
International Symposium on FPGAs, February 1999, Monterey.
[19] Gi-Joon Nam, Fadi Aloul, Karem A. Sakallah and Rob A.
Rutenbar, "A Comparative Study of Two Boolean Formulations of
FPGA Detailed Routing Constraints", Proc. International
Symposium on Physical Design (ISPD), April 2001, Sonoma.
[20] Y. Shang and B. W. Wah, “A Discrete Lagrangian-Based
Global-Search Method for Solving Satisfiability Problems,” Journal
of Global Optimization, Kluwer, 12(1), 1998, pp. 61-99.

[21] M.N. Velev, “Effective Use of Boolean Satisfiability
Procedures in the Formal Verification of Superscalar and VLIW
Microprocessors,” Proc. ACM/IEEE Design Automation
Conference, June 18-22, 2002, Las Vegas, Nevada, pp. 226-231.
[22] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik,
“Efficient Conflict Driven Learning in a Boolean Satisfiability
Solver,” Proc. ACM/IEEE International Conference on Computer-
Aided Design (ICCAD), San Jose, CA, November 2001.
[23] A. Ejnioui and N. Ranganathan, “Multi-terminal net routing
for partial crossbar-based multi-FPGA systems,” Proc. ACM
International Symposium on FPGA, 1999, Monterey, CA.

Table 1. Experimental Results

Benchmark P K M N Max Ave Vars Clauses Literals Prep Routability DLM Chaff

p020_k5_m2_n07 20 5 2 49 7 4.0 245 12039 35725 0 yes 0.03 0.68

p020_k5_m2_n08 20 5 2 52 8 3.8 260 12147 36025 0 yes 0.04 1.31

p020_k5_m2_n06 20 5 2 59 6 3.3 295 12149 35975 0 yes 0.03 2.01

p020_k5_m2_n05 20 5 2 64 5 3.1 320 12279 36325 0 yes 0.02 0.22

p020_k5_m2_n04 20 5 2 76 4 2.6 380 12411 36625 0 yes 0.02 0.16

p020_k5_m3_n14 20 5 3 55 13 5.4 275 133855 534375 0.09 yes 2.37 85.88

p020_k5_m3_n11 20 5 3 60 11 5.0 300 135340 540220 0.1 yes 0.43 100.71

p020_k5_m3_n09 20 5 3 66 9 4.5 330 132051 526950 0.09 yes 0.39 2.28

p020_k5_m3_n08 20 5 3 68 8 4.4 340 132898 530300 0.09 yes 0.32 0.33

p020_k5_m3_n07 20 5 3 77 7 3.9 385 132997 530525 0.09 yes 0.50 10.29

p020_k5_m3_n06 20 5 3 88 6 3.4 440 134218 535200 0.09 yes 0.35 83.91

p020_k5_m3_n05 20 5 3 99 5 3.0 495 134339 535475 0.1 yes 0.28 69.36

p020_k5_m3_n04 20 5 3 114 4 2.6 570 134504 535850 0.09 yes 0.30 0.99

p020_k3_m3_n08 20 3 3 36 8 5.0 108 7536 29892 0 yes 0.04 0.01

p020_k4_m3_n10 20 4 3 30 10 6.0 120 21110 84080 0 no N/A 0.08

p020_k4_m3_n08 20 4 3 67 8 3.6 268 39409 156832 0.02 yes 0.11 0.19

p020_k5_m3_n15 20 5 3 30 15 8.0 150 91620 365910 0 no N/A 0.01

p020_k7_m3_n08 20 7 3 105 8 4.0 735 811055 3240125 0.62 yes 3.59 207.79

p050_k5_m3_n07 50 5 3 150 7 4.0 750 244720 975030 0 no N/A 0.01

p050_k5_m3_n08 50 5 3 171 8 4.4 855 337956 1348575 0.25 yes 2.85 109.56

p050_k6_m3_n08 50 6 3 212 8 4.2 1272 911222 3638952 0.65 yes 9.54 109.20

p050_k7_m3_n08 50 7 3 241 8 4.3 1687 2070897 8274189 1.57 yes 23.97 1453.00

p100_k5_m3_n08 100 5 3 344 8 4.4 1720 684464 2731320 0.48 yes 10.54 112.62

p150_k5_m3_n08 150 5 3 552 8 4.1 2760 1024647 4088100 0.72 yes 7.31 69.64

p200_k3_m3_n45 200 3 3 45 45 24.0 135 15843 63057 0 no N/A 0.01

p200_k4_m3_n55 200 4 3 50 55 28.0 200 70646 281984 0 no N/A 0.01

p200_k5_m3_n55 200 5 3 90 55 28.0 450 862730 3449210 0 no N/A 0.01

p200_k5_m3_n08 200 5 3 717 8 4.2 3585 1368537 5460525 1.1 yes 14.6 91.11

	Board-Level Multiterminal Net Assignment
	Abstract
	1. Introduction
	2. Preliminaries and Prior Work
	2.1. Previous Work
	2.2. Problem Formulation
	Figure 1. An instance of 2BLRP(2, 2, 4, 8).
	Figure 2. An instance of 2BLRP(2, 2, 3, 6).
	Figure 3. A unfeasible net assignment for the instance in Fig. 2.
	Figure 4. A feasible routing for the instance in Fig. 2.

	3. BLRP(m, k, p, N) via Satisfiability
	3.1. Introduction
	3.2. SAT Formulation
	3.2.1 Covering constraints
	3.2.2 Closure constraints
	3.2.3 An Example
	3.2.4 Complexity

	4. Experimental Results
	5. Concluding Remarks
	6. Acknowledgments
	7. References
	Table 1. Experimental Results

