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Abstract 

This paper introduces a new normal form for Exclusive 
Sums-of-Products (ESOPs) of completely specified Boolean 
functions. We study the properties of the SNF and show its 
special place among canonical Reed-Muller 
representations. We propose to use the SNF in a number of 
applications related to the exact ESOP minimization. We 
describe an efficient way to compute the SNF with the 
complexity proportional to the number of nodes in the BDD 
of the given function. Experimental results speak for the 
potential usefulness of the SNF. 

1 Introduction 

The problem of finding an Exclusive Sum-Of-Product 
(ESOP) of the given Boolean function with the minimum 
number of cubes (and the minimum number of literals, as a 
secondary goal) has both theoretical and practical value.  

From the theoretical point of view, ESOP minimization is 
interesting because ESOP is the most general Reed-Muller 
forms with many interesting properties. From the practical 
point of view, EXOR gates and ESOPs have numerous 
applications in logic synthesis and design-for-test. In 
particular, it has been shown [11] that the ESOP 
representation of Boolean functions is typically more 
compact that the SOP representation. For some functions 
(e.g. the parity function), the number of cubes in ESOP is 
linear in the number of variables while the number of cubes 
in SOP is exponential.  

Research in exact ESOP minimization has a long history. 
Only the most important contributions are mentioned here. 

In 1988, the first systematic approach has been introduced 
[1][3] reducing the problem of exact ESOP minimization to 
that of finding a satisfying assignment of the constraint 
(called Helliwell function). However, the practical value of 
this approach is limited, because the number of variables in 
Helliwell function is equal to the number of cubes that can 
appear in the minimum ESOP (for the most functions of n 
variables, this number is n3 ). 

In 1993, an extension of the minimization procedure 
based on Helliwell function has been proposed [10][3]. This 
approach shows how to minimize a function of n variables 
if the exact minimum for all functions of n-k (k≥1) variables 
is known. As a result of problem decomposition, a 
specialized constraint is generated, which is similar to 
Helliwell function but depends on fewer variables. The 
constraint is represented using BDDs [10] or ZDDs [8] and 
the solution is found as a shortest path in the decision 
diagram. BDD reduction techniques are used to reduce the 
size of the constraint by incrementally eliminating those 
variable assignments that lead to solutions above an upper 
bound on the number of cubes [3]. 

The method presented in [10] is the only one to find exact 
minimum for arbitrary function of five input variables. This 
method can also minimize some function up to ten 
variables, as long as the number of variables in the 
constraint can be limited using a tighter upper bound on the 
number of cubes in the exact minimum ESOP. 

Other approaches to exact minimization target not the 
general class of functions, but functions that satisfy certain 
properties. For example, in [1] satisfiability is used to solve 
the minimization problem for functions whose minimum 
ESOP is known to contain the given number of cubes. 

The minimization procedure proposed in this paper 
essentially differs from the previous ones. The problem is 
solved by first deriving a canonical normal form, called the 
SNF, and next transforming it into the exact minimum 
ESOP (or the set of exact minimum ESOPs).  

The SNF is also useful to prove exactness of ESOPs 
found using other methods, because it gives a lower bound 
on the number of cubes in the minimum solution. Finally, 
the SNF provides valuable characterization of the given 
function, which cannot be found using other methods. 

The rest of the paper is organized as follows. Section 2 
gives the basic definitions. Section 3 introduces the SNF 
and presents a naïve way of its computation. Section 4 
discusses the properties of SNF and proves the canonicity. 
Section 5 shows applications of SNF. Section 6 gives an 
efficient algorithm for SNF computation from the BDD of 
the given function. Section 7 contains experimental results. 
Section 8 concludes the paper.  



2 Preliminaries 

This section introduces definitions and basic knowledge 
used in the paper. 

A literal is a Boolean variable in negative or positive 
polarity. A cube C is a product term composed of literals 
using Boolean AND operation.  

Two cubes coincide in variable x if x does not appear in 
the cubes or if x appears in the cubes in the same polarity. 
Two cubes differ in variable x if they do not coincide in 
variable x. The distance D between two cubes is the number 
of variables, in which the cubes differ. 

A variable in the cube can have three forms: (1) negative 
polarity; (2) positive polarity; (3) don’t-care. 

For example, assuming that cube dba  belongs to a 
function with input variables ( )dcba ,,, , variable a appears 
in positive polarity, variables b and d appear in negative 
polarity, and variable c appears as a don’t-care. 

The Exclusive-OR (EXOR) operation ⊕ is a linear 
operation and is defined in Table 1. 

 
Table 1. Definition of the EXOR operation 
 

a b a ⊕ b 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

 
The fundamental property of Exclusive-OR (EXOR) 

operation is the following:  

 x ⊕ x  ⊕ 1 = 0.  (1) 

The operation of addition in this paper is used in the sense 
of Exclusive-OR. For example, “adding this pair of cubes to 
the function f ” means creating an Exclusive-OR of the two 
cubes and the function f represented as an ESOP. 

An Exclusive-Or Sum-Of-Products (ESOP) is an 
Exclusive-OR of zero or more cubes.  

Proposition 1. Two identical cubes can be added to any 
ESOP without changing the function represented by it. 

This statement is clear from the following formulas: 

 f  =  f  ⊕ 0 (2) 

 0  = C ⊕ C (3) 

 f  =  f  ⊕ C ⊕ C (4) 

The number of ESOP’s for each Boolean function is 
infinite, because Proposition 1 can be applied many times.  

Using Proposition 1 in the reverse direction, to collapse 
all the pairs of the identical cubes, leads to an ESOP that is 
unique for the class of ESOPs generated by Proposition 1. 

An ESOP is reduced if it does not contain identical cubes. 
The number of all cubes of n variables is n3  and 

consequently there are 
n32  reduced ESOPs. The number of 

reduced ESOPs of each of the 
n22  Boolean function of n 

variables is finite. This paper focuses on reduced ESOPs.  
An ESOP is minimum (or, exact minimum) if it contains 

the minimum number of cubes among all the ESOPs of the 
given Boolean function.  

Two ESOPs are considered different if they differ in at 
least one cube, that is, if at least one of the ESOPs has a 
cube, which the other ESOP does not have. 

The following proposition can be proved using the 
fundamental property of EXOR operation. 

Proposition 2. The EXOR of two cubes that have 
distance 1 can be represented by a single cube. 

A functional representation is canonical if for any 
function there exists only one representation of this kind.  

The minterm is a cube containing all the literals of the 
support. The minterm ESOP of a function is the ESOP 
created by adding the cubes representing all the minterms of 
the given function. By definition of canonicity, the minterm 
ESOP is a canonical representation, because the set of 
minterms is a unique characteristic of the function. 

Some helpful concepts can be defined using the distances 
between the cubes of an ESOP. 

Adjacency Graph AG(V, E) of a reduced ESOP 
Definition. The vertices V of the adjacency graph 

AG(V,E) correspond to the cubes of the reduced ESOP. 
Two vertices V of AG(V, E) are connected by an edge, if the 
associated cubes have distance 1. 

It is possible to represent an ESOP by a list of ternary 
vectors [12]. Each cube of the ESOP is represented by a 
ternary vector having the length of the support of the ESOP. 
The variables of the cube are encoded as follows: 

0 if the positive literal belongs to the cube  

1 if the negative literal belongs to the cube  

- if the variable does not appear in the cube. 

For example, the function ( ) cbdbadcbaf ⊕=,,, may be 
represented by two ternary vectors listed in the table: 

 a b c d 
f  = 1 0 - 0 
 - 1 0 - 

 
Assuming the above encoding, the AND-operation 

between the ternary elements of a row and the EXOR-
operation between the ternary vectors the ESOP expression 
of the function can be easily performed using the ternary 
vector list (TVL). 



3 Definition of SNF 

This section introduces a new canonical Reed-Muller 
expansion for completely specified Boolean functions. The 
proof of canonicity is given in the next section. 

The fundamental property of Exclusive-OR (1) can be 
expressed in any of the following forms: 

  x  = x  ⊕  1  (5) 

 x  =  1 ⊕  x  (6) 

  1  =  x ⊕ x   (7) 

These three formulas show that each element of the set 
{ x, x , 1} has isomorphic properties. For each variable in 
the support of the Boolean function f, exactly one left-hand-
side element of (5), (6) or (7) is included in each cube of an 
ESOP of function f.  

Using the appropriate formula, the cube C can be 
expanded with respect to (w.r.t.) variable x into two cubes 
having all the variables the same as in the original cube, 
except variable x. This variable appears in two cubes in the 
forms that are complementary w.r.t. the form it takes in the 
original cube (5), (6), (7). This expansion is performed by 
the function expand,  which takes the cube and the variable 
and returns the two resulting cubes. 

Suppose the support of a Boolean function is (a, b, c, d) 
and dba  is one of the cubes in the ESOP. There exist four 
different expansions w.r.t. each variable of the support. 

expansions w.t.r. a:  ( ) dbdbadbadba ⊕=⋅⊕= 1   

expansions w.t.r. b:  ( ) dabdadbadba ⊕=⋅⊕⋅= 1   

expansions w.t.r. c: ( ) dcbadcbadccbadba ⊕=⋅⊕⋅=   

expansions w.t.r. d: ( ) dbabadbadba ⊕=⊕⋅= 1  

It is obvious that the right hand side ESOPs of the above 
four examples represent the same function dba . 

The expansion of a cube w.r.t. one variable can be 
repeated for all variables of the support. The result does not 
depend on the order of the n expanded variables and is an 
ESOP consisting of exactly n2 cubes. It can be shown that 
the set of n2 cubes resulting from expanding the given cube 
forms a complete lattice. It is possible to define operations, 
join and meet, for the elements of this lattice. We do not 
introduce these operations because they are not necessary 
for our presentation in this paper. 

The lattice of cubes created by expanding cube ca  with 
the support (a, b, c) is shown in Figure 1. Notice that the 
cubes connected by lines differ in exactly one variable. For 
each cube in the lattice the number of cubes connected by 
the lines is equal to the size of the support n (in the example 
of Figure 1, the size of the support is 3). 

                            cba   

          1ba            bca          cb1  

          1ba             11b         bc1  
                             11b   

Figure 1. The cube lattice created by expanding cube ca . 

Algorithm Exp( f ) 
Given: any ESOP of a Boolean function f 
Result:  complete expansion of the Boolean function f 

w.t.r. all variables of its support  
 
for all variables Vi of the support 
   for all cubes Cj of f  
   { (Cn1, Cn2) = expand(Cj , Vi) 
 replace Cj by (Cn1, Cn2) 
   }

 

Suppose the given ESOP of a Boolean function f with a 
support of n variables consist of k cubes. The result of 
Exp( f ) is an ESOP, which includes nk 2⋅ cubes.  

If more than one cube belongs to f , Exp( f ) contains pairs 
of identical cubes. A reduced ESOP of the same function 
can be derived by Algorithm R. 

Algorithm R( f ) 
Given: any ESOP of a Boolean function  f  containing 

k cubes 
Result:  reduced ESOP of  f  
 
for i = 0 to k - 2 
   for j = i + 1 to k - 1 
   { if (C[i] == C[j]) 
      { C[i] = C[k-1] 
    C[j] = C[k-2] 
        k = k - 2 
        j = i 
      } 
   }

 

Using the algorithms Exp( f ) and R( f ) it is possible to 
create a special ESOP having a number of remarkable 
properties. 

Definition of SNF( f ) 
Take any ESOP of a Boolean function f. The resulting 

ESOP of  
SNF( f ) = R( Exp( f ) ) 

 

is called Specialized Normal Form (SNF) of the Boolean 
function. 

Note that the definition of the SNF( f ) involves two steps. 
First, the complete expansion of all cubes of  f  w.r.t. all the 
variables. Second, all pairs of identical cubes are removed 
in order to obtain an reduced ESOP of f. For practical 
reasons, these two processes (expansion and reduction) may 
be carried out simultaneously. 



Consider function NEXOR of two variables, a and b, and 
one of its ESOPs: ( b⊕a ). To compute the SNF (Figure 1), 
first create the expansion of cube a, then create the 
expansion of cube b , and finally find the union of the 
resulting cubes while eliminating the duplicated cubes 
(marked by the cross in Figure 1). The ones in the table 
stand for don’t-care literals in the cubes and may removed. 

 
a b  SNF( b⊕a ) 

× ba   × ba    ba  
 ba   1⋅a   b⋅1  
 b⋅1   ab    b⋅1  
 b⋅1   1⋅a   1⋅a  
       ab   
       1⋅a  

Figure 2. Example of SNF computation. 

4 Properties of SNF 

To prove that the SNF is a canonical representation, two 
transformations are introduced and the following two 
lemmas should be proved. 

Transformation T1: Adding a pair of duplicated cubes. 

Transformation T2: Combining two distance-1 cubes. 

Lemma 1. Any ESOP can be created from the minterm 
ESOP by repeatedly applying transformations T1 and T2. 

Proof. Take an ESOP and break it down into elementary 
cubes representing minterms. In each vertex of the Boolean 
space, count the number of elementary cubes that cover this 
vertex. Observe that those vertices, where the function is 
one (zero), are covered by an odd (even) number of 
elementary cubes (according to Proposition 1). 

Now consider the minterm ESOP. This ESOP covers each 
vertex of the Boolean space where the function is one with a 
single elementary cube. Add the even number of cubes 
(transformation T1) to each vertex of the Boolean space 
according to the counting performed above. Combine 
smaller cubes into larger cubes (transformation T2) until the 
cubes of the original ESOP are created. Q.E.D. 

Lemma 2. Transformations T1 and T2 do not change the 
SNF of the function f. 

Proof. Consider transformation T1. After adding two 
identical cubes to the original ESOP of f, Exp( f ) contains 
two sets of identical expanded cubes. After applying 
reduction R(Exp( f )), the cubes in the identical sets are 
reduced and SNF( f ) remains unchanged. 

Consider transformation T2. The expansions of the two 
distance-1 cubes are similar, except for the single variable, 
in which they differ. Exactly half of the cubes in each 
expansion are the same. As a result of adding these two sets 
of cubes, the identical cubes will be reduced, while the 
remaining cubes will add up to the expansion of the cube 
created by merging the distance-1 cubes. Q.E.D. 

The second part of this proof is illustrated by the 
following example: bacbacba =⊕ . Expansions of cubes 

cba = (101),  cba = (100),  and  ba = (10-) are given in 
Figure 3. 

It is easy to see that adding the expansions of the first two 
cubes and removing the duplicated cubes (marked by “×” in 
Figure 3) leads to the expansion of the third cube. 

 
 abc  abc  abc 

 010  011  010 
 01- × 01- × 011 

 0-0  0-1  0-0 

=cba 0-- × =cba 0-- × =ba 0-1 
 -10  -11  -10 
 -1- × -1- × -11 
 --0  --1  --0 
 --- × --- × --1 

Figure 3. An example illustrating Lemma 2. 

 
Theorem 1. The SNF( f ) is canonical. 
 
Proof. Take two arbitrary ESOPs of the same function. 

According to Lemma 1, each of them can be derived from 
the minterm ESOP using transformations T1 and T2. 
Because transformations T1 and T2 do not change the SNF 
(Lemma 2), SNFs for these ESOPs are the same and equal 
to SNF of the minterm ESOP. Q.E.D. 

The following lemmas and theorems elaborate on the 
properties of the SNF and show how it can be used to prove 
a number of statements about the set of all ESOPs and the 
set of exact minimum ESOPs of the Boolean function. 

Lemma 3. Every reduced ESOP of the Boolean function f 
can be derived by adding the SNF( f ) to a reduced ESOP of 
the constant zero function and removing the duplicated 
cubes. 

Proof. Consider one ESOP, W, of the function f. W may 
have some cubes in common with SNF( f ) and differ from 
SNF( f ) in all the other cubes. Let us construct an ESOP Z 
by adding all the cubes from SNF( f ) that do not appear in 
W and all the cubes in W that do not appear in SNF( f ). 



By construction of Z, SNF( f ) = W ⊕ Z. Consequently, 
Z = SNF( f ) ⊕ W. Because SNF( f ) and W are ESOPs of 
the same function, and because the duplicated cubes have 
been removed while adding them, Z is a reduced ESOP of 
the constant zero function. Because no assumptions are 
about W, this method constructs the required ESOP of the 
zero function for any given ESOP. Q.E.D. 

Lemma 4. Adding SNF( f ) to two different reduced 
ESOPs of the constant zero function and removing the 
duplicated cubes leads to two different reduced ESOPs.  

Proof. Assume that the statement of the theorem is wrong 
and there are two different reduced ESOPs of the zero 
function, Z1 and Z2, which when added to SNF( f ) lead to 
two identical reduced ESOPs.  

From the fact that Z1 and Z2 are two different ESOPs, we 
conclude that there is at least one cube in one of them that is 
not present in the other. Without limiting the generality of 
the following statements, assume that Z1 has cube C that 
does not appear in Z2.  

Consider two cases: (1) cube C appears in SNF( f ) and 
(2) cube C does not appear in SNF( f ). As a result of 
removing duplicated cubes, in case of (1), cube C will not 
appear in SNF( f ) ⊕ Z1 but will appear in SNF( f ) ⊕ Z2. In 
case of (2), cube C will appear in SNF( f ) ⊕ Z1 but will not 
appear in SNF( f ) ⊕ Z2. In both cases, the resulting ESOPs, 
SNF( f ) ⊕ Z1 and SNF( f ) ⊕ Z2, are different. This is a 
contradiction. Q.E.D. 

Theorem 2. Every Boolean function has exactly ( ) ( )nn 232 −  
different reduced ESOPs. 

Proof. From the above two lemmas, it follows that for any 
Boolean function, it is possible to derive exactly as many 
different reduced ESOPs as there exist different reduced 
ESOPs of the constant zero function. It means that the 
number of different reduced ESOPs is the same for all 
Boolean functions. One ESOP cannot represent two 
different functions. Because there are ( )n32  different 
reduced  ESOPs  and ( )n22   different  functions,  each 
function has exactly ( ) ( )nn 232 −  different reduced ESOPs. 
Q.E.D. 

Theorem 3. (Weak lower bound on the size of the 
minimum ESOP). No ESOP representation of a Boolean 
function f contains less than  | SNF( f ) | / n2   cubes (the 
smallest integer number greater than the number of cubes in 
the SNF( f ) divided by n2 ). 

Proof. Assume that the theorem is wrong. Suppose there 
exists an ESOP M of the given function f containing less 
than k =  | SNF( f ) | / n2    cubes, | M | < k. Exp( M ) 
contains  | M | * n2  cubes and the final R-operation 

removes some cube to create SNF( M ) = R(Exp( M )). 
Thus,   

| SNF( M ) | <  | M  | * n2  <  k * n2  (8) 

| SNF( M ) | / n2  <  | M  | <  k (9) 

| SNF( M ) | / n2  ≤  | M  | < k =  | SNF( f ) | / n2  (10) 

and the SNF( M ) is different from SNF( f ). According to 
Theorem 1 is SNF a canonical representation and the two 
different SNFs describe two different functions M and f . 
This is a contradiction, which proves the theorem. Q.E.D.  

In fact, it is possible to formulate a stronger lower bound 
on the number of cubes in the exact minimum ESOP by 
considering the cubes appearing in the SNF. This will be 
shown in the next section. 

The following theorem justifies the exact ESOP 
minimization algorithm described below. 

Theorem 4. Adding the smallest number of pairs of the 
identical cubes to SNF( f ) in such a way that the complete 
expansions of cubes are created, leads to the exact 
minimum ESOP of the given function. 

Proof. According to the Theorem 2, there are ( ) ( )nn 232 −  
different ESOPs of the function f. This finite set of ESOPs 
contains one or more exact minimum ESOPs including kmin 
cubes and other ESOPs including ki’ cubes, kmin < ki’ , as 
well. Without limiting the generality of the following 
statements, assume that M is an exact minimum ESOPs of 
the function f , | M  | = kmin and L is an ESOP of the same 
function  f including kL’ cubes,  kmin < kL’. After expansions 
of M and L holds  

Exp( M ) = kmin * n2  < kL’ * n2  = Exp( L ). (11) 

In order to create the canonical SNF, the R-operation 
removes different number of pairs of the identical cubes  

SNF( M ) = R(Exp( M )) = R(Exp( L )) = SNF( L ). (12) 

Comparing (11) and (12) the number of removed pairs of 
cubes must be larger in the case of ESOP L.  

Reverse the process. Adding certain pairs of identical 
cubes to SNF( f ) leads to different Exp(  f  ). Only in this 
case of adding the smallest number of pairs of identical 
cubes to SNF( f ) = SNF( M ) = SNF( L ), the expansion 
Exp( M ) can be created. The collapsing operation Exp-1 
(the reverse operation of expansion Exp) of Exp( M  ) 
calculates the exact minimum ESOP M = Exp-1(Exp( M )). 
Q.E.D. 

Lemma 5. Two cubes of a reduced ESOP of 
f ( x1, x2, … , xn ) have the distance D defined as follows:  

 nD ≤≤1 . (13) 



Proof. A reduced ESOP cannot include identical cubes, 
thus 1≥D . The support of the function f is given by n. This 
number n is the highest number of variables, where both 
cubes may be different. Q.E.D. 

Theorem 5. Let two cubes, c1 and c2, belonging to ESOP 
f ( x1, x2, … , xn ), have the distance D. Then their 
expansions, Exp( c1 ) and Exp( c2 ), overlap in Dn−2 cubes.  

Proof. According to Lemma 5, the distance D cannot be 
larger than n. For each pair of variables in c1 and c2, one of 
the following two cases holds. Either the variables have a 
distance of zero, which means that there are identical values 
((00), (11), (--)), or the variables have a distance of one, 
that means there appears one of the pairs ((01), (0-), (10), 
(1-), (-0), (-1)). 

Expanding one variable of  c1 leads to the two remaining 
values in the set {0, 1, -}  

 

0 → {1, -}, 

1 → {0, -}, 

- → {0, 1}, 

Compare these formulas to  (5), (6), (7). The same is valid 
for the corresponding variable of c2.  

Assume the distance D = 0. For all n variables vi the first 
case holds. It is obvious that the expansions Exp( c1 ) and 
Exp( c2 ) are the same and overlap in all n2  cubes. The 
theorem holds in this case because nnDn 222 0 == −− . 

Assume further that the distance D = n. For all n variables 
vi, the second case holds. The following list shows that for 
each type of distance 1 there is exactly one common value 
in the expansion: 

v1i = 0 → {1, -}, v2i = 1 → {0, -}, common value {-} 

v1i = 0 → {1, -}, v2i = - → {0, 1}, common value {1} 

v1i = 1 → {0, -}, v2i = 0 → {1, -}, common value {-} 

v1i = 1 → {0, -}, v2i = - → {0, 1}, common value {0} 

v1i = - → {0, 1}, v2i = 0 → {1, -}, common value {1} 

v1i = - → {0, 1}, v2i = 1 → {0, -}, common value {0}, 

thus the expansions Exp( c1 ) and Exp( c2 ) overlap in only 
one cube. This cube is given by the above listed common 
values. The theorem holds in this case, because 

1222 0 === −− nnDn . 
If nD <<0 , the cubes c1 and c2 include D variables vi 

having distance 1 and the remaining n – D variables vj with 
distance 0, respectively. The following list shows that, for 
each type of distance 0 between the corresponding 
variables, there are exactly two common values in the 
expansion: 

v1j = 0 → {1, -}, v2j = 0 → {1, -}, common value {1, -} 

v1j = 1 → {0, -}, v2j = 1 → {0, -}, common value {0, -} 

v1j = - → {0, 1}, v2j = - → {0, 1}, common value {1, 0}. 

Decreasing the distance D by 1 doubles the number of 
common values for one variable and, consequently, doubles 
the number of cubes where the expansions Exp( c1 ) and 
Exp( c2 ) overlap.  Because there is one common value for 
D variables vi and n – D variables vj having two common 
values, the number of cubes, in which expansions Exp( c1 ) 
and Exp( c2 ) overlap, is DnDnD −− = 22*1 . Q.E.D. 

Figure 4 illustrates how the fundamental property of 
lattices is transferred to the adjacency graph of the SNF.   

  

Figure 4. (a) Exp( ba ), (b) Exp( ba ), (c) SNF( baba ⊕ ) 
 

Lemma 6. The expansions L1 = Exp( c1 ) of a cube c1 
having the support of n variables is a lattice and the degree 
of any vertex (the number of adjacency edges of the vertex)  
in the adjacency graph AG( V, E ) of  L1 is equal to n. 

Proof. The number of cubes in L1 is n2 . These cubes are 
created by all possible combination of the two allowed 
values of each variable. For each cube in L1, it is true that 
changing the value for each of the n variables separately 
leads to another cube of the lattice. The cubes of the lattice 
are associated with the vertices of the adjacency graph 
AG( V, E ) and each vertex has the degree n by 
construction. Q.E.D. 

Lemma 7. Assume that the ESOP of f ( x1, x2, … , xn ) 
includes only two cubes c1 and c2 and the lattices of their 
expansions L1 = Exp( c1 ) and L2 = Exp( c2 ) overlap exactly 
in one cube. The degree of any vertex of the adjacency 
graph AG(V, E) of SFN( 21 cc ⊕ ) is equal to n. 

 01 

 -1 

 0- 

 --  -- 

 -0 

 1- 

 10 

(a) (b) 

 01 

 -1 

 0- 

 --  -- 

 -0 

 1- 

 10 

(c) 



Proof. According to Lemma 6, each vertex of the 
adjacency graphs AG(V, E) of the expansions L1 = Exp( c1 ) 
and L2 = Exp( c2 ) has the degree n. The R-operation 
R(Exp( c1 ) ⊕ Exp( c2 )) removes the cube, in which L1 and 
L2 overlap, in order to create SFN( 21 cc ⊕ ). The removed 
vertices are connected to n distance-1 vertices in the 
lattices. According to (1), there exist n pairs of vertices that 
are distance-1 in exactly one variable. These n pairs of 
vertices must be connected according to the definition of 
the adjacency graph. In each of these pairs, one edge is 
removed and one edge is added, and therefore the vertex 
degrees do not change. Q.E.D. 

Theorem 6. The degree (the number of adjacent edges) of 
any vertex in the adjacency graph AG( V, E ) of the 
SNF( f ( x1, x2, … , xn ) ) is equal to n. 

Proof. The SNF( f ) is a canonical ESOP of the function f. 
Therefore, if c is a cube and  f  =  f 0 ⊕ c, 

SNF( f ) = SNF( f0 ⊕ c) = R(Exp( f0 ⊕ c)). (14) 

The expansion operation Exp( ) is linear:  
Exp( fa ⊕ fb ) = Exp ( fa ) ⊕ Exp( fb ). (15) 

Using (15) in (14) leads to 
SNF( f ) = SNF( f0 ⊕ c) = R(Exp ( f0 ) ⊕ Exp(c)). (16) 

The R-operation is idempotent: 
R ( fa  ) = R( R( fa )). (17) 

Using (17) in (16) leads to 
SNF( f ) = SNF( f0 ⊕ c) = R(R(Exp ( f0 )) ⊕ Exp(c)) (18) 

and finaly to (19) 
SNF( f ) = SNF( f0 ⊕ c) = R(SNF( f0 ) ⊕ Exp(c)). (19) 

The formula (19) shows that the SNF can be computed 
recursively. Expanding the first cube leads to a lattice.  
According to Lemma 6, the degree of vertices of the 
corresponding adjacency graph AG( V, E ) is n. Adding the 
expansion of the second cube, one or more vertices of 
AG( V, E )  overlap  and  will  be  removed  by  the  R-
operation.  If only one vertex overlaps, the degree of 
vertices of the corresponding adjacency graph AG( V, E ) is 
n, according to Lemma 7. If there is an overlap in more than 
one vertex between the AG( V, E ) of the previous SNF, the 
following considerations show that the degree of all vertices 
of the created adjacency graph AG( V, E ) is n. 

Take one vertex from the expanted cube that overlaps 
with the cube from the previous SNF. Both associated cubes 
have n distance-1 cubes. Consider two distance-1 cubes 
w.r.t. variable vi. These two cubes may be identical or have 
distance 1, too. In the first case, both associated vertices are 
removed. If the selected three cubes, the overlapping cube 
and the two distance-1 cubes w.r.t. variable vi, cover in this 
variable all possible values {0, 1, -}, the edges to the 

overlapping cube are removed and one new edge between 
the two distance-1 is created (see Figure 4). Thus, the 
degree of all remaining vertices keeps n. Q.E.D. 

5 Applications of SNF  

5.1  Overview of the Basic Strategy 
There are several applications of the SNF. These 

applications are closely related to the EXOR operation, 
because the SNF is a reduced ESOP.  

The number of cubes in the SNF is typically high because 
the expansion Exp-operation creates n2  cubes form each 
cube in the given ESOP. The R-operation reduces this 
number, but, according to Theorem 5, in the worst case, 
only one pair of cubes, out of the n2*2 cubes in the 
expansion of two given cubes, can be removed. However, in 
general the SNF is not the largest reduced ESOP of the 
represented function  f.  

Now we describe the basic strategy how the SNF can be 
used to find the minimum ESOP(s). This strategy is 
schematically represented in Figure 5.  
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Minimization is performed in two steps. First, the SNF is 
constructed starting from any known ESOP (or computed 
from another functional representations such as BDDs). 
Because the SNF is canonical, during this first step the 
knowledge about the given ESOP is lost. It is known, that 
the R-operation removes the smallest number of cubes if the 
Exp-operation expands an exact minimum ESOP. 
Therefore, in the second step a way from SNF to the exact 
minimum ESOP is found by adding the smallest number of 
cubes to the SNF (Theorem 4). The cubes of the exact 
minimum ESOP are found by collapsing complete lattices 
of cubes, each composed of n2  cubes. Schematically, the 
exact minimum ESOP is positioned on the lower bound of 
the functional space containing all the ESOPs of the given 
function (Figure 5). 

The advantage of the proposed algorithm is that no top 
down search for the smallest ESOP is necessary. Only a 
small number of pairs of cubes must be added to fill up the 
embedded parts of lattices of the SNF to complete lattices, 
instead. The number of pairs npc of cubes which must be 
added is at least  

npc = (( n2 - (| SNF( M ) | mod n2 )) mod n2 ) / 2  (20) 

because if the expansion containing k * n2  (k ≥  0) cubes 
exists, this expansion with the smallest k can be used to get 
the exact minimum ESOP by collapsing the SNF cubes. If it 
is not possible to create complete lattices from the SFN, npc 

must enlarged by 12 −n cubes one or more times.  

5.2  An Approach to Exact ESOP Minization 
Using Cube Grouping 

Not only the number of pairs npc of cubes, which must be 
added, is known, the pairs themselves can be found using 
the SNF, too. The following example shows how this 
knowledge can be found in the SNF. 

Example 1 
Assume a Boolean function  f  depends on the four 

variables a, b, c, and d. Their SNF includes 40 cubes listed 
below. 

The set of cubes of a lattice may be created recursively. 
Taking two different values for one variable forms the 
simplest lattice. Taking again two different values for the 
next variable, connect each of them to the elements of the 
previous lattice and put all cubes together forms the lattice 
having one more variable. The reverse procedure helps to 
find the missing pairs of cubes in the SNF needed to create 
the separate complete lattices. In the SNF, such pairs of 
cubes are selected, which have different values for the first 
variable and the identical values for the remaining variables. 
For the given SNF( f ), we get the following 20 pair of 
cubes divided in 3 groups, characterized by the combination 
of the values in the first variable.  

 
Cube group a = [01]: 

          --11 
          -0-- 
          -0-0 
          -01- 
          -1-0 
          -110 
 
Cube group a = [0-]: 

          --00 
          --01 
          --10 
          -000 
          -001 
          -011 
          -1-- 
          -11- 
 
Cube group a = [1-]: 

          ---- 
          ---1 
          --1- 
          -010 
          -1-1 
          -111 
 
There is no cube in the SNF which can not combined with 

an other cube of the SNF to such a pair. The above 
procedure may be repeated for the second variable b and 
leads to following tree of cubes. 

 
Cube group a = [01]: 
     Cube group b = [01]: 

               ---0 
     Cube group b = [0-]: 
     Cube group b = [1-]: 
     Cube group 4 (remainder): 

               --11 
               -0-- 
               -01- 
               -110 

abcd 
---- 
---1 
--00 
--01 
--1- 
--10 
-000 
-001 
-010 
-011 
-1-- 
-1-1 
-11- 
-111 

abcd 
0-00 
0-01 
0-10 
0-11 
00-- 
00-0 
0000 
0001 
001- 
0011 
01-- 
01-0 
011- 
0110 

abcd 
1--- 
1--1 
1-1- 
1-11 
10-- 
10-0 
101- 
1010 
11-0 
11-1 
1110 
1111 

SNF( f ) = 



Cube group a = [0-]: 
     Cube group b = [01]: 
     Cube group b = [0-]: 

               --00 
               --01 
     Cube group b = [1-]: 
     Cube group 4 (remainder): 

               --10 
               -011 
               -1-- 
               -11- 
 
Cube group a = [1-]: 
     Cube group b = [01]: 
     Cube group b = [0-]: 
     Cube group b = [1-]: 

               ---1 
     Cube group 4 (remainder): 

               ---- 
               --1- 
               -010 
               -111 
 
This distribution shows what cube pairs must be added to 

create a complete lattice. Note that there are some empty 
groups. No cube pairs of the associated lattice are includes 
in the SNF. In the groups labeled by 4, the cubes are 
collected, which do not form a pair. In order to create 
complete lattices, a number of cube pairs must be added, 
which move the cubes from the groups labeled by 4. The 
first cube in a = [01] group 4 (--11) represents the 
pair of  cubes ((0-11)(1-11)). In order to move this 
cube into two other groups, a pair of identical cubes created 
by the third possible value in the first column a = [-] 
and the values of the selected cube in the remaining 
columns are necessary. So, the first pair of cubes to add is 
((--11)(--11)). Now these four cubes can be merged 
into two new pairs of cubes ((0-11)(--11)) and 
((1-11)(--11)). The first pair has a [0-] 
combination for the variable a and therefore moves to the 
second group. Inside of this group there already exists the 
pair of cubes ((0011)(-011)). Therefore, using the 
first cube of the added pair of cubes, the group 
a = [0-], b = [0-] is extended by the cube 
(--11). The second merged pair ((1-11)(--11)) 
has [1-] combination for the variable a and therefore 
moves to the third group. Inside this group, there already 
exists the pair of cubes ((1111)(-111)). Therefore, 
using the second cube of the added pair of cubes, the group 
a = [1-] and b = [1-] is extended by the cube (--11). 
Note that adding one pair of identical cubes reduces the 
number of cubes in each of the three cube groups 4 by one. 
These three cubes have identical values for the variables c 
and d. For the variable b, all values of the set {0, 1, -} 

are present. In fact, there are three choices for the selection 
of the cube pairs that should be added. Only the selected 
pair of cubes moves the mentioned three cubes from the 
groups 4 into a non-empty group. After adding the pair of 
cubes ((--11)(--11)), the following group structure is 
created. 
 
Cube group a = [01]: 
     Cube group b = [01]: 
               ---0 
     Cube group b = [0-]: 
     Cube group b = [1-]: 
     Cube group 4 (remainder): 
               -0-- 
               -01- 
               -110 

Cube group a = [0-]: 
     Cube group b = [01]: 
     Cube group b = [0-]: 
               --00 
               --01 
               --11 
    Cube group b = [1-]: 
    Cube group 4 (remainder): 
               --10 
               -1-- 
               -11- 

Cube group a = [1-]: 
     Cube group b = [01]: 
     Cube group b = [0-]: 
     Cube group b = [1-]: 
               ---1 
               --11 
     Cube group 4 (remainder): 
               ---- 
               --1- 
               -010 

Applying a similar procedure to the cube pair 
 ((01--)(-1--))  

the second pair of identical cubes  
 ((11--)(11--))  

is added, which extends each of the groups a = [01], 
b = [01] and a = [1-], b = [1-] by the cube 
(----).  

Similarly to the pair of cubes 
 ((011-)(-11-))  

in second group the pair of identical cubes  
 ((111-)(111-))  

is added, which extends each of the groups a = [01], 
b = [01] and a = [1-], b = [1-] by the cube 
(--1-).  

Finally, to the pair of cubes 
 ((1010)(-010))  

in third group the pair of identical cubes  
 ((0010)(0010))  



is added, which extends each of the groups a = [01], 
b = [01] and a = [0-], b = [0-] by the cube 
(--10). After adding these four pair of cubes the 
following group structure is created. 
 
Cube group a = [01]: 
     Cube group b = [01]: 

               ---0 
               ---- 
               --1- 
               --10 
     Cube group b = [0-]: 
     Cube group b = [1-]: 
     Cube group 4 (remainder): 
      
Cube group a = [0-]: 
     Cube group b = [01]: 
     Cube group b = [0-]: 

               --00 
               --01 
               --11 
               --10 
    Cube group b = [1-]: 
    Cube group 4 (remainder): 
 
Cube group a = [1-]: 
     Cube group b = [01]: 
     Cube group b = [0-]: 
     Cube group b = [1-]: 

               ---1 
               --11 
               ---- 
               --1- 
     Cube group 4 (remainder): 
 
Now the procedure of dividing into groups is repeated for 

variables c and d. Skipping empty groups we get the 
following group structure. 

 
Cube group a = [01]: 
     Cube group b = [01]: 
          Cube group c = [1-]: 
               Cube group d = [0-]: 
               ---- 
      
Cube group a = [0-]: 
     Cube group b = [0-]: 
          Cube group c = [01]: 
               Cube group d = [01]: 
               ---- 
 
Cube group a = [1-]: 
     Cube group b = [1-]: 
          Cube group c = [1-]: 
               Cube group d = [1-]: 
               ---- 

By this group structure three lattices are found, which can 
be collapsed into three cubes of the minimum ESOP.  

 
     abcd        abcd        abcd 
     0010        0000        1111 
     001-        0001        111- 
     00-0        0010        11-1 
     00--        0011        11-- 
     0110        0-00        1-11 
     011-        0-01        1-1- 
     01-0        0-10        1--1 
L1 = 01--   L2 = 0-11   L3 = 1--- 
     1010        -000        -111 
     101-        -001        -11- 
     10-0        -010        -1-1 
     10--        -011        -1-- 
     1110        --00        --11 
     111-        --01        --1- 
     11-0        --10        ---1 
     11--        --11        ---- 
 
c1 = --01   c2 = 11--   c3 = 0000 
 
Observe that the above three lattices include all 40 cubes 

of the SNF and four pairs of identical cubes printed in bold 
letters. The found ESOP is: 

 
 dcbaabdcf ⊕⊕= . (21) 

 (end of Example 1) 

5.3 Proof of Exactness Using a Loose Lower 
Bound 

  If a small ESOP like (21) for a Boolean function is 
found, the question arises: Is this ESOP the smallest one? 
The SNF helps to answer to this question. According to 
Theorem 4, the function f of (21) is an exact minimum 
ESOP if the smallest number of  pairs of  identical cubes 
was added to the SNF( f ). In Example 1, four such pairs 
were added. The smallest number of pair that must be added 
to the SNF is defined by (20). The number of cubes in the 
SNF of Example 1 is | SNF( f ) | = 40 and the number of 
variables is n = 4.  

npc = (( n2 - (| SNF( M ) | mod n2 )) mod n2 ) / 2 
npc = ((16 - (40 mod 16)) mod 16) / 2 
npc = ((16 - (8)) mod 16) / 2 
npc = ((8) mod 16) / 2 
npc = (8) / 2 
npc = 4 
 
Both the number of necessary pairs npc to add to SNF( f  ) 

and the real number of pair of cubes added in Example 1 
are 4, therefore the ESOP (21) is an exact minimum of the 
function  f. This answer may be also found using the weak 
lower bound defined in Theorem 4, which tells that there 
can not exist an ESOP of an function  f  having less than k 



cubes. For the function  f of the Example 1, characterized 
by  | SNF( f )| = 40 and n = 4 , the lower bound is 

k =  | SNF( f ) | / n2    
k = 40 / 16   
k = 2.5   
k = 3. 
ESOP (21) includes 3 cubes, thus, this ESOP is an exact 

minimum. 

5.4 An Approach to Exact ESOP Minization 
Using Coverage Matrix 

It is known, that on average the number of cubes in an 
ESOP is smaller than in a SOP, but for certain functions the 
minimum SOP contains fewer cubes than the minimum 
ESOP. According to Theorem 2, the number of different 
reduced ESOPs of each Boolean function is ( ) ( )nn 232 − . This 
set of functions includes all exact minimum ESOPs, some 
nearly minimum ESOPs and further larger ESOPs. If 
several Boolean functions should be realized, the global 
minimum strongly depends on the number of reused cubes. 
In this context a quantitative evaluation is important, which 
tells us what is the likelihood that the cube belongs to the 
minimum ESOP. The answer to this question can be found 
using the SNF. 

In order to evaluate each cube of a given support w.r.t. to 
the SNF( f ), a matrix similar to Table 2 can be created. The 
rows are labeled by all possible n3  cubes and the columns 
are labeled by the cubes of the SNF( f ). The basic 
algorithm to find an ESOP containing a small number of 
cubes is to add some pairs of identical cubes, which do not 
change the function. As a result, separate complete lattices 
will be created. Collapsing these lattices gives the minimum 
ESOP. The cubes of these lattice are therefore the cubes 
from the SNF and the added pairs of cubes.  

The question is, how many and which lattices can cover a 
certain cube form the SNF? From the algorithm to perform 
operation Exp(c0), the value of a selected variable in the 
cube cs of the SFN is different from the value of the 
previous cube c0. Vice versa, the value of a selected 
variable in the cube cs of the SFN can only be created by the 
other two values of the set {0, 1, -}. Thus, exactly 

n2 of the n3 cubes can cover a selected cube from the SNF. 
That means at least one of these n2  cubes must be a cube of 
the solution. The value 1 in Table 2 means that the cube of 
the row covers one cube in the allowed lattice of a SNF-
cube of the column.  

Observe, for instance, that the SNF-cube (----) in the 
first column of Table 2 can be covered by that  16 cubes, 
which are build by the values zero and one only.  Note, the 
number of ones in each column of Table 2 is constant and 
equal to 16, because the support number of variables in this 

 
    a ---
    b ---
    c --0
    d -1-
abcd     
----  000
---0  000
---1  000
--0-  000
--00  000
--01  000
--1-  000
--10  000
--11  000
-0--  000
-0-0  000
-0-1  000
-00-  000
-000  000
-001  000
-01-  000
-010  000
-011  000
-1--  000
-1-0  000
-1-1  000
-10-  000
-100  000
-101  000
-11-  000
-110  000
-111  000
0---  000
0--0  000
0--1  000
0-0-  000
0-00  000
0-01  000
0-1-  000
0-10  000
0-11  000
00--  000
00-0  001
00-1  001
000-  010
0000  110
0001  100
001-  010
0010  111
0011  101
01--  000
01-0  001
01-1  001
010-  010
0100  110
0101  100
011-  010
0110  111
0111  101
1---  000
1--0  000
1--1  000
1-0-  000
1-00  000
1-01  000
1-1-  000
1-10  000
1-11  000
10--  000
10-0  001
10-1  001
100-  010
1000  110
1001  100
101-  010
1010  111
1011  101
11--  000
11-0  001
11-1  001
110-  010
1100  110
1101  100
111-  010
1110  111
1111  101

 
 

Table 2. Coverage matrix of a SNF 
-------------0000000000000000111111111111   
---0000111111------0000001111000000111111   
011--00--0011--0011--0011--00--0011--0011   
0010101-0-101-1-001-0-1010101-1-001-1-001   
                                           w 
00000000000000000000001110011000111000111 11 
00000000000000000000011010001001001001001  8 
00000000000000000000010100010001110001110  9 
00000000000000000000100111100010011010011 11 
00000000000000000001000010100110001110001  9 
00000000000000000001100101000100010100010  8 
00000000000000000000101001111010100010100 10 
00000000000000000001011000101111000111000 11 
00000000000000000001110001010101100101100 11 
00000000000000001110000000011000000000111  8 
00000000000000010010000000001000000001001  5 
00000000000000011100000000010000000001110  7 
00000000000000100110000001100000000010011  8 
00000000000001100010000000100000000110001  7 
00000000000001000100000001000000000100010  5 
00000000000000101000000001111000000010100  8 
00000000000001110000000000101000000111000  8 
00000000000001011000000001010000000101100  8 
00000000000000001110001110000000111000000  9 
00000000000000010010011010000001001000000  7 
00000000000000011100010100000001110000000  8 
00000000000000100110100110000010011000000  9 
00000000000001100011000010000110001000000  8 
00000000000001000101100100000100010000000  7 
00000000000000101000101000000010100000000  6 
00000000000001110001011000000111000000000  9 
00000000000001011001110000000101100000000  9 
00000110001110000000000000000000111000111 11 
00000010011010000000000000000001001001001  8 
00000100010100000000000000000001110001110  9 
00011000100110000000000000000010011010011 11 
00001001000010000000000000000110001110001  9 
00010001100100000000000000000100010100010  8 
00011110101000000000000000000010100010100 10 
00001011011000000000000000000111000111000 11 
00010101110000000000000000000101100101100 11 
11100000001110000000000000000000000000111  9 
00100000011010000000000000000000000001001  7 
11000000010100000000000000000000000001110  8 
01100000100110000000000000000000000010011  9 
00100001000010000000000000000000000110001  8 
01000001100100000000000000000000000100010  7 
10000000101000000000000000000000000010100  6 
00000001011000000000000000000000000111000  9 
10000001110000000000000000000000000101100  9 
11100110000000000000000000000000111000000  8 
00100010000000000000000000000001001000000  5 
11000100000000000000000000000001110000000  7 
01111000000000000000000000000010011000000  8 
00101000000000000000000000000110001000000  7 
01010000000000000000000000000100010000000  5 
10011110000000000000000000000010100000000  8 
00001010000000000000000000000111000000000  8 
10010100000000000000000000000101100000000  8 
00000110001110000000001110011000000000000 10 
00000010011010000000011010001000000000000  8 
00000100010100000000010100010000000000000  6 
00011000100110000000100111100000000000000 10 
00001001000010000001000010100000000000000  6 
00010001100100000001100101000000000000000  8 
00011110101000000000101001111000000000000 12 
00001011011000000001011000101000000000000 10 
00010101110000000001110001010000000000000 10 
11100000001110001110000000011000000000000 11 
00100000011010010010000000001000000000000  8 
11000000010100011100000000010000000000000  9 
01100000100110100110000001100000000000000 11 
00100001000011100010000000100000000000000  9 
01000001100101000100000001000000000000000  8 
10000000101000101000000001111000000000000 10 
00000001011001110000000000101000000000000 11 
10000001110001011000000001010000000000000 11 
11100110000000001110001110000000000000000 11 
00100010000000010010011010000000000000000  8 
11000100000000011100010100000000000000000  9 
01111000000000100110100110000000000000000 11 
00101000000001100011000010000000000000000  9 
01010000000001000101100100000000000000000  8 
10011110000000101000101000000000000000000 10 
00001010000001110001011000000000000000000 11 
10010100000001011001110000000000000000000 11 



example is equal to four.  The numbers of ones in the rows 
are not constant. The sum of the ones in the rows is 
expressed in the last column of Table 2 and labeled by w, 
that means the weight of the cube in the row. The weight w 
tells us, how many cubes from the SNF are covered by the 
lattice created from the cube in the row. The larger the 
weight w, the more likely the cube belong to the minimum 
ESOP. These weights w can used to the select the cubes to 
find a global minimum of a set of functions. Based on the 
weights w, a simple minimization algorithm can defined. 

(1) Take the cube (one of the cubes) having the largest 
weight w. 

(2) Add this cube to the solution ESOP. 
(3) Expand this cube to a lattice. 
(4) Remove the cubes, covered by this lattice from the SNF. 
(5) Add the cubes of the lattice, which not match with the 

SNF. 
(6) If the SNF is not empty, continue with (1). 
This simple greedy algorithm has the disadvantage, that in 

each sweep only one locally optimal cube is selected. In the 
example of Table 2, there exists one cube (1-1-) = ac, 
having the highest weight w = 12. Using this cube an ESOP 
of five cubes can found: cdbacdcbacacf ⊕⊕⊕⊕= . 
This is not a minimum ESOP, but the cube ac is part of an 
expression of the function f using an EXOR operation and 

having the smallest literal count: 


 ⋅⊕= dcbaacf . 

5.5 Proof of Exactness Using a Tight Lower Bound 

The Table 2 includes 16 cubes of the second highest 
weight w = 11. All of them can be taken to create an ESOP 
of four cubes, shown in Figure 6. Are there four ESOPs 
exact minimum ESOPs? From Table 2, we get the number 
of cubes in this SNF to be |SNF( f )| = 44 and the size of the 
support n = 4. According to Theorem 3, the weak lower 
bound can be calculated as follows:  

k =  | SNF( f ) | / n2    
k =  44 / 42    
k =  44 / 16  
k =  2.75  
k = 3.  
There are four cubes in the ESOP that was found and the 

weak lower bound is smaller, namely three. Here the 
question arises, are there any ESOPs of three cubes or can 
we find a tighter lower bound, to prove that the ESOPs in 
Figure 6 is the exact minimum. Again, the second question 
can be answered using the SNF. 

The proof of Theorem 3 is based on the size of the lattice 
n2 . This is the largest value that can be covered by one 

cube (one row in Table 2) in the SNF. The weight w of 
cubes covered in the SNF is typically smaller. All cubes of 

the SNF must be covered by the selected cubes of the 
minimum ESOP. It is not possible to find a minimum ESOP 
with less cubes than found by the following algorithm. 

 
Algorithm SLB (stronger lower bound) 
(1)n_slb = 0; m = |SNF( f )|; 
(2)if (m <= 0) n_slb is the stronger lower bound  
 end  
(3)n_slb = n_slb + 1; m = m – w_max 
 exclude cube of the selected w_max 
 goto (2) 

c d        a b c d 
0 0  1 1 1 0   - - - - 
0 1  1 1 1 0   1 0 0 - 
1 1  1 1 0 1   0 - 1 0 
1 0  0 0 1 1   1 1 1 1 
             
   0 1 1 0 b      
   0 0 1 1 a      

             

(1)   abcddcacbaf ⊕⊕⊕= 1  
 
c d        a b c d 
0 0  1 1 1 0   1 1 - - 
0 1  1 1 1 0   - - 1 1 
1 1  1 1 0 1   0 - 0 - 
1 0  0 0 1 1   1 0 1 0 
             
   0 1 1 0 b      
   0 0 1 1 a      

             

(2)   dcbacacdabf ⊕⊕⊕=  
 
c d        a b c d 
0 0  1 1 1 0   - - 0 - 
0 1  1 1 1 0   1 0 - - 
1 1  1 1 0 1   1 1 1 0 
1 0  0 0 1 1   0 - 1 1 
             
   0 1 1 0 b      
   0 0 1 1 a      

             

(3)   cdadabcbacf ⊕⊕⊕=  
 
c d        a b c d 
0 0  1 1 1 0   0 - - - 
0 1  1 1 1 0   - - 1 0 
1 1  1 1 0 1   1 0 1 1 
1 0  0 0 1 1   1 1 0 - 
             
   0 1 1 0 b      
   0 0 1 1 a      

             

(4)   cabcdbadcaf ⊕⊕⊕=  
 

Figure 6.  Four exact minimum ESOPs of the function 
form Table 2 



In the above algorithm w_max is the maximal weight w of 
a cube for the SNF. Appling the algorithm to calculate a 
stronger lower bound we get in case of the SNF of Table 2 
step by step the values of Table 3 and the stronger lower 
bound of four. Therefore, the ESOPs listed in Figure 6 are 
exact minimum ESOPs and no ESOP with less than four 
cubes exist for the SNF( f  ) given in Table 2. 
 
Table 3. Calculation of a stronger lower bound 

n_slb  m  w_max 
0  44   
1  44 – 12 = 32  12 
2  32 – 11 = 21  11 
3  21 – 11 = 10  11 
4  10 – 11 = -1  11 

 

5.6 Selection of Preferred Cubes 

The final application in this paper is focusing on the 
selection of cubes to cover the cubes of the SNF. From the 
above approach, it is known that exactly n2 out of n3 cubes 
cover a selected cube from the SNF. The introduced 
weights w helps evaluate these n2  cubes. Are there a 
stronger quality criteria to distinguish between more or less 
useful cubes? Yes, according to Theorem 6, there is one 
more criterion to get useful knowledge from the SNF.  

In order to figure out this property, the SNF of a single 
cube is considered. The associated SNF is a lattice, created 
by the expansion operation Exp( ). Each cube of this lattice 
has n edges to distance-1 cubes. Taking the values of the n 
variables of one cube of the lattice and the changed values 
in the n distance-1 cubes, for each variable, a pair of values 
is found. The single cube of the exact minimum ESOP of 
this SNF can reconstructed, taking the missing third value 
for each variable. Note that this reconstruction is done 
starting with any cube of the lattice. Example 2 illustrates 
this approach using the cube ba  with the lattice in Fig. 4a. 

Example 2  

Cubes of the lattice of ba are:   
((01), (0-), (-1), (--)). 

The reconstruction starting from each cube of a lattice 
finishes always with the cube ba  
cube of 

the lattice 
distance-1 cubes combinations 

of values 
reconstructed 

basic cube 
(01) ((-1),(0-)) {0-},{1-} (10) 

(0-) ((--),(01)) {0-},{1-} (10) 

(-1) ((01),(--)) {0-},{1-} (10) 

(--) ((0-),(-1)) {0-},{1-} (10) 

(end of Example 2) 

The Example 2 shows how the distributed knowledge 
about the cube can be reconstructed. For this reconstruction, 
only a part of the lattice is necessary. In fact, this part is a 
corner of the lattice, defined by any cube of the lattice and 
the associated distance-1 cubes. 

The first step to construct the SNF of a function f is the 
expansion of the given cubes into lattices. The R-operation 
removes some cubes from the lattices, so that the distributed 
knowledge about the given cubes is reduced. Corresponding 
to the R-operation, in the adjacency graph of the SNF some 
edges of the intermediate lattices are removed, too, but 
additional edges are introduced. In a way, by means of the 
R-operation new corners of the potential lattices are created 
and new suitable cubes for the minimal ESOPs are build. 
Consider Figure 4c. Each cube associated with a vertex of 
the adjacency graph of the SNF can be taken to create a 
lattice which defines after collapsing a cube of the minimum 
ESOP. Figure 7 illustrates this approach. It is obvious that 
the ESOPs found are the exact minimum ESOPs. 

 

Figure 7. Reconstruction of lattices and ESOPs. 

(a) SNF( baba ⊕ ), (b) SNF( ba ⊕ ), (c) SNF( ba ⊕ ) 
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According Theorem 6, the number of distance-1 cubes is 
equal to n for each cube of the SNF of function  f  having 
the support of n variables. Thus, each cube of the SNF and 
the adjacent distance-1 cubes specify exactly the cube 
preferred in a minimal ESOP. Table 4 shows this property 
for the same SNF( f ) used in Table 2. Value 2 in the matrix 
of Table 4 means that the cube of the row is the preferred 
cube of a SNF-cube of the column. Note that each column 
of Table 4 contains exactly one value 2. Each value 2 in the 
matrix of Table 4 replaces one value 1 of the matrix of 
Table 2, because the criterion to define a value 2 is stronger 
includes the criterion to define the value 1.  

Using the preferred cubes, the second weight w2 can be 
defined. The weight w2 of a cube c expresses, how many 
cubes of the SNF( f ) have the cube  c as the preferred cube. 
In the matrix of Table 4, the weight w2 of a cube associated 
to a row is the sum of values two in the row. Observe that 
the cube ac, (1-1-) in Table 2 and 4 has the highest 
weight w = 12 and the highest weight w2 = 4 as well. 
Comparing Figure 6 and Table 4 shows that no cube of the 
exact minimum ESOPs of this function has weight w2 = 0.  

In general, the larger values of the weight w2 can be 
observed for larger values of the weight of w; but the 
weights w and w2 are not strongly correlated. For instance 
the cube (--00) has the weights w = 9 and  w2 = 1 and 
the cube (--1-) has the weights w = 10 and  w2 = 0.  

6 SNF Computation: An Efficient Method 

The naive approach to compute the SNF follows the 
definition. It takes any ESOP of the given function and 
proceeds by expanding each cube using the Exp-operation  
and creating the union of these expansions while 
eliminating the duplicated cubes by the R-operation. The 
number of cubes in SNF is exponential because each 
expanded cube contains n2  cubes, where n is the number of 
input variables. Managing such a large number of cubes 
may be problematic if cubes are processed explicitly, one 
cube at a time. 

Another approach to compute the SNF is given below. In 
this approach, the SNF is represented by Zero-suppressed 
binary Decision Diagrams (ZDDs) and computed 
recursively from the BDD of the given function without 
creating an intermediate ESOP and expanding its cubes. 
The reader is referred to [5][6], where the foundations of 
ZDD-based cube manipulation are presented.  

Let us denote the positive, negative, and don’t-care literals 
of Boolean variable x by x{0}, x{1}, and x{-}. In the formulas 
below “×” denotes the operation of multiplying out two sets 
of cubes and symbols “∪∪∪∪”,“∩∩∩∩”, and “−” denote the set-
theoretic union, intersection, and difference applied to the 
cube sets. 

Table 4. Preferred cubes defined by a SNF 
 
     a----------------0000000000000000111111111111   
     b------0000111111------0000001111000000111111   
     c--0011--00--0011--0011--0011--00--0011--0011   
     d-1-0010101-0-101-1-001-0-1010101-1-001-1-001   
abcd                                               w2 
----  00000000000000000000000001110011000121000111  1 
---0  00000000000000000000000011010001001001001001  0 
---1  00000000000000000000000010100010001110001210  1 
--0-  00000000000000000000000100111100010012010011  1 
--00  00000000000000000000001000010100110001120001  1 
--01  00000000000000000000001100101000100010100010  0 
--1-  00000000000000000000000101001111010100010100  0 
--10  00000000000000000000001011000101211000111000  1 
--11  00000000000000000000001110001010102100101100  1 
-0--  00000000000000000001110000000011000000000111  0 
-0-0  00000000000000000010010000000001000000001001  0 
-0-1  00000000000000000011100000000010000000001110  0 
-00-  00000000000000000100110000001100000000010011  0 
-000  00000000000000001100010000000100000000110001  0 
-001  00000000000000001000100000001000000000100010  0 
-01-  00000000000000000101000000001221000000010100  2 
-010  00000000000000001110000000000101000000111000  0 
-011  00000000000000001011000000001010000000101100  0 
-1--  00000000000000000001110001120000000111000000  1 
-1-0  00000000000000000010010011010000001001000000  0 
-1-1  00000000000000000011100010100000001110000000  0 
-10-  00000000000000000100110100210000010011000000  1 
-100  00000000000000001100011000010000110001000000  0 
-101  00000000000000001000101100100000100010000000  0 
-11-  00000000000000000101000101000000010100000000  0 
-110  00000000000000001110001021000000111000000000  1 
-111  00000000000000001011002110000000101100000000  1 
0---  00000000110001110000000000000000000111000121  1 
0--0  00000000010011010000000000000000001001001001  0 
0--1  00000000100010100000000000000000001210001110  1 
0-0-  00000011000100110000000000000000010011010012  1 
0-00  00000001001000010000000000000000120001110001  1 
0-01  00000010001100100000000000000000100010100010  0 
0-1-  00000011110101000000000000000000010100010100  0 
0-10  00000001011011000000000000000000111000211000  1 
0-11  00000010101110000000000000000000101100102100  1 
00--  00011100000001120000000000000000000000000111  1 
00-0  00100100000011010000000000000000000000001001  0 
00-1  00111000000010100000000000000000000000001110  0 
000-  01001100000100210000000000000000000000010011  1 
0000  11000100001000010000000000000000000000110001  0 
0001  10001000001100100000000000000000000000100010  0 
001-  01010000000101000000000000000000000000010100  0 
0010  11100000001021000000000000000000000000111000  1 
0011  10110000002110000000000000000000000000101100  1 
01--  00011100110000000000000000000000000111000000  0 
01-0  00100100010000000000000000000000001001000000  0 
01-1  00111000100000000000000000000000001110000000  0 
010-  01001111000000000000000000000000010011000000  0 
0100  11000101000000000000000000000000110001000000  0 
0101  10001010000000000000000000000000100010000000  0 
011-  01010012210000000000000000000000010100000000  2 
0110  11100001010000000000000000000000111000000000  0 
0111  10110010100000000000000000000000101100000000  0 
1---  00000000110001110000000001110011000000000000  0 
1--0  00000000010012010000000012010001000000000000  2 
1--1  00000000100010100000000010100010000000000000  0 
1-0-  00000011000100110000000100111100000000000000  0 
1-00  00000001001000010000001000010100000000000000  0 
1-01  00000010001200100000001200101000000000000000  2 
1-1-  00000021120101000000000101002112000000000000  4 
1-10  00000001011011000000001011000101000000000000  0 
1-11  00000010101110000000001110001010000000000000  0 
10--  00012100000001110001110000000011000000000000  1 
10-0  00100100000011010010010000000001000000000000  0 
10-1  00111000000010100012100000000010000000000000  1 
100-  01001200000100110100110000001100000000000000  1 
1000  11000100001000011200010000000100000000000000  1 
1001  10001000001100101000100000001000000000000000  0 
101-  01010000000101000101000000001111000000000000  0 
1010  21100000001011001110000000000101000000000000  1 
1011  10210000001110001011000000001010000000000000  1 
11--  00011100110000000001210001110000000000000000  1 
11-0  00100100010000000010010011010000000000000000  0 
11-1  00121000100000000011100010100000000000000000  1 
110-  01001111000000000100120100110000000000000000  1 
1100  12000101000000001100011000010000000000000000  1 
1101  10001010000000001000101100100000000000000000  0 
111-  01010011110000000101000101000000000000000000  0 
1110  11100001010000002110001011000000000000000000  1 
1111  10110010100000001021001110000000000000000000  1 



The recursive computation of the SNF is based on the 
following properties: 

Property 1. Let functions f and g depend on the same 
input variables. Let fSNF and gSNF be the SNFs of  f and g. 
The SNF of f ⊕ g is computed by taking the union of the 
SNFs for functions f and g and removing the duplicated 
cubes: 

SNF( f ⊕ g ) = ( fSNF ∪∪∪∪ gSNF ) − ( fSNF  ∩∩∩∩ gSNF ). (21) 

Property 2. Let FSNF be the SNF of function  f and x be a 
Boolean variable that is not currently in the support of f. 
The SNFs of functions x{1} &  f, x{0} & f, and x{-} &  f  are: 

SNF( x{1} &  f  ) = ( x{0} ×  fSNF ) ∪ ( x{-} ×  fSNF ), (22) 

SNF( x{0} &  f  ) = ( x{1} ×  fSNF ) ∪ ( x{-} ×  fSNF ), (23) 

SNF( x{-} &  f  ) = ( x{0} ×  fSNF ) ∪ ( x{1-} ×  fSNF ), (24) 

Theorem. Let SNFs of the negative and positive cofactors 
be f 0SNF and f 1SNF. Then the SNF of function f  is: 

SNF( f  )  =   SNF( x{0} & [ f 0SNF  − f 2SNF ] ) 

  ∪  SNF( x{1} & [ f 1SNF − f 2SNF ]  )  

  ∪  SNF( x{-}  &  f 2SNF ),  (25) 

where  

f 2SNF = f 0SNF  ∩  f 1SNF. (26)  

Proof. If the SNFs of the two cofactors are known, it is 
possible to find the common cubes in these SNFs (f 2

SNF). 
These cubes correspond to the intersection of cofactors in 
the given function and go with the empty literal (x{-}) in the 
resulting SNF. These cubes should be subtracted from the 
cubes in f 0

SNF and f 1
SNF to get the cubes, which go with the 

negative and positive literals (x{0} and x{1}). Finally, all the 
three groups of cubes should be added together to create the 
SNF of the given function. Q.E.D.  

The algorithm shown in Figure 8 implements the above 
formula in a bottom-up traversal of the BDD representing 
the function. If the standard decision diagram caching 
techniques are used to store the intermediate results of 
computation, the complexity of this algorithm is 
proportional to the number of nodes in the BDD.  

The procedure takes two arguments, the function and a set 
of variables that should appear in the cubes of SNF. Notice 
that the function may not explicitly depend on some of 
them. 

The terminal cases are trivial. If the function is a constant 
zero, the SNF is a empty cube set. If no variables are left in 
the variable set, the function should be constant 1 and the 
tautology cube is returned.  

The fine point of this algorithm is the need to keep track 
of variables missing in the support of the original function 
or intermediate subfunctions. These variables are don’t-
cares on the BDD paths. Although they do not contribute 
nodes to the BDD, they add new cubes to SNF (and new 
nodes to the ZDD representing the SNF) according to 
formula for SNF( x{-} & f ) in Property 2. This situation is 
taken care of in the first part of the conditional statement. 
The pseudo-code after “else” implements formula from the 
Theorem 7 and property 2. 
cubeset SNF( func F, varset V ) 
{ 
   if ( F = 0 )  return ∅; 
   if ( V = ∅ ) {assert(F = 1); return {1}}; 
   x = Var( V ); 
   if ( x ∉ support(F) ) { 
      C = SNF( F, V-x ); 
      R = (x{0}× C) ∪ (x{1}× C); 
   } 
   else /* if ( x ∉ support(F) ) */ { 
      (F0, F1) = Cofactors( F, x ); 
      C0 = SNF( F0, V-x ); 
      C1 = SNF( F1, V-x ); 
      S2 = C0 ∩ C1; 
      S0 = C0 − S2; 
      S1 = C1 − S2; 
      R0 = (x

{1}× S0) ∪ (x{-}× S0); 
      R1 = (x

{0}× S1) ∪ (x{-}× S1); 
      R2 = (x

{0}× S2) ∪ (x{1}× S2); 
      R  = R0 ∪ R1 ∪ R2; 
   } 
   return R; 
} 
 

Figure 8. Algorithm for implicit SNF computation. 

8 Experimental Results 

Table 5 shows experimental results of computing SNF for 
single-output functions. “Name” is the name of the 
benchmark. “Out” is the primary output number, for which 
SNF is computed. “Ins” is the number of primary inputs of 
the function (some of them may not belong to the support of 
the given primary output). Column “|SNF|” gives the 
number of cubes in SNF. Columns NBDD and NSNF give the 
number of nodes in the BDD of the given function and in 
the ZDD of SNF. “Time” shows the time needed to 
compute SNF on a Pentium 300Mhz PC.  

Table 5. Experimental result of computing SNF for 
selected benchmark functions. 

name Out ins |SNF| NBDD NSNF time, s |ESOP| |SOP| |primes| 
9sym 1 9 9660 25 146 0.01 51 84 1680 
alu4 5 14 396824 151 1921 0.11 52 181 381 
T481 1 16 533536 202 744 0.05 13 481 481 
cordic 1 23 1.1e109 41 484 0.01 771 143 203 
dalu 1 75 1.6e1024 107 4529 0.06 96 180 742 

 



To get the sense of how large in the number of cubes in 
SNF, Table 5 lists the cardinality of three other important 
cubes sets. Column “|ESOP|” gives the number of cubes in 
an ESOP minimized heuristically by Exorcism-4 [7]. 
Column “|SOP|” gives the number of cubes in the exact 
minimum SOP, and column “|primes|” gives the number of 
all prime implicants of the given function.  

The second set of experimental results is summarized in 
Table 6. We generated Boolean functions of a given support 
size (n) in such a way that each pair of cubes is orthogonal. 
The number of orthogonal cubes, |Orth|, are listed in the 
second column. The set of orthogonal cubes of the function 
can be connected by EXOR- or OR-operation without 
changing of the function. The column |SNF| gives the 
number of the cubes in the SNF. According to Theorem 3, 
the value of the weak lower bound has been computed and 
listed in column WLB. Using the algorithm SLB given in 
Section 5, a stronger lower bound has been calculated. The 
column SLB in Table 6 shows that this lower bound is 
significantly larger. The last column of Table 6 gives the 
number of cubes calculated by a simple minimization 
algorithm based only on the weight w. The comparison to 
the column SLB shows that in all cases the exact minimum 
ESOPs has been found. 

Table 6. Experimental result of computing  
exact minimum ESOPs for random functions. 

n |Orth| |SNF| WLB SLB |EEMIN| 
4 4 38 3 3 3 
5 4 86 3 4 4 
5 10 126 4 6 6 
6 17 316 5 8 8 
6 13 320 6 8 8 
7 19 890 7 11 11 
7 18 718 6 9 9 
8 12 1822 8 11 11 

8 Conclusions  

We introduced a new canonical representation for 
completely specified Boolean functions called Specialized 
Normal Form (SNF). The SNF has a number of remarkable 
properties, in particular, it is useful for creating a new 
approach to exact ESOP minimization, which is not limited 
by the number of variables in the function.  

We propose an efficient algorithm to compute the SNF 
and an illustrative algorithm for exact ESOP minimization. 
Even though the current version of the algorithm has 
complexity exponential in the number of input variables, it 
has successfully found exact minima for functions of up to 
nine variables. 

Another possible use of SNF is to prove exactness of 
ESOPs computed by heuristic algorithms. 

Our future work is focusing on extracting more 
information from the SNF in order to find all exact 
minimum ESOPs of the given function without any search. 
Another possible improvement is to develop a exact ESOP 
minimization algorithm with complexity proportional to the 
size of the ZDD representation of the SNF rather then the 
number of cubes in SNF. 
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