
SNF: A Special Normal Form for ESOPs

 Bernd Steinbach Alan Mishchenko
 Freiberg University of Mining and Technology Portland State University
 Institute of Computer Science Department of Electrical and Computer Engineering
 D-09596 Freiberg, Germany Portland, OR 97207, USA
 steinb@informatik.tu-freiberg.de alanmi@ee.pdx.edu

Abstract

This paper introduces a new normal form for Exclusive
Sums-of-Products (ESOPs) of completely specified Boolean
functions. We study the properties of the SNF and show its
special place among canonical Reed-Muller
representations. We propose to use the SNF in a number of
applications related to the exact ESOP minimization. We
describe an efficient way to compute the SNF with the
complexity proportional to the number of nodes in the BDD
of the given function. Experimental results speak for the
potential usefulness of the SNF.

1 Introduction

The problem of finding an Exclusive Sum-Of-Product
(ESOP) of the given Boolean function with the minimum
number of cubes (and the minimum number of literals, as a
secondary goal) has both theoretical and practical value.

From the theoretical point of view, ESOP minimization is
interesting because ESOP is the most general Reed-Muller
forms with many interesting properties. From the practical
point of view, EXOR gates and ESOPs have numerous
applications in logic synthesis and design-for-test. In
particular, it has been shown [11] that the ESOP
representation of Boolean functions is typically more
compact that the SOP representation. For some functions
(e.g. the parity function), the number of cubes in ESOP is
linear in the number of variables while the number of cubes
in SOP is exponential.

Research in exact ESOP minimization has a long history.
Only the most important contributions are mentioned here.

In 1988, the first systematic approach has been introduced
[1][3] reducing the problem of exact ESOP minimization to
that of finding a satisfying assignment of the constraint
(called Helliwell function). However, the practical value of
this approach is limited, because the number of variables in
Helliwell function is equal to the number of cubes that can
appear in the minimum ESOP (for the most functions of n
variables, this number is n3).

In 1993, an extension of the minimization procedure
based on Helliwell function has been proposed [10][3]. This
approach shows how to minimize a function of n variables
if the exact minimum for all functions of n-k (k≥1) variables
is known. As a result of problem decomposition, a
specialized constraint is generated, which is similar to
Helliwell function but depends on fewer variables. The
constraint is represented using BDDs [10] or ZDDs [8] and
the solution is found as a shortest path in the decision
diagram. BDD reduction techniques are used to reduce the
size of the constraint by incrementally eliminating those
variable assignments that lead to solutions above an upper
bound on the number of cubes [3].

The method presented in [10] is the only one to find exact
minimum for arbitrary function of five input variables. This
method can also minimize some function up to ten
variables, as long as the number of variables in the
constraint can be limited using a tighter upper bound on the
number of cubes in the exact minimum ESOP.

Other approaches to exact minimization target not the
general class of functions, but functions that satisfy certain
properties. For example, in [1] satisfiability is used to solve
the minimization problem for functions whose minimum
ESOP is known to contain the given number of cubes.

The minimization procedure proposed in this paper
essentially differs from the previous ones. The problem is
solved by first deriving a canonical normal form, called the
SNF, and next transforming it into the exact minimum
ESOP (or the set of exact minimum ESOPs).

The SNF is also useful to prove exactness of ESOPs
found using other methods, because it gives a lower bound
on the number of cubes in the minimum solution. Finally,
the SNF provides valuable characterization of the given
function, which cannot be found using other methods.

The rest of the paper is organized as follows. Section 2
gives the basic definitions. Section 3 introduces the SNF
and presents a naïve way of its computation. Section 4
discusses the properties of SNF and proves the canonicity.
Section 5 shows applications of SNF. Section 6 gives an
efficient algorithm for SNF computation from the BDD of
the given function. Section 7 contains experimental results.
Section 8 concludes the paper.

2 Preliminaries

This section introduces definitions and basic knowledge
used in the paper.

A literal is a Boolean variable in negative or positive
polarity. A cube C is a product term composed of literals
using Boolean AND operation.

Two cubes coincide in variable x if x does not appear in
the cubes or if x appears in the cubes in the same polarity.
Two cubes differ in variable x if they do not coincide in
variable x. The distance D between two cubes is the number
of variables, in which the cubes differ.

A variable in the cube can have three forms: (1) negative
polarity; (2) positive polarity; (3) don’t-care.

For example, assuming that cube dba belongs to a
function with input variables ()dcba ,,, , variable a appears
in positive polarity, variables b and d appear in negative
polarity, and variable c appears as a don’t-care.

The Exclusive-OR (EXOR) operation ⊕ is a linear
operation and is defined in Table 1.

Table 1. Definition of the EXOR operation

a b a ⊕ b
0 0 0
0 1 1
1 0 1
1 1 0

The fundamental property of Exclusive-OR (EXOR)

operation is the following:

 x ⊕ x ⊕ 1 = 0. (1)

The operation of addition in this paper is used in the sense
of Exclusive-OR. For example, “adding this pair of cubes to
the function f ” means creating an Exclusive-OR of the two
cubes and the function f represented as an ESOP.

An Exclusive-Or Sum-Of-Products (ESOP) is an
Exclusive-OR of zero or more cubes.

Proposition 1. Two identical cubes can be added to any
ESOP without changing the function represented by it.

This statement is clear from the following formulas:

 f = f ⊕ 0 (2)

 0 = C ⊕ C (3)

 f = f ⊕ C ⊕ C (4)

The number of ESOP’s for each Boolean function is
infinite, because Proposition 1 can be applied many times.

Using Proposition 1 in the reverse direction, to collapse
all the pairs of the identical cubes, leads to an ESOP that is
unique for the class of ESOPs generated by Proposition 1.

An ESOP is reduced if it does not contain identical cubes.
The number of all cubes of n variables is n3 and

consequently there are
n32 reduced ESOPs. The number of

reduced ESOPs of each of the
n22 Boolean function of n

variables is finite. This paper focuses on reduced ESOPs.
An ESOP is minimum (or, exact minimum) if it contains

the minimum number of cubes among all the ESOPs of the
given Boolean function.

Two ESOPs are considered different if they differ in at
least one cube, that is, if at least one of the ESOPs has a
cube, which the other ESOP does not have.

The following proposition can be proved using the
fundamental property of EXOR operation.

Proposition 2. The EXOR of two cubes that have
distance 1 can be represented by a single cube.

A functional representation is canonical if for any
function there exists only one representation of this kind.

The minterm is a cube containing all the literals of the
support. The minterm ESOP of a function is the ESOP
created by adding the cubes representing all the minterms of
the given function. By definition of canonicity, the minterm
ESOP is a canonical representation, because the set of
minterms is a unique characteristic of the function.

Some helpful concepts can be defined using the distances
between the cubes of an ESOP.

Adjacency Graph AG(V, E) of a reduced ESOP
Definition. The vertices V of the adjacency graph

AG(V,E) correspond to the cubes of the reduced ESOP.
Two vertices V of AG(V, E) are connected by an edge, if the
associated cubes have distance 1.

It is possible to represent an ESOP by a list of ternary
vectors [12]. Each cube of the ESOP is represented by a
ternary vector having the length of the support of the ESOP.
The variables of the cube are encoded as follows:

0 if the positive literal belongs to the cube

1 if the negative literal belongs to the cube

- if the variable does not appear in the cube.

For example, the function () cbdbadcbaf ⊕=,,, may be
represented by two ternary vectors listed in the table:

 a b c d
f = 1 0 - 0
 - 1 0 -

Assuming the above encoding, the AND-operation

between the ternary elements of a row and the EXOR-
operation between the ternary vectors the ESOP expression
of the function can be easily performed using the ternary
vector list (TVL).

3 Definition of SNF

This section introduces a new canonical Reed-Muller
expansion for completely specified Boolean functions. The
proof of canonicity is given in the next section.

The fundamental property of Exclusive-OR (1) can be
expressed in any of the following forms:

 x = x ⊕ 1 (5)

 x = 1 ⊕ x (6)

 1 = x ⊕ x (7)

These three formulas show that each element of the set
{ x, x , 1} has isomorphic properties. For each variable in
the support of the Boolean function f, exactly one left-hand-
side element of (5), (6) or (7) is included in each cube of an
ESOP of function f.

Using the appropriate formula, the cube C can be
expanded with respect to (w.r.t.) variable x into two cubes
having all the variables the same as in the original cube,
except variable x. This variable appears in two cubes in the
forms that are complementary w.r.t. the form it takes in the
original cube (5), (6), (7). This expansion is performed by
the function expand, which takes the cube and the variable
and returns the two resulting cubes.

Suppose the support of a Boolean function is (a, b, c, d)
and dba is one of the cubes in the ESOP. There exist four
different expansions w.r.t. each variable of the support.

expansions w.t.r. a: () dbdbadbadba ⊕=⋅⊕= 1

expansions w.t.r. b: () dabdadbadba ⊕=⋅⊕⋅= 1

expansions w.t.r. c: () dcbadcbadccbadba ⊕=⋅⊕⋅=

expansions w.t.r. d: () dbabadbadba ⊕=⊕⋅= 1

It is obvious that the right hand side ESOPs of the above
four examples represent the same function dba .

The expansion of a cube w.r.t. one variable can be
repeated for all variables of the support. The result does not
depend on the order of the n expanded variables and is an
ESOP consisting of exactly n2 cubes. It can be shown that
the set of n2 cubes resulting from expanding the given cube
forms a complete lattice. It is possible to define operations,
join and meet, for the elements of this lattice. We do not
introduce these operations because they are not necessary
for our presentation in this paper.

The lattice of cubes created by expanding cube ca with
the support (a, b, c) is shown in Figure 1. Notice that the
cubes connected by lines differ in exactly one variable. For
each cube in the lattice the number of cubes connected by
the lines is equal to the size of the support n (in the example
of Figure 1, the size of the support is 3).

 cba

 1ba bca cb1

 1ba 11b bc1
 11b

Figure 1. The cube lattice created by expanding cube ca .

Algorithm Exp(f)
Given: any ESOP of a Boolean function f
Result: complete expansion of the Boolean function f

w.t.r. all variables of its support

for all variables Vi of the support
 for all cubes Cj of f
 { (Cn1, Cn2) = expand(Cj , Vi)
 replace Cj by (Cn1, Cn2)
 }

Suppose the given ESOP of a Boolean function f with a
support of n variables consist of k cubes. The result of
Exp(f) is an ESOP, which includes nk 2⋅ cubes.

If more than one cube belongs to f , Exp(f) contains pairs
of identical cubes. A reduced ESOP of the same function
can be derived by Algorithm R.

Algorithm R(f)
Given: any ESOP of a Boolean function f containing

k cubes
Result: reduced ESOP of f

for i = 0 to k - 2
 for j = i + 1 to k - 1
 { if (C[i] == C[j])
 { C[i] = C[k-1]
 C[j] = C[k-2]
 k = k - 2
 j = i
 }
 }

Using the algorithms Exp(f) and R(f) it is possible to
create a special ESOP having a number of remarkable
properties.

Definition of SNF(f)
Take any ESOP of a Boolean function f. The resulting

ESOP of
SNF(f) = R(Exp(f))

is called Specialized Normal Form (SNF) of the Boolean
function.

Note that the definition of the SNF(f) involves two steps.
First, the complete expansion of all cubes of f w.r.t. all the
variables. Second, all pairs of identical cubes are removed
in order to obtain an reduced ESOP of f. For practical
reasons, these two processes (expansion and reduction) may
be carried out simultaneously.

Consider function NEXOR of two variables, a and b, and
one of its ESOPs: (b⊕a). To compute the SNF (Figure 1),
first create the expansion of cube a, then create the
expansion of cube b , and finally find the union of the
resulting cubes while eliminating the duplicated cubes
(marked by the cross in Figure 1). The ones in the table
stand for don’t-care literals in the cubes and may removed.

a b SNF(b⊕a)

× ba × ba ba
 ba 1⋅a b⋅1
 b⋅1 ab b⋅1
 b⋅1 1⋅a 1⋅a
 ab
 1⋅a

Figure 2. Example of SNF computation.

4 Properties of SNF

To prove that the SNF is a canonical representation, two
transformations are introduced and the following two
lemmas should be proved.

Transformation T1: Adding a pair of duplicated cubes.

Transformation T2: Combining two distance-1 cubes.

Lemma 1. Any ESOP can be created from the minterm
ESOP by repeatedly applying transformations T1 and T2.

Proof. Take an ESOP and break it down into elementary
cubes representing minterms. In each vertex of the Boolean
space, count the number of elementary cubes that cover this
vertex. Observe that those vertices, where the function is
one (zero), are covered by an odd (even) number of
elementary cubes (according to Proposition 1).

Now consider the minterm ESOP. This ESOP covers each
vertex of the Boolean space where the function is one with a
single elementary cube. Add the even number of cubes
(transformation T1) to each vertex of the Boolean space
according to the counting performed above. Combine
smaller cubes into larger cubes (transformation T2) until the
cubes of the original ESOP are created. Q.E.D.

Lemma 2. Transformations T1 and T2 do not change the
SNF of the function f.

Proof. Consider transformation T1. After adding two
identical cubes to the original ESOP of f, Exp(f) contains
two sets of identical expanded cubes. After applying
reduction R(Exp(f)), the cubes in the identical sets are
reduced and SNF(f) remains unchanged.

Consider transformation T2. The expansions of the two
distance-1 cubes are similar, except for the single variable,
in which they differ. Exactly half of the cubes in each
expansion are the same. As a result of adding these two sets
of cubes, the identical cubes will be reduced, while the
remaining cubes will add up to the expansion of the cube
created by merging the distance-1 cubes. Q.E.D.

The second part of this proof is illustrated by the
following example: bacbacba =⊕ . Expansions of cubes

cba = (101), cba = (100), and ba = (10-) are given in
Figure 3.

It is easy to see that adding the expansions of the first two
cubes and removing the duplicated cubes (marked by “×” in
Figure 3) leads to the expansion of the third cube.

 abc abc abc

 010 011 010
 01- × 01- × 011

 0-0 0-1 0-0

=cba 0-- × =cba 0-- × =ba 0-1
 -10 -11 -10
 -1- × -1- × -11
 --0 --1 --0
 --- × --- × --1

Figure 3. An example illustrating Lemma 2.

Theorem 1. The SNF(f) is canonical.

Proof. Take two arbitrary ESOPs of the same function.

According to Lemma 1, each of them can be derived from
the minterm ESOP using transformations T1 and T2.
Because transformations T1 and T2 do not change the SNF
(Lemma 2), SNFs for these ESOPs are the same and equal
to SNF of the minterm ESOP. Q.E.D.

The following lemmas and theorems elaborate on the
properties of the SNF and show how it can be used to prove
a number of statements about the set of all ESOPs and the
set of exact minimum ESOPs of the Boolean function.

Lemma 3. Every reduced ESOP of the Boolean function f
can be derived by adding the SNF(f) to a reduced ESOP of
the constant zero function and removing the duplicated
cubes.

Proof. Consider one ESOP, W, of the function f. W may
have some cubes in common with SNF(f) and differ from
SNF(f) in all the other cubes. Let us construct an ESOP Z
by adding all the cubes from SNF(f) that do not appear in
W and all the cubes in W that do not appear in SNF(f).

By construction of Z, SNF(f) = W ⊕ Z. Consequently,
Z = SNF(f) ⊕ W. Because SNF(f) and W are ESOPs of
the same function, and because the duplicated cubes have
been removed while adding them, Z is a reduced ESOP of
the constant zero function. Because no assumptions are
about W, this method constructs the required ESOP of the
zero function for any given ESOP. Q.E.D.

Lemma 4. Adding SNF(f) to two different reduced
ESOPs of the constant zero function and removing the
duplicated cubes leads to two different reduced ESOPs.

Proof. Assume that the statement of the theorem is wrong
and there are two different reduced ESOPs of the zero
function, Z1 and Z2, which when added to SNF(f) lead to
two identical reduced ESOPs.

From the fact that Z1 and Z2 are two different ESOPs, we
conclude that there is at least one cube in one of them that is
not present in the other. Without limiting the generality of
the following statements, assume that Z1 has cube C that
does not appear in Z2.

Consider two cases: (1) cube C appears in SNF(f) and
(2) cube C does not appear in SNF(f). As a result of
removing duplicated cubes, in case of (1), cube C will not
appear in SNF(f) ⊕ Z1 but will appear in SNF(f) ⊕ Z2. In
case of (2), cube C will appear in SNF(f) ⊕ Z1 but will not
appear in SNF(f) ⊕ Z2. In both cases, the resulting ESOPs,
SNF(f) ⊕ Z1 and SNF(f) ⊕ Z2, are different. This is a
contradiction. Q.E.D.

Theorem 2. Every Boolean function has exactly () ()nn 232 −
different reduced ESOPs.

Proof. From the above two lemmas, it follows that for any
Boolean function, it is possible to derive exactly as many
different reduced ESOPs as there exist different reduced
ESOPs of the constant zero function. It means that the
number of different reduced ESOPs is the same for all
Boolean functions. One ESOP cannot represent two
different functions. Because there are ()n32 different
reduced ESOPs and ()n22 different functions, each
function has exactly () ()nn 232 − different reduced ESOPs.
Q.E.D.

Theorem 3. (Weak lower bound on the size of the
minimum ESOP). No ESOP representation of a Boolean
function f contains less than  | SNF(f) | / n2  cubes (the
smallest integer number greater than the number of cubes in
the SNF(f) divided by n2).

Proof. Assume that the theorem is wrong. Suppose there
exists an ESOP M of the given function f containing less
than k =  | SNF(f) | / n2  cubes, | M | < k. Exp(M)
contains | M | * n2 cubes and the final R-operation

removes some cube to create SNF(M) = R(Exp(M)).
Thus,

| SNF(M) | < | M | * n2 < k * n2 (8)

| SNF(M) | / n2 < | M | < k (9)

| SNF(M) | / n2  ≤ | M | < k = | SNF(f) | / n2  (10)

and the SNF(M) is different from SNF(f). According to
Theorem 1 is SNF a canonical representation and the two
different SNFs describe two different functions M and f .
This is a contradiction, which proves the theorem. Q.E.D.

In fact, it is possible to formulate a stronger lower bound
on the number of cubes in the exact minimum ESOP by
considering the cubes appearing in the SNF. This will be
shown in the next section.

The following theorem justifies the exact ESOP
minimization algorithm described below.

Theorem 4. Adding the smallest number of pairs of the
identical cubes to SNF(f) in such a way that the complete
expansions of cubes are created, leads to the exact
minimum ESOP of the given function.

Proof. According to the Theorem 2, there are () ()nn 232 −
different ESOPs of the function f. This finite set of ESOPs
contains one or more exact minimum ESOPs including kmin
cubes and other ESOPs including ki’ cubes, kmin < ki’ , as
well. Without limiting the generality of the following
statements, assume that M is an exact minimum ESOPs of
the function f , | M | = kmin and L is an ESOP of the same
function f including kL’ cubes, kmin < kL’. After expansions
of M and L holds

Exp(M) = kmin * n2 < kL’ * n2 = Exp(L). (11)

In order to create the canonical SNF, the R-operation
removes different number of pairs of the identical cubes

SNF(M) = R(Exp(M)) = R(Exp(L)) = SNF(L). (12)

Comparing (11) and (12) the number of removed pairs of
cubes must be larger in the case of ESOP L.

Reverse the process. Adding certain pairs of identical
cubes to SNF(f) leads to different Exp(f). Only in this
case of adding the smallest number of pairs of identical
cubes to SNF(f) = SNF(M) = SNF(L), the expansion
Exp(M) can be created. The collapsing operation Exp-1
(the reverse operation of expansion Exp) of Exp(M)
calculates the exact minimum ESOP M = Exp-1(Exp(M)).
Q.E.D.

Lemma 5. Two cubes of a reduced ESOP of
f (x1, x2, … , xn) have the distance D defined as follows:

 nD ≤≤1 . (13)

Proof. A reduced ESOP cannot include identical cubes,
thus 1≥D . The support of the function f is given by n. This
number n is the highest number of variables, where both
cubes may be different. Q.E.D.

Theorem 5. Let two cubes, c1 and c2, belonging to ESOP
f (x1, x2, … , xn), have the distance D. Then their
expansions, Exp(c1) and Exp(c2), overlap in Dn−2 cubes.

Proof. According to Lemma 5, the distance D cannot be
larger than n. For each pair of variables in c1 and c2, one of
the following two cases holds. Either the variables have a
distance of zero, which means that there are identical values
((00), (11), (--)), or the variables have a distance of one,
that means there appears one of the pairs ((01), (0-), (10),
(1-), (-0), (-1)).

Expanding one variable of c1 leads to the two remaining
values in the set {0, 1, -}

0 → {1, -},

1 → {0, -},

- → {0, 1},

Compare these formulas to (5), (6), (7). The same is valid
for the corresponding variable of c2.

Assume the distance D = 0. For all n variables vi the first
case holds. It is obvious that the expansions Exp(c1) and
Exp(c2) are the same and overlap in all n2 cubes. The
theorem holds in this case because nnDn 222 0 == −− .

Assume further that the distance D = n. For all n variables
vi, the second case holds. The following list shows that for
each type of distance 1 there is exactly one common value
in the expansion:

v1i = 0 → {1, -}, v2i = 1 → {0, -}, common value {-}

v1i = 0 → {1, -}, v2i = - → {0, 1}, common value {1}

v1i = 1 → {0, -}, v2i = 0 → {1, -}, common value {-}

v1i = 1 → {0, -}, v2i = - → {0, 1}, common value {0}

v1i = - → {0, 1}, v2i = 0 → {1, -}, common value {1}

v1i = - → {0, 1}, v2i = 1 → {0, -}, common value {0},

thus the expansions Exp(c1) and Exp(c2) overlap in only
one cube. This cube is given by the above listed common
values. The theorem holds in this case, because

1222 0 === −− nnDn .
If nD <<0 , the cubes c1 and c2 include D variables vi

having distance 1 and the remaining n – D variables vj with
distance 0, respectively. The following list shows that, for
each type of distance 0 between the corresponding
variables, there are exactly two common values in the
expansion:

v1j = 0 → {1, -}, v2j = 0 → {1, -}, common value {1, -}

v1j = 1 → {0, -}, v2j = 1 → {0, -}, common value {0, -}

v1j = - → {0, 1}, v2j = - → {0, 1}, common value {1, 0}.

Decreasing the distance D by 1 doubles the number of
common values for one variable and, consequently, doubles
the number of cubes where the expansions Exp(c1) and
Exp(c2) overlap. Because there is one common value for
D variables vi and n – D variables vj having two common
values, the number of cubes, in which expansions Exp(c1)
and Exp(c2) overlap, is DnDnD −− = 22*1 . Q.E.D.

Figure 4 illustrates how the fundamental property of
lattices is transferred to the adjacency graph of the SNF.

Figure 4. (a) Exp(ba), (b) Exp(ba), (c) SNF(baba ⊕)

Lemma 6. The expansions L1 = Exp(c1) of a cube c1
having the support of n variables is a lattice and the degree
of any vertex (the number of adjacency edges of the vertex)
in the adjacency graph AG(V, E) of L1 is equal to n.

Proof. The number of cubes in L1 is n2 . These cubes are
created by all possible combination of the two allowed
values of each variable. For each cube in L1, it is true that
changing the value for each of the n variables separately
leads to another cube of the lattice. The cubes of the lattice
are associated with the vertices of the adjacency graph
AG(V, E) and each vertex has the degree n by
construction. Q.E.D.

Lemma 7. Assume that the ESOP of f (x1, x2, … , xn)
includes only two cubes c1 and c2 and the lattices of their
expansions L1 = Exp(c1) and L2 = Exp(c2) overlap exactly
in one cube. The degree of any vertex of the adjacency
graph AG(V, E) of SFN(21 cc ⊕) is equal to n.

 01

 -1

 0-

 -- --

 -0

 1-

 10

(a) (b)

 01

 -1

 0-

 -- --

 -0

 1-

 10

(c)

Proof. According to Lemma 6, each vertex of the
adjacency graphs AG(V, E) of the expansions L1 = Exp(c1)
and L2 = Exp(c2) has the degree n. The R-operation
R(Exp(c1) ⊕ Exp(c2)) removes the cube, in which L1 and
L2 overlap, in order to create SFN(21 cc ⊕). The removed
vertices are connected to n distance-1 vertices in the
lattices. According to (1), there exist n pairs of vertices that
are distance-1 in exactly one variable. These n pairs of
vertices must be connected according to the definition of
the adjacency graph. In each of these pairs, one edge is
removed and one edge is added, and therefore the vertex
degrees do not change. Q.E.D.

Theorem 6. The degree (the number of adjacent edges) of
any vertex in the adjacency graph AG(V, E) of the
SNF(f (x1, x2, … , xn)) is equal to n.

Proof. The SNF(f) is a canonical ESOP of the function f.
Therefore, if c is a cube and f = f 0 ⊕ c,

SNF(f) = SNF(f0 ⊕ c) = R(Exp(f0 ⊕ c)). (14)

The expansion operation Exp() is linear:
Exp(fa ⊕ fb) = Exp (fa) ⊕ Exp(fb). (15)

Using (15) in (14) leads to
SNF(f) = SNF(f0 ⊕ c) = R(Exp (f0) ⊕ Exp(c)). (16)

The R-operation is idempotent:
R (fa) = R(R(fa)). (17)

Using (17) in (16) leads to
SNF(f) = SNF(f0 ⊕ c) = R(R(Exp (f0)) ⊕ Exp(c)) (18)

and finaly to (19)
SNF(f) = SNF(f0 ⊕ c) = R(SNF(f0) ⊕ Exp(c)). (19)

The formula (19) shows that the SNF can be computed
recursively. Expanding the first cube leads to a lattice.
According to Lemma 6, the degree of vertices of the
corresponding adjacency graph AG(V, E) is n. Adding the
expansion of the second cube, one or more vertices of
AG(V, E) overlap and will be removed by the R-
operation. If only one vertex overlaps, the degree of
vertices of the corresponding adjacency graph AG(V, E) is
n, according to Lemma 7. If there is an overlap in more than
one vertex between the AG(V, E) of the previous SNF, the
following considerations show that the degree of all vertices
of the created adjacency graph AG(V, E) is n.

Take one vertex from the expanted cube that overlaps
with the cube from the previous SNF. Both associated cubes
have n distance-1 cubes. Consider two distance-1 cubes
w.r.t. variable vi. These two cubes may be identical or have
distance 1, too. In the first case, both associated vertices are
removed. If the selected three cubes, the overlapping cube
and the two distance-1 cubes w.r.t. variable vi, cover in this
variable all possible values {0, 1, -}, the edges to the

overlapping cube are removed and one new edge between
the two distance-1 is created (see Figure 4). Thus, the
degree of all remaining vertices keeps n. Q.E.D.

5 Applications of SNF

5.1 Overview of the Basic Strategy
There are several applications of the SNF. These

applications are closely related to the EXOR operation,
because the SNF is a reduced ESOP.

The number of cubes in the SNF is typically high because
the expansion Exp-operation creates n2 cubes form each
cube in the given ESOP. The R-operation reduces this
number, but, according to Theorem 5, in the worst case,
only one pair of cubes, out of the n2*2 cubes in the
expansion of two given cubes, can be removed. However, in
general the SNF is not the largest reduced ESOP of the
represented function f.

Now we describe the basic strategy how the SNF can be
used to find the minimum ESOP(s). This strategy is
schematically represented in Figure 5.

Figure 5. Schematic repre
minimizat

The bubbles in Figure 5 s
function. The vertical axis
increase in the number of c
show trajectories in the imag
by the functional representati

No ESOPs
given func
under this

ESOP
cardinality

SNF
|SNF|
 of the

Exact
Minimum
|min ESOP|
sentation of SNF-based ESOP
ion strategy.

how individual ESOPs of the
 shows the direction of the
ubes in an ESOP. Curvy lines
inary space of all ESOP traced
ons during minimization.

tion exist
line

ESOP

Minimization is performed in two steps. First, the SNF is
constructed starting from any known ESOP (or computed
from another functional representations such as BDDs).
Because the SNF is canonical, during this first step the
knowledge about the given ESOP is lost. It is known, that
the R-operation removes the smallest number of cubes if the
Exp-operation expands an exact minimum ESOP.
Therefore, in the second step a way from SNF to the exact
minimum ESOP is found by adding the smallest number of
cubes to the SNF (Theorem 4). The cubes of the exact
minimum ESOP are found by collapsing complete lattices
of cubes, each composed of n2 cubes. Schematically, the
exact minimum ESOP is positioned on the lower bound of
the functional space containing all the ESOPs of the given
function (Figure 5).

The advantage of the proposed algorithm is that no top
down search for the smallest ESOP is necessary. Only a
small number of pairs of cubes must be added to fill up the
embedded parts of lattices of the SNF to complete lattices,
instead. The number of pairs npc of cubes which must be
added is at least

npc = ((n2 - (| SNF(M) | mod n2)) mod n2) / 2 (20)

because if the expansion containing k * n2 (k ≥ 0) cubes
exists, this expansion with the smallest k can be used to get
the exact minimum ESOP by collapsing the SNF cubes. If it
is not possible to create complete lattices from the SFN, npc

must enlarged by 12 −n cubes one or more times.

5.2 An Approach to Exact ESOP Minization
Using Cube Grouping

Not only the number of pairs npc of cubes, which must be
added, is known, the pairs themselves can be found using
the SNF, too. The following example shows how this
knowledge can be found in the SNF.

Example 1
Assume a Boolean function f depends on the four

variables a, b, c, and d. Their SNF includes 40 cubes listed
below.

The set of cubes of a lattice may be created recursively.
Taking two different values for one variable forms the
simplest lattice. Taking again two different values for the
next variable, connect each of them to the elements of the
previous lattice and put all cubes together forms the lattice
having one more variable. The reverse procedure helps to
find the missing pairs of cubes in the SNF needed to create
the separate complete lattices. In the SNF, such pairs of
cubes are selected, which have different values for the first
variable and the identical values for the remaining variables.
For the given SNF(f), we get the following 20 pair of
cubes divided in 3 groups, characterized by the combination
of the values in the first variable.

Cube group a = [01]:

 --11
 -0--
 -0-0
 -01-
 -1-0
 -110

Cube group a = [0-]:

 --00
 --01
 --10
 -000
 -001
 -011
 -1--
 -11-

Cube group a = [1-]:

 ---1
 --1-
 -010
 -1-1
 -111

There is no cube in the SNF which can not combined with

an other cube of the SNF to such a pair. The above
procedure may be repeated for the second variable b and
leads to following tree of cubes.

Cube group a = [01]:
 Cube group b = [01]:

 ---0
 Cube group b = [0-]:
 Cube group b = [1-]:
 Cube group 4 (remainder):

 --11
 -0--
 -01-
 -110

abcd

---1
--00
--01
--1-
--10
-000
-001
-010
-011
-1--
-1-1
-11-
-111

abcd
0-00
0-01
0-10
0-11
00--
00-0
0000
0001
001-
0011
01--
01-0
011-
0110

abcd
1---
1--1
1-1-
1-11
10--
10-0
101-
1010
11-0
11-1
1110
1111

SNF(f) =

Cube group a = [0-]:
 Cube group b = [01]:
 Cube group b = [0-]:

 --00
 --01
 Cube group b = [1-]:
 Cube group 4 (remainder):

 --10
 -011
 -1--
 -11-

Cube group a = [1-]:
 Cube group b = [01]:
 Cube group b = [0-]:
 Cube group b = [1-]:

 ---1
 Cube group 4 (remainder):

 --1-
 -010
 -111

This distribution shows what cube pairs must be added to

create a complete lattice. Note that there are some empty
groups. No cube pairs of the associated lattice are includes
in the SNF. In the groups labeled by 4, the cubes are
collected, which do not form a pair. In order to create
complete lattices, a number of cube pairs must be added,
which move the cubes from the groups labeled by 4. The
first cube in a = [01] group 4 (--11) represents the
pair of cubes ((0-11)(1-11)). In order to move this
cube into two other groups, a pair of identical cubes created
by the third possible value in the first column a = [-]
and the values of the selected cube in the remaining
columns are necessary. So, the first pair of cubes to add is
((--11)(--11)). Now these four cubes can be merged
into two new pairs of cubes ((0-11)(--11)) and
((1-11)(--11)). The first pair has a [0-]
combination for the variable a and therefore moves to the
second group. Inside of this group there already exists the
pair of cubes ((0011)(-011)). Therefore, using the
first cube of the added pair of cubes, the group
a = [0-], b = [0-] is extended by the cube
(--11). The second merged pair ((1-11)(--11))
has [1-] combination for the variable a and therefore
moves to the third group. Inside this group, there already
exists the pair of cubes ((1111)(-111)). Therefore,
using the second cube of the added pair of cubes, the group
a = [1-] and b = [1-] is extended by the cube (--11).
Note that adding one pair of identical cubes reduces the
number of cubes in each of the three cube groups 4 by one.
These three cubes have identical values for the variables c
and d. For the variable b, all values of the set {0, 1, -}

are present. In fact, there are three choices for the selection
of the cube pairs that should be added. Only the selected
pair of cubes moves the mentioned three cubes from the
groups 4 into a non-empty group. After adding the pair of
cubes ((--11)(--11)), the following group structure is
created.

Cube group a = [01]:
 Cube group b = [01]:
 ---0
 Cube group b = [0-]:
 Cube group b = [1-]:
 Cube group 4 (remainder):
 -0--
 -01-
 -110

Cube group a = [0-]:
 Cube group b = [01]:
 Cube group b = [0-]:
 --00
 --01
 --11
 Cube group b = [1-]:
 Cube group 4 (remainder):
 --10
 -1--
 -11-

Cube group a = [1-]:
 Cube group b = [01]:
 Cube group b = [0-]:
 Cube group b = [1-]:
 ---1
 --11
 Cube group 4 (remainder):

 --1-
 -010

Applying a similar procedure to the cube pair
 ((01--)(-1--))

the second pair of identical cubes
 ((11--)(11--))

is added, which extends each of the groups a = [01],
b = [01] and a = [1-], b = [1-] by the cube
(----).

Similarly to the pair of cubes
 ((011-)(-11-))

in second group the pair of identical cubes
 ((111-)(111-))

is added, which extends each of the groups a = [01],
b = [01] and a = [1-], b = [1-] by the cube
(--1-).

Finally, to the pair of cubes
 ((1010)(-010))

in third group the pair of identical cubes
 ((0010)(0010))

is added, which extends each of the groups a = [01],
b = [01] and a = [0-], b = [0-] by the cube
(--10). After adding these four pair of cubes the
following group structure is created.

Cube group a = [01]:
 Cube group b = [01]:

 ---0

 --1-
 --10
 Cube group b = [0-]:
 Cube group b = [1-]:
 Cube group 4 (remainder):

Cube group a = [0-]:
 Cube group b = [01]:
 Cube group b = [0-]:

 --00
 --01
 --11
 --10
 Cube group b = [1-]:
 Cube group 4 (remainder):

Cube group a = [1-]:
 Cube group b = [01]:
 Cube group b = [0-]:
 Cube group b = [1-]:

 ---1
 --11

 --1-
 Cube group 4 (remainder):

Now the procedure of dividing into groups is repeated for

variables c and d. Skipping empty groups we get the
following group structure.

Cube group a = [01]:
 Cube group b = [01]:
 Cube group c = [1-]:
 Cube group d = [0-]:

Cube group a = [0-]:
 Cube group b = [0-]:
 Cube group c = [01]:
 Cube group d = [01]:

Cube group a = [1-]:
 Cube group b = [1-]:
 Cube group c = [1-]:
 Cube group d = [1-]:

By this group structure three lattices are found, which can
be collapsed into three cubes of the minimum ESOP.

 abcd abcd abcd
 0010 0000 1111
 001- 0001 111-
 00-0 0010 11-1
 00-- 0011 11--
 0110 0-00 1-11
 011- 0-01 1-1-
 01-0 0-10 1--1
L1 = 01-- L2 = 0-11 L3 = 1---
 1010 -000 -111
 101- -001 -11-
 10-0 -010 -1-1
 10-- -011 -1--
 1110 --00 --11
 111- --01 --1-
 11-0 --10 ---1
 11-- --11 ----

c1 = --01 c2 = 11-- c3 = 0000

Observe that the above three lattices include all 40 cubes

of the SNF and four pairs of identical cubes printed in bold
letters. The found ESOP is:

 dcbaabdcf ⊕⊕= . (21)

 (end of Example 1)

5.3 Proof of Exactness Using a Loose Lower
Bound

 If a small ESOP like (21) for a Boolean function is
found, the question arises: Is this ESOP the smallest one?
The SNF helps to answer to this question. According to
Theorem 4, the function f of (21) is an exact minimum
ESOP if the smallest number of pairs of identical cubes
was added to the SNF(f). In Example 1, four such pairs
were added. The smallest number of pair that must be added
to the SNF is defined by (20). The number of cubes in the
SNF of Example 1 is | SNF(f) | = 40 and the number of
variables is n = 4.

npc = ((n2 - (| SNF(M) | mod n2)) mod n2) / 2
npc = ((16 - (40 mod 16)) mod 16) / 2
npc = ((16 - (8)) mod 16) / 2
npc = ((8) mod 16) / 2
npc = (8) / 2
npc = 4

Both the number of necessary pairs npc to add to SNF(f)

and the real number of pair of cubes added in Example 1
are 4, therefore the ESOP (21) is an exact minimum of the
function f. This answer may be also found using the weak
lower bound defined in Theorem 4, which tells that there
can not exist an ESOP of an function f having less than k

cubes. For the function f of the Example 1, characterized
by | SNF(f)| = 40 and n = 4 , the lower bound is

k =  | SNF(f) | / n2 
k = 40 / 16 
k = 2.5 
k = 3.
ESOP (21) includes 3 cubes, thus, this ESOP is an exact

minimum.

5.4 An Approach to Exact ESOP Minization
Using Coverage Matrix

It is known, that on average the number of cubes in an
ESOP is smaller than in a SOP, but for certain functions the
minimum SOP contains fewer cubes than the minimum
ESOP. According to Theorem 2, the number of different
reduced ESOPs of each Boolean function is () ()nn 232 − . This
set of functions includes all exact minimum ESOPs, some
nearly minimum ESOPs and further larger ESOPs. If
several Boolean functions should be realized, the global
minimum strongly depends on the number of reused cubes.
In this context a quantitative evaluation is important, which
tells us what is the likelihood that the cube belongs to the
minimum ESOP. The answer to this question can be found
using the SNF.

In order to evaluate each cube of a given support w.r.t. to
the SNF(f), a matrix similar to Table 2 can be created. The
rows are labeled by all possible n3 cubes and the columns
are labeled by the cubes of the SNF(f). The basic
algorithm to find an ESOP containing a small number of
cubes is to add some pairs of identical cubes, which do not
change the function. As a result, separate complete lattices
will be created. Collapsing these lattices gives the minimum
ESOP. The cubes of these lattice are therefore the cubes
from the SNF and the added pairs of cubes.

The question is, how many and which lattices can cover a
certain cube form the SNF? From the algorithm to perform
operation Exp(c0), the value of a selected variable in the
cube cs of the SFN is different from the value of the
previous cube c0. Vice versa, the value of a selected
variable in the cube cs of the SFN can only be created by the
other two values of the set {0, 1, -}. Thus, exactly

n2 of the n3 cubes can cover a selected cube from the SNF.
That means at least one of these n2 cubes must be a cube of
the solution. The value 1 in Table 2 means that the cube of
the row covers one cube in the allowed lattice of a SNF-
cube of the column.

Observe, for instance, that the SNF-cube (----) in the
first column of Table 2 can be covered by that 16 cubes,
which are build by the values zero and one only. Note, the
number of ones in each column of Table 2 is constant and
equal to 16, because the support number of variables in this

 a ---
 b ---
 c --0
 d -1-
abcd
---- 000
---0 000
---1 000
--0- 000
--00 000
--01 000
--1- 000
--10 000
--11 000
-0-- 000
-0-0 000
-0-1 000
-00- 000
-000 000
-001 000
-01- 000
-010 000
-011 000
-1-- 000
-1-0 000
-1-1 000
-10- 000
-100 000
-101 000
-11- 000
-110 000
-111 000
0--- 000
0--0 000
0--1 000
0-0- 000
0-00 000
0-01 000
0-1- 000
0-10 000
0-11 000
00-- 000
00-0 001
00-1 001
000- 010
0000 110
0001 100
001- 010
0010 111
0011 101
01-- 000
01-0 001
01-1 001
010- 010
0100 110
0101 100
011- 010
0110 111
0111 101
1--- 000
1--0 000
1--1 000
1-0- 000
1-00 000
1-01 000
1-1- 000
1-10 000
1-11 000
10-- 000
10-0 001
10-1 001
100- 010
1000 110
1001 100
101- 010
1010 111
1011 101
11-- 000
11-0 001
11-1 001
110- 010
1100 110
1101 100
111- 010
1110 111
1111 101

Table 2. Coverage matrix of a SNF
-------------0000000000000000111111111111
---0000111111------0000001111000000111111
011--00--0011--0011--0011--00--0011--0011
0010101-0-101-1-001-0-1010101-1-001-1-001
 w
00000000000000000000001110011000111000111 11
00000000000000000000011010001001001001001 8
00000000000000000000010100010001110001110 9
00000000000000000000100111100010011010011 11
00000000000000000001000010100110001110001 9
00000000000000000001100101000100010100010 8
00000000000000000000101001111010100010100 10
00000000000000000001011000101111000111000 11
00000000000000000001110001010101100101100 11
00000000000000001110000000011000000000111 8
00000000000000010010000000001000000001001 5
00000000000000011100000000010000000001110 7
00000000000000100110000001100000000010011 8
00000000000001100010000000100000000110001 7
00000000000001000100000001000000000100010 5
00000000000000101000000001111000000010100 8
00000000000001110000000000101000000111000 8
00000000000001011000000001010000000101100 8
00000000000000001110001110000000111000000 9
00000000000000010010011010000001001000000 7
00000000000000011100010100000001110000000 8
00000000000000100110100110000010011000000 9
00000000000001100011000010000110001000000 8
00000000000001000101100100000100010000000 7
00000000000000101000101000000010100000000 6
00000000000001110001011000000111000000000 9
00000000000001011001110000000101100000000 9
00000110001110000000000000000000111000111 11
00000010011010000000000000000001001001001 8
00000100010100000000000000000001110001110 9
00011000100110000000000000000010011010011 11
00001001000010000000000000000110001110001 9
00010001100100000000000000000100010100010 8
00011110101000000000000000000010100010100 10
00001011011000000000000000000111000111000 11
00010101110000000000000000000101100101100 11
11100000001110000000000000000000000000111 9
00100000011010000000000000000000000001001 7
11000000010100000000000000000000000001110 8
01100000100110000000000000000000000010011 9
00100001000010000000000000000000000110001 8
01000001100100000000000000000000000100010 7
10000000101000000000000000000000000010100 6
00000001011000000000000000000000000111000 9
10000001110000000000000000000000000101100 9
11100110000000000000000000000000111000000 8
00100010000000000000000000000001001000000 5
11000100000000000000000000000001110000000 7
01111000000000000000000000000010011000000 8
00101000000000000000000000000110001000000 7
01010000000000000000000000000100010000000 5
10011110000000000000000000000010100000000 8
00001010000000000000000000000111000000000 8
10010100000000000000000000000101100000000 8
00000110001110000000001110011000000000000 10
00000010011010000000011010001000000000000 8
00000100010100000000010100010000000000000 6
00011000100110000000100111100000000000000 10
00001001000010000001000010100000000000000 6
00010001100100000001100101000000000000000 8
00011110101000000000101001111000000000000 12
00001011011000000001011000101000000000000 10
00010101110000000001110001010000000000000 10
11100000001110001110000000011000000000000 11
00100000011010010010000000001000000000000 8
11000000010100011100000000010000000000000 9
01100000100110100110000001100000000000000 11
00100001000011100010000000100000000000000 9
01000001100101000100000001000000000000000 8
10000000101000101000000001111000000000000 10
00000001011001110000000000101000000000000 11
10000001110001011000000001010000000000000 11
11100110000000001110001110000000000000000 11
00100010000000010010011010000000000000000 8
11000100000000011100010100000000000000000 9
01111000000000100110100110000000000000000 11
00101000000001100011000010000000000000000 9
01010000000001000101100100000000000000000 8
10011110000000101000101000000000000000000 10
00001010000001110001011000000000000000000 11
10010100000001011001110000000000000000000 11

example is equal to four. The numbers of ones in the rows
are not constant. The sum of the ones in the rows is
expressed in the last column of Table 2 and labeled by w,
that means the weight of the cube in the row. The weight w
tells us, how many cubes from the SNF are covered by the
lattice created from the cube in the row. The larger the
weight w, the more likely the cube belong to the minimum
ESOP. These weights w can used to the select the cubes to
find a global minimum of a set of functions. Based on the
weights w, a simple minimization algorithm can defined.

(1) Take the cube (one of the cubes) having the largest
weight w.

(2) Add this cube to the solution ESOP.
(3) Expand this cube to a lattice.
(4) Remove the cubes, covered by this lattice from the SNF.
(5) Add the cubes of the lattice, which not match with the

SNF.
(6) If the SNF is not empty, continue with (1).
This simple greedy algorithm has the disadvantage, that in

each sweep only one locally optimal cube is selected. In the
example of Table 2, there exists one cube (1-1-) = ac,
having the highest weight w = 12. Using this cube an ESOP
of five cubes can found: cdbacdcbacacf ⊕⊕⊕⊕= .
This is not a minimum ESOP, but the cube ac is part of an
expression of the function f using an EXOR operation and

having the smallest literal count: 


 ⋅⊕= dcbaacf .

5.5 Proof of Exactness Using a Tight Lower Bound

The Table 2 includes 16 cubes of the second highest
weight w = 11. All of them can be taken to create an ESOP
of four cubes, shown in Figure 6. Are there four ESOPs
exact minimum ESOPs? From Table 2, we get the number
of cubes in this SNF to be |SNF(f)| = 44 and the size of the
support n = 4. According to Theorem 3, the weak lower
bound can be calculated as follows:

k =  | SNF(f) | / n2 
k =  44 / 42 
k =  44 / 16
k =  2.75
k = 3.
There are four cubes in the ESOP that was found and the

weak lower bound is smaller, namely three. Here the
question arises, are there any ESOPs of three cubes or can
we find a tighter lower bound, to prove that the ESOPs in
Figure 6 is the exact minimum. Again, the second question
can be answered using the SNF.

The proof of Theorem 3 is based on the size of the lattice
n2 . This is the largest value that can be covered by one

cube (one row in Table 2) in the SNF. The weight w of
cubes covered in the SNF is typically smaller. All cubes of

the SNF must be covered by the selected cubes of the
minimum ESOP. It is not possible to find a minimum ESOP
with less cubes than found by the following algorithm.

Algorithm SLB (stronger lower bound)
(1)n_slb = 0; m = |SNF(f)|;
(2)if (m <= 0) n_slb is the stronger lower bound
 end
(3)n_slb = n_slb + 1; m = m – w_max
 exclude cube of the selected w_max
 goto (2)

c d a b c d
0 0 1 1 1 0 - - - -
0 1 1 1 1 0 1 0 0 -
1 1 1 1 0 1 0 - 1 0
1 0 0 0 1 1 1 1 1 1

 0 1 1 0 b
 0 0 1 1 a

(1) abcddcacbaf ⊕⊕⊕= 1

c d a b c d
0 0 1 1 1 0 1 1 - -
0 1 1 1 1 0 - - 1 1
1 1 1 1 0 1 0 - 0 -
1 0 0 0 1 1 1 0 1 0

 0 1 1 0 b
 0 0 1 1 a

(2) dcbacacdabf ⊕⊕⊕=

c d a b c d
0 0 1 1 1 0 - - 0 -
0 1 1 1 1 0 1 0 - -
1 1 1 1 0 1 1 1 1 0
1 0 0 0 1 1 0 - 1 1

 0 1 1 0 b
 0 0 1 1 a

(3) cdadabcbacf ⊕⊕⊕=

c d a b c d
0 0 1 1 1 0 0 - - -
0 1 1 1 1 0 - - 1 0
1 1 1 1 0 1 1 0 1 1
1 0 0 0 1 1 1 1 0 -

 0 1 1 0 b
 0 0 1 1 a

(4) cabcdbadcaf ⊕⊕⊕=

Figure 6. Four exact minimum ESOPs of the function
form Table 2

In the above algorithm w_max is the maximal weight w of
a cube for the SNF. Appling the algorithm to calculate a
stronger lower bound we get in case of the SNF of Table 2
step by step the values of Table 3 and the stronger lower
bound of four. Therefore, the ESOPs listed in Figure 6 are
exact minimum ESOPs and no ESOP with less than four
cubes exist for the SNF(f) given in Table 2.

Table 3. Calculation of a stronger lower bound

n_slb m w_max
0 44
1 44 – 12 = 32 12
2 32 – 11 = 21 11
3 21 – 11 = 10 11
4 10 – 11 = -1 11

5.6 Selection of Preferred Cubes

The final application in this paper is focusing on the
selection of cubes to cover the cubes of the SNF. From the
above approach, it is known that exactly n2 out of n3 cubes
cover a selected cube from the SNF. The introduced
weights w helps evaluate these n2 cubes. Are there a
stronger quality criteria to distinguish between more or less
useful cubes? Yes, according to Theorem 6, there is one
more criterion to get useful knowledge from the SNF.

In order to figure out this property, the SNF of a single
cube is considered. The associated SNF is a lattice, created
by the expansion operation Exp(). Each cube of this lattice
has n edges to distance-1 cubes. Taking the values of the n
variables of one cube of the lattice and the changed values
in the n distance-1 cubes, for each variable, a pair of values
is found. The single cube of the exact minimum ESOP of
this SNF can reconstructed, taking the missing third value
for each variable. Note that this reconstruction is done
starting with any cube of the lattice. Example 2 illustrates
this approach using the cube ba with the lattice in Fig. 4a.

Example 2

Cubes of the lattice of ba are:
((01), (0-), (-1), (--)).

The reconstruction starting from each cube of a lattice
finishes always with the cube ba
cube of

the lattice
distance-1 cubes combinations

of values
reconstructed

basic cube
(01) ((-1),(0-)) {0-},{1-} (10)

(0-) ((--),(01)) {0-},{1-} (10)

(-1) ((01),(--)) {0-},{1-} (10)

(--) ((0-),(-1)) {0-},{1-} (10)

(end of Example 2)

The Example 2 shows how the distributed knowledge
about the cube can be reconstructed. For this reconstruction,
only a part of the lattice is necessary. In fact, this part is a
corner of the lattice, defined by any cube of the lattice and
the associated distance-1 cubes.

The first step to construct the SNF of a function f is the
expansion of the given cubes into lattices. The R-operation
removes some cubes from the lattices, so that the distributed
knowledge about the given cubes is reduced. Corresponding
to the R-operation, in the adjacency graph of the SNF some
edges of the intermediate lattices are removed, too, but
additional edges are introduced. In a way, by means of the
R-operation new corners of the potential lattices are created
and new suitable cubes for the minimal ESOPs are build.
Consider Figure 4c. Each cube associated with a vertex of
the adjacency graph of the SNF can be taken to create a
lattice which defines after collapsing a cube of the minimum
ESOP. Figure 7 illustrates this approach. It is obvious that
the ESOPs found are the exact minimum ESOPs.

Figure 7. Reconstruction of lattices and ESOPs.

(a) SNF(baba ⊕), (b) SNF(ba ⊕), (c) SNF(ba ⊕)

 01

 -1

 0-

 00 00

 -0

 1-

 10

(b)

 01

 -1

 0-

 11 11

 -0

 1-

 10

(c)

 01

 -1

 0-

 -- --

 -0

 1-

 10

(a)

According Theorem 6, the number of distance-1 cubes is
equal to n for each cube of the SNF of function f having
the support of n variables. Thus, each cube of the SNF and
the adjacent distance-1 cubes specify exactly the cube
preferred in a minimal ESOP. Table 4 shows this property
for the same SNF(f) used in Table 2. Value 2 in the matrix
of Table 4 means that the cube of the row is the preferred
cube of a SNF-cube of the column. Note that each column
of Table 4 contains exactly one value 2. Each value 2 in the
matrix of Table 4 replaces one value 1 of the matrix of
Table 2, because the criterion to define a value 2 is stronger
includes the criterion to define the value 1.

Using the preferred cubes, the second weight w2 can be
defined. The weight w2 of a cube c expresses, how many
cubes of the SNF(f) have the cube c as the preferred cube.
In the matrix of Table 4, the weight w2 of a cube associated
to a row is the sum of values two in the row. Observe that
the cube ac, (1-1-) in Table 2 and 4 has the highest
weight w = 12 and the highest weight w2 = 4 as well.
Comparing Figure 6 and Table 4 shows that no cube of the
exact minimum ESOPs of this function has weight w2 = 0.

In general, the larger values of the weight w2 can be
observed for larger values of the weight of w; but the
weights w and w2 are not strongly correlated. For instance
the cube (--00) has the weights w = 9 and w2 = 1 and
the cube (--1-) has the weights w = 10 and w2 = 0.

6 SNF Computation: An Efficient Method

The naive approach to compute the SNF follows the
definition. It takes any ESOP of the given function and
proceeds by expanding each cube using the Exp-operation
and creating the union of these expansions while
eliminating the duplicated cubes by the R-operation. The
number of cubes in SNF is exponential because each
expanded cube contains n2 cubes, where n is the number of
input variables. Managing such a large number of cubes
may be problematic if cubes are processed explicitly, one
cube at a time.

Another approach to compute the SNF is given below. In
this approach, the SNF is represented by Zero-suppressed
binary Decision Diagrams (ZDDs) and computed
recursively from the BDD of the given function without
creating an intermediate ESOP and expanding its cubes.
The reader is referred to [5][6], where the foundations of
ZDD-based cube manipulation are presented.

Let us denote the positive, negative, and don’t-care literals
of Boolean variable x by x{0}, x{1}, and x{-}. In the formulas
below “×” denotes the operation of multiplying out two sets
of cubes and symbols “∪∪∪∪”,“∩∩∩∩”, and “−” denote the set-
theoretic union, intersection, and difference applied to the
cube sets.

Table 4. Preferred cubes defined by a SNF

 a----------------0000000000000000111111111111
 b------0000111111------0000001111000000111111
 c--0011--00--0011--0011--0011--00--0011--0011
 d-1-0010101-0-101-1-001-0-1010101-1-001-1-001
abcd w2
---- 00000000000000000000000001110011000121000111 1
---0 00000000000000000000000011010001001001001001 0
---1 00000000000000000000000010100010001110001210 1
--0- 00000000000000000000000100111100010012010011 1
--00 00000000000000000000001000010100110001120001 1
--01 00000000000000000000001100101000100010100010 0
--1- 00000000000000000000000101001111010100010100 0
--10 00000000000000000000001011000101211000111000 1
--11 00000000000000000000001110001010102100101100 1
-0-- 00000000000000000001110000000011000000000111 0
-0-0 00000000000000000010010000000001000000001001 0
-0-1 00000000000000000011100000000010000000001110 0
-00- 00000000000000000100110000001100000000010011 0
-000 00000000000000001100010000000100000000110001 0
-001 00000000000000001000100000001000000000100010 0
-01- 00000000000000000101000000001221000000010100 2
-010 00000000000000001110000000000101000000111000 0
-011 00000000000000001011000000001010000000101100 0
-1-- 00000000000000000001110001120000000111000000 1
-1-0 00000000000000000010010011010000001001000000 0
-1-1 00000000000000000011100010100000001110000000 0
-10- 00000000000000000100110100210000010011000000 1
-100 00000000000000001100011000010000110001000000 0
-101 00000000000000001000101100100000100010000000 0
-11- 00000000000000000101000101000000010100000000 0
-110 00000000000000001110001021000000111000000000 1
-111 00000000000000001011002110000000101100000000 1
0--- 00000000110001110000000000000000000111000121 1
0--0 00000000010011010000000000000000001001001001 0
0--1 00000000100010100000000000000000001210001110 1
0-0- 00000011000100110000000000000000010011010012 1
0-00 00000001001000010000000000000000120001110001 1
0-01 00000010001100100000000000000000100010100010 0
0-1- 00000011110101000000000000000000010100010100 0
0-10 00000001011011000000000000000000111000211000 1
0-11 00000010101110000000000000000000101100102100 1
00-- 00011100000001120000000000000000000000000111 1
00-0 00100100000011010000000000000000000000001001 0
00-1 00111000000010100000000000000000000000001110 0
000- 01001100000100210000000000000000000000010011 1
0000 11000100001000010000000000000000000000110001 0
0001 10001000001100100000000000000000000000100010 0
001- 01010000000101000000000000000000000000010100 0
0010 11100000001021000000000000000000000000111000 1
0011 10110000002110000000000000000000000000101100 1
01-- 00011100110000000000000000000000000111000000 0
01-0 00100100010000000000000000000000001001000000 0
01-1 00111000100000000000000000000000001110000000 0
010- 01001111000000000000000000000000010011000000 0
0100 11000101000000000000000000000000110001000000 0
0101 10001010000000000000000000000000100010000000 0
011- 01010012210000000000000000000000010100000000 2
0110 11100001010000000000000000000000111000000000 0
0111 10110010100000000000000000000000101100000000 0
1--- 00000000110001110000000001110011000000000000 0
1--0 00000000010012010000000012010001000000000000 2
1--1 00000000100010100000000010100010000000000000 0
1-0- 00000011000100110000000100111100000000000000 0
1-00 00000001001000010000001000010100000000000000 0
1-01 00000010001200100000001200101000000000000000 2
1-1- 00000021120101000000000101002112000000000000 4
1-10 00000001011011000000001011000101000000000000 0
1-11 00000010101110000000001110001010000000000000 0
10-- 00012100000001110001110000000011000000000000 1
10-0 00100100000011010010010000000001000000000000 0
10-1 00111000000010100012100000000010000000000000 1
100- 01001200000100110100110000001100000000000000 1
1000 11000100001000011200010000000100000000000000 1
1001 10001000001100101000100000001000000000000000 0
101- 01010000000101000101000000001111000000000000 0
1010 21100000001011001110000000000101000000000000 1
1011 10210000001110001011000000001010000000000000 1
11-- 00011100110000000001210001110000000000000000 1
11-0 00100100010000000010010011010000000000000000 0
11-1 00121000100000000011100010100000000000000000 1
110- 01001111000000000100120100110000000000000000 1
1100 12000101000000001100011000010000000000000000 1
1101 10001010000000001000101100100000000000000000 0
111- 01010011110000000101000101000000000000000000 0
1110 11100001010000002110001011000000000000000000 1
1111 10110010100000001021001110000000000000000000 1

The recursive computation of the SNF is based on the
following properties:

Property 1. Let functions f and g depend on the same
input variables. Let fSNF and gSNF be the SNFs of f and g.
The SNF of f ⊕ g is computed by taking the union of the
SNFs for functions f and g and removing the duplicated
cubes:

SNF(f ⊕ g) = (fSNF ∪∪∪∪ gSNF) − (fSNF ∩∩∩∩ gSNF). (21)

Property 2. Let FSNF be the SNF of function f and x be a
Boolean variable that is not currently in the support of f.
The SNFs of functions x{1} & f, x{0} & f, and x{-} & f are:

SNF(x{1} & f) = (x{0} × fSNF) ∪ (x{-} × fSNF), (22)

SNF(x{0} & f) = (x{1} × fSNF) ∪ (x{-} × fSNF), (23)

SNF(x{-} & f) = (x{0} × fSNF) ∪ (x{1-} × fSNF), (24)

Theorem. Let SNFs of the negative and positive cofactors
be f 0SNF and f 1SNF. Then the SNF of function f is:

SNF(f) = SNF(x{0} & [f 0SNF − f 2SNF])

 ∪ SNF(x{1} & [f 1SNF − f 2SNF])

 ∪ SNF(x{-} & f 2SNF), (25)

where

f 2SNF = f 0SNF ∩ f 1SNF. (26)

Proof. If the SNFs of the two cofactors are known, it is
possible to find the common cubes in these SNFs (f 2

SNF).
These cubes correspond to the intersection of cofactors in
the given function and go with the empty literal (x{-}) in the
resulting SNF. These cubes should be subtracted from the
cubes in f 0

SNF and f 1
SNF to get the cubes, which go with the

negative and positive literals (x{0} and x{1}). Finally, all the
three groups of cubes should be added together to create the
SNF of the given function. Q.E.D.

The algorithm shown in Figure 8 implements the above
formula in a bottom-up traversal of the BDD representing
the function. If the standard decision diagram caching
techniques are used to store the intermediate results of
computation, the complexity of this algorithm is
proportional to the number of nodes in the BDD.

The procedure takes two arguments, the function and a set
of variables that should appear in the cubes of SNF. Notice
that the function may not explicitly depend on some of
them.

The terminal cases are trivial. If the function is a constant
zero, the SNF is a empty cube set. If no variables are left in
the variable set, the function should be constant 1 and the
tautology cube is returned.

The fine point of this algorithm is the need to keep track
of variables missing in the support of the original function
or intermediate subfunctions. These variables are don’t-
cares on the BDD paths. Although they do not contribute
nodes to the BDD, they add new cubes to SNF (and new
nodes to the ZDD representing the SNF) according to
formula for SNF(x{-} & f) in Property 2. This situation is
taken care of in the first part of the conditional statement.
The pseudo-code after “else” implements formula from the
Theorem 7 and property 2.
cubeset SNF(func F, varset V)
{
 if (F = 0) return ∅;
 if (V = ∅) {assert(F = 1); return {1}};
 x = Var(V);
 if (x ∉ support(F)) {
 C = SNF(F, V-x);
 R = (x{0}× C) ∪ (x{1}× C);
 }
 else /* if (x ∉ support(F)) */ {
 (F0, F1) = Cofactors(F, x);
 C0 = SNF(F0, V-x);
 C1 = SNF(F1, V-x);
 S2 = C0 ∩ C1;
 S0 = C0 − S2;
 S1 = C1 − S2;
 R0 = (x

{1}× S0) ∪ (x{-}× S0);
 R1 = (x

{0}× S1) ∪ (x{-}× S1);
 R2 = (x

{0}× S2) ∪ (x{1}× S2);
 R = R0 ∪ R1 ∪ R2;
 }
 return R;
}

Figure 8. Algorithm for implicit SNF computation.

8 Experimental Results

Table 5 shows experimental results of computing SNF for
single-output functions. “Name” is the name of the
benchmark. “Out” is the primary output number, for which
SNF is computed. “Ins” is the number of primary inputs of
the function (some of them may not belong to the support of
the given primary output). Column “|SNF|” gives the
number of cubes in SNF. Columns NBDD and NSNF give the
number of nodes in the BDD of the given function and in
the ZDD of SNF. “Time” shows the time needed to
compute SNF on a Pentium 300Mhz PC.

Table 5. Experimental result of computing SNF for
selected benchmark functions.

name Out ins |SNF| NBDD NSNF time, s |ESOP| |SOP| |primes|
9sym 1 9 9660 25 146 0.01 51 84 1680
alu4 5 14 396824 151 1921 0.11 52 181 381
T481 1 16 533536 202 744 0.05 13 481 481
cordic 1 23 1.1e109 41 484 0.01 771 143 203
dalu 1 75 1.6e1024 107 4529 0.06 96 180 742

To get the sense of how large in the number of cubes in
SNF, Table 5 lists the cardinality of three other important
cubes sets. Column “|ESOP|” gives the number of cubes in
an ESOP minimized heuristically by Exorcism-4 [7].
Column “|SOP|” gives the number of cubes in the exact
minimum SOP, and column “|primes|” gives the number of
all prime implicants of the given function.

The second set of experimental results is summarized in
Table 6. We generated Boolean functions of a given support
size (n) in such a way that each pair of cubes is orthogonal.
The number of orthogonal cubes, |Orth|, are listed in the
second column. The set of orthogonal cubes of the function
can be connected by EXOR- or OR-operation without
changing of the function. The column |SNF| gives the
number of the cubes in the SNF. According to Theorem 3,
the value of the weak lower bound has been computed and
listed in column WLB. Using the algorithm SLB given in
Section 5, a stronger lower bound has been calculated. The
column SLB in Table 6 shows that this lower bound is
significantly larger. The last column of Table 6 gives the
number of cubes calculated by a simple minimization
algorithm based only on the weight w. The comparison to
the column SLB shows that in all cases the exact minimum
ESOPs has been found.

Table 6. Experimental result of computing
exact minimum ESOPs for random functions.

n |Orth| |SNF| WLB SLB |EEMIN|
4 4 38 3 3 3
5 4 86 3 4 4
5 10 126 4 6 6
6 17 316 5 8 8
6 13 320 6 8 8
7 19 890 7 11 11
7 18 718 6 9 9
8 12 1822 8 11 11

8 Conclusions

We introduced a new canonical representation for
completely specified Boolean functions called Specialized
Normal Form (SNF). The SNF has a number of remarkable
properties, in particular, it is useful for creating a new
approach to exact ESOP minimization, which is not limited
by the number of variables in the function.

We propose an efficient algorithm to compute the SNF
and an illustrative algorithm for exact ESOP minimization.
Even though the current version of the algorithm has
complexity exponential in the number of input variables, it
has successfully found exact minima for functions of up to
nine variables.

Another possible use of SNF is to prove exactness of
ESOPs computed by heuristic algorithms.

Our future work is focusing on extracting more
information from the SNF in order to find all exact
minimum ESOPs of the given function without any search.
Another possible improvement is to develop a exact ESOP
minimization algorithm with complexity proportional to the
size of the ZDD representation of the SNF rather then the
number of cubes in SNF.

9 References

[1] M. Escobar, F. Somenzi. Synthesis of AND-EXOR
Expressions via Satisfiability. Proc. of IWLS’95, Section 8,
pp. 1-10.

[2] M. Helliwell, M.A. Perkowski. A Fast Algorithm to
Minimize Multi-Output Mixed-Polarity Generalized Reed-
Muller Forms. Proc. DAC’88. pp. 427-432.

[3] N. Koda, T. Sasao, LP Characteristic Vector for Logic
Functions. Proc. of IFIP WG 10.5 Workshop on Applications
of the Reed-Muller Expansion in Circuit Design, 1993,
Wilhelm Schickard-Institute fuer Informatik, pp. 99-108.

[4] N. Koda, T. Sasao. An upper bound on the number of
products in minimum ESOPs. Proc. of IFIP WG 10.5
Workshop on Applications of the Reed-Muller Expansion in
Circuit Design, 1995, Chiba, Japan, pp. 94-101.

[5] S. Minato. Binary Decision Diagrams and Applications for
VLSI CAD. Kluwer 1995.

[6] S. Minato. Fast Factorization Method for Implicit Cube
Cover Representation. IEEE Trans. CAD, Vol. 15, No 4,
April 1996, pp. 377-384.

[7] A. Mishchenko, M. Perkowski. Fast Heuristic Minimization
of Exclusive-Sums-of-Products. Submitted to 5th
International Reed-Muller Workshop, Starkville, Mississippi,
August, 2001.

[8] H. Ochi. An Exact Minimization of AND-EXOR Expressions
Using Encoded MRCF. IEICE Trans. Fundamentals, Vol.
E79-A, No. 12, December 1996, pp. 2131-2133.

[9] M. A. Perkowski, M. Helliwell, P. Wu. Minimization of
Multiple-Output Mixed-Radix Exclusive Sums of Produces
for Incompletely Specified Functions. Proc. ISMVL’89, pp.
256-263.

[10] T. Sasao, An Exact Minimization of AND-EXOR
Expressions Using BDDs. Proc. of IFIP WG 10.5 Workshop
on Applications of the Reed-Muller Expansion in Circuit
Design, 1993, Wilhelm Schickard-Institute fuer Informatik,
pp. 91-98.

[11] T. Sasao, ed., Representation of Discrete Functions, Kluwer
Academic Publishers, May 1996.

[12] B. Steinbach,: XBOOLE - A Toolbox for Modelling,
Simulation, and Analysis of Large Digital Systems. System
Analysis and Modelling Simulation, Gordon & Breach
Science Publishers, Vol. 9, Number 4, 1992, pp. 297 – 312.

	1 Introduction
	2 Preliminaries
	3 Definition of SNF
	4 Properties of SNF
	5 Applications of SNF
	5.1 	Overview€of the Basic Strategy
	5.2 	An Approach to Exact ESOP Minization Using Cube Grouping
	5.3	Proof of Exactness Using a Loose Lower Bound
	5.4	An Approach to Exact ESOP Minization Using Coverage Matrix
	5.5	Proof of Exactness Using a Tight Lower Bound
	5.6	Selection of Preferred Cubes

	6 SNF Computation: An Efficient Method
	8 Experimental Results
	8 Conclusions
	9 References

