Logic Synthesis for Quantum Computing Mathias Soeken, Alan Mishchenko, Luca Amarù, Robert K. Brayton Integrated Systems Laboratory, EPFL, Switzerland lsi.epfl.ch • msoeken.github.io

Quantum computing is getting real

- \triangleright 17-qubit quantum computer from IBM based on superconducting qubits (16-qubit version available via cloud service)
- ▶ 9-qubit quantum computer from Google based on superconducting circuits
- \triangleright 5-qubit quantum computer at University of Maryland based on ion traps
- \triangleright Microsoft is investigating topological quantum computers
- \blacktriangleright Intel is investigating silicon-based qubits

Quantum computing is getting real

- \triangleright 17-qubit quantum computer from IBM based on superconducting qubits (16-qubit version available via cloud service)
- \triangleright 9-qubit quantum computer from Google based on superconducting circuits
- \triangleright 5-qubit quantum computer at University of Maryland based on ion traps
- \triangleright Microsoft is investigating topological quantum computers
- \blacktriangleright Intel is investigating silicon-based qubits
- \triangleright "Quantum supremacy" experiment may be possible with ≈ 50 qubits (45-qubit simulation has been performed classically)
- \triangleright Smallest practical problems require \approx 100 qubits

1. Quantum computers process qubits not bits

1. Quantum computers process qubits not bits

- 1. Quantum computers process qubits not bits
- 2. All qubit operations, called quantum gates, must be reversible

- 1. Quantum computers process qubits not bits
- 2. All qubit operations, called quantum gates, must be reversible

- 1. Quantum computers process qubits not bits
- 2. All qubit operations, called quantum gates, must be reversible
- 3. Standard gate library for today's physical quantum computers is non-trivial

- 1. Quantum computers process qubits not bits
- 2. All qubit operations, called quantum gates, must be reversible
- 3. Standard gate library for today's physical quantum computers is non-trivial
- 4. Circuit is not allowed to produce intermediate results, called garbage qubits

Multiple-controlled Toffoli

Multiple-controlled Toffoli

Quantum gates

- ► Qubit is vector $|\varphi\rangle = (\begin{array}{c} \alpha \\ \beta \end{array})$ with $|\alpha^2| + |\beta^2| = 1$.
- \blacktriangleright Classical 0 is $|0\rangle=(\frac{1}{0});$ Classical 1 is $|1\rangle=(\frac{0}{1})$

Quantum gates

► Qubit is vector $|\varphi\rangle = (\begin{array}{c} \alpha \\ \beta \end{array})$ with $|\alpha^2| + |\beta^2| = 1$. \blacktriangleright Classical 0 is $|0\rangle=(\frac{1}{0});$ Classical 1 is $|1\rangle=(\frac{0}{1})$ $|\varphi_1\rangle$ $|\varphi_2\rangle$ $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} |\varphi_1 \varphi_2\rangle$ CNOT $\ket{\varphi}\ket{\overline{H}}\ket{\frac{1}{\sqrt{2}}\left(\begin{smallmatrix} 1 & 1 \ 1 & -1 \end{smallmatrix}\right)\ket{\varphi}} \qquad \ket{\varphi}\ket{\overline{\mathcal{T}}}\ket{\left(\begin{smallmatrix} 1 & 0 \ 0 & e^{\frac{i}{2}} \end{smallmatrix}\right)}$ Hadamard $\frac{1}{0}$ $\frac{0}{e^{\frac{i\pi}{4}}}$ $\Big)$ $\ket{\varphi}$ τ

Composing quantum gates

Applying a quantum gate to a quantum state (matrix-vector multiplication)

$$
|\varphi\rangle = \left(\begin{matrix} \alpha \\ \beta \end{matrix}\right) - \boxed{U} - U|\varphi\rangle
$$

Composing quantum gates

 \triangleright Applying a quantum gate to a quantum state (matrix-vector multiplication)

$$
|\varphi\rangle = \left(\begin{matrix} \alpha \\ \beta \end{matrix}\right) - \boxed{U} - U |\varphi\rangle
$$

 \triangleright Applying quantum gates in sequence (matrix product)

$$
|\varphi\rangle=(\begin{smallmatrix}\alpha\\\beta\end{smallmatrix})\,\textcolor{blue}{-}\overline{U_1}\textcolor{blue}{-}\overline{U_2}\textcolor{red}{-}\,(\,U_2\,U_1)|\varphi\rangle
$$

Composing quantum gates

 \triangleright Applying a quantum gate to a quantum state (matrix-vector multiplication)

$$
|\varphi\rangle = \left(\begin{matrix} \alpha \\ \beta \end{matrix}\right) - \boxed{U} - U |\varphi\rangle
$$

 \triangleright Applying quantum gates in sequence (matrix product)

$$
|\varphi\rangle=(\begin{smallmatrix}\alpha\\\beta\end{smallmatrix})\,\textcolor{blue}{-}\overline{U_1}\textcolor{blue}{-}\overline{U_2}\textcolor{red}{-}\,(\,U_2\,U_1)|\varphi\rangle
$$

 \triangleright Applying quantum gates in parallel (Kronecker product)

$$
\begin{array}{c}\left|\varphi_{1}\right\rangle =\left(\begin{smallmatrix}\alpha_{1}\\\beta_{1}\end{smallmatrix}\right)\,\displaystyle{\frac{-U_{1}}{U_{2}}}\atop\left|\varphi_{2}\right\rangle =\left(\begin{smallmatrix}\alpha_{2}\\ \beta_{2}\end{smallmatrix}\right)\,\displaystyle{\frac{-U_{2}}{U_{2}}}\end{array}\right\}(\mathit{U}_{1}\otimes\mathit{U}_{2})\vert\varphi_{1}\varphi_{2}\rangle
$$

Mapping Toffoli gates

Mapping Toffoli gates

Mapping Toffoli gates

 \bullet Costs are number of qubits and number of T gates

Goal: Automatically synthesizing large Boolean functions into Clifford+T networks of reasonable quality (qubits and T -count)

Goal: Automatically synthesizing large Boolean functions into Clifford + T networks of reasonable quality (qubits and T -count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

1. Represent input function as classical logic network and optimize it

Goal: Automatically synthesizing large Boolean functions into Clifford + T networks of reasonable quality (qubits and T -count)

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network

Goal: Automatically synthesizing large Boolean functions into Clifford + T networks of reasonable quality (qubits and T -count)

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate k-LUT network into reversible network with k -input single-target gates

Goal: Automatically synthesizing large Boolean functions into Clifford + T networks of reasonable quality (qubits and T -count)

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate k-LUT network into reversible network with k -input single-target gates
- 4. Map single-target gates into Clifford + T networks

Goal: Automatically synthesizing large Boolean functions into Clifford + T networks of reasonable quality (qubits and T -count)

- conv. alg.
- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
	- 3. Translate k-LUT network into reversible network with k -input single-target gates
	- 4. Map single-target gates into Clifford + T networks

conv. alg.

new alg.

Goal: Automatically synthesizing large Boolean functions into Clifford + T networks of reasonable quality (qubits and T -count)

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
	- 3. Translate k-LUT network into reversible network with k -input single-target gates
- 4. Map single-target gates into Clifford + T networks

conv. alg.

new alg.

Goal: Automatically synthesizing large Boolean functions into Clifford + T networks of reasonable quality (qubits and T -count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

- 1. Represent input function as classical logic affects #qubits network and optimize it
	- 2. Map network into k-LUT network
	- 3. Translate k-LUT network into reversible network with k-input single-target gates
- 4. Map single-target gates into Clifford + T networks

affects #qubits

conv. alg.

new alg.

Goal: Automatically synthesizing large Boolean functions into Clifford + T networks of reasonable quality (qubits and T -count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

- 1. Represent input function as classical logic network and optimize it
- 2. Map network into k-LUT network
- 3. Translate k-LUT network into reversible network with k -input single-target gates
- 4. Map single-target gates into Clifford + T networks

affects #qubits

affects #qubits

LUT mapping

- Realizing a logic function or logic circuit in terms of a k -LUT logic network
- \triangleright A k-LUT is any Boolean function with at most k inputs
- \triangleright One of the most effective methods used in logic synthesis

LUT mapping

- \triangleright Realizing a logic function or logic circuit in terms of a k -LUT logic network
- \triangleright A k-LUT is any Boolean function with at most k inputs
- \triangleright One of the most effective methods used in logic synthesis
- \triangleright Typical objective functions are size (number of LUTs) and depth (longest path from inputs to outputs)
- ▶ Open source software ABC can generate industrial-scale mappings

LUT mapping

- \triangleright Realizing a logic function or logic circuit in terms of a k-LUT logic network
- \triangleright A k-LUT is any Boolean function with at most k inputs
- \triangleright One of the most effective methods used in logic synthesis
- \triangleright Typical objective functions are size (number of LUTs) and depth (longest path from inputs to outputs)
- ▶ Open source software ABC can generate industrial-scale mappings
- \triangleright Can be used as technology mapper for FPGAs (e.g., when $k < 7$

k-LUT network to reversible network

$k-1$ UT network to reversible network

 \blacksquare k-LUT corresponds to k-controlled single-target gate

$k-1$ UT network to reversible network

 \blacksquare k-LUT corresponds to k-controlled single-target gate

 \blacksquare k-LUT corresponds to k-controlled single-target gate

 \blacksquare k-LUT corresponds to k-controlled single-target gate

 \blacksquare k-LUT corresponds to k-controlled single-target gate

- \blacksquare k-LUT corresponds to k-controlled single-target gate
- **P** non-output LUTs need to be uncomputed

- \blacksquare k-LUT corresponds to k-controlled single-target gate
- **P** non-output LUTs need to be uncomputed

- \blacksquare k-LUT corresponds to k-controlled single-target gate
- **P** non-output LUTs need to be uncomputed

- \blacksquare k-LUT corresponds to k-controlled single-target gate
- non-output LUTs need to be uncomputed
- \triangleright order of LUT traversal determines number of ancillas

- \cdot k-LUT corresponds to k-controlled single-target gate
- non-output LUTs need to be uncomputed
- \triangleright order of LUT traversal determines number of ancillas
- \triangleright maximum output cone determines minimum number of ancillas

- \blacksquare k-LUT corresponds to k-controlled single-target gate
- non-output LUTs need to be uncomputed
- \triangleright order of LUT traversal determines number of ancillas
- \triangleright maximum output cone determines minimum number of ancillas
- \odot fast mapping that generates a fixed-space skeleton for subnetwork synthesis

Single-target gate LUT mapping

 \blacktriangleright Mapping problem: Given a single-target gate $T_f(X, x_t)$ (with control function f, control lines X, and target line x_t), a set of clean ancillas X_c , and a set of dirty ancillas X_d , find the best mapping into a Clifford + T network, such that all ancillas are restored to their original value.

 \blacktriangleright Direct

- \blacktriangleright Direct
	- \triangleright Map each control function using ESOP based synthesis

\blacktriangleright Direct

- \triangleright Map each control function using ESOP based synthesis
- \blacktriangleright Does not use ancillae

- \blacktriangleright Direct
	- \triangleright Map each control function using ESOP based synthesis
	- \blacktriangleright Does not use ancillae
- ► LUT-based

- \blacktriangleright Direct
	- \triangleright Map each control function using ESOP based synthesis
	- \triangleright Does not use ancillae
- \blacktriangleright I UT-based
	- \triangleright Map control function into smaller LUT network

- \blacktriangleright Direct
	- \triangleright Map each control function using ESOP based synthesis
	- \triangleright Does not use ancillae
- \blacktriangleright I UT-based
	- \triangleright Map control function into smaller LUT network
	- \triangleright Map small LUTs into pre-computed optimum quantum circuits

$$
f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]
$$

= $\bar{x}_4 \bar{x}_3 x_2 \vee \bar{x}_4 x_3 x_1 \vee x_4 \bar{x}_3 x_2 x_1 \vee x_4 x_3 \bar{x}_2 x_1$

$$
f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]
$$

= $\bar{x}_4 \bar{x}_3 x_2 \vee \bar{x}_4 x_3 x_1 \vee x_4 \bar{x}_3 x_2 x_1 \vee x_4 x_3 \bar{x}_2 x_1$
= $x_4x_2x_1 \oplus x_3x_1 \oplus \bar{x}_4 \bar{x}_3 x_2$

$$
f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]
$$

= $\bar{x}_4\bar{x}_3x_2 \lor \bar{x}_4x_3x_1 \lor x_4\bar{x}_3x_2x_1 \lor x_4x_3\bar{x}_2x_1$
= $x_4x_2x_1 \oplus x_3x_1 \oplus \bar{x}_4\bar{x}_3x_2$

Each multiple-controlled Toffoli gate is mapped to Clifford+ T

$$
f(x_1, x_2, x_3, x_4) = [(x_4x_3x_2x_1)_2 \text{ is prime}]
$$

= $\bar{x}_4\bar{x}_3x_2 \lor \bar{x}_4x_3x_1 \lor x_4\bar{x}_3x_2x_1 \lor x_4x_3\bar{x}_2x_1$
= $x_4x_2x_1 \oplus x_3x_1 \oplus \bar{x}_4\bar{x}_3x_2$

Each multiple-controlled Toffoli gate is mapped to Clifford + T ESOP minimization tools (e.g., exorcism) optimize for cube count

LUT-based single-target gate mapping

LUT-based single-target gate mapping

LUT-based single-target gate mapping

fourteen

Exploiting Boolean function classification

- \triangleright Operations do not influence T-count of the quantum circuit
- All optimum circuits in an equivalence class have the same T-count

Classification of all 4-input functions

- \blacktriangleright All 65,356 4-input functions collapse into only 8 equivalence classes
- \triangleright Classification simple by comparing coefficients in the function's Walsh spectrum

Classification of all 4-input functions

- \blacktriangleright All 65,356 4-input functions collapse into only 8 equivalence classes
- \triangleright Classification simple by comparing coefficients in the function's Walsh spectrum

Classification of all 4-input functions

- \triangleright All 65,356 4-input functions collapse into only 8 equivalence classes (all 4,294,967,296 5-input functions collapse into 48 classes)
- \triangleright Classification simple by comparing coefficients in the function's Walsh spectrum (and auto-correlation spectrum)

Trading off size and space with LUT size

Synthesizing a 16-bit floating point adder with different LUT sizes

Experimental results: Quantum floating point library

- Existing implementations of 16-bit, 32-bit, and 64-bit floating point components
- **Q** quantumfpl.stationg.com
	- \triangleright Optimization using ABC (academic, open source)
	- \triangleright LHRS implemented in RevKit (academic, open source)

Experimental results: Quantum floating point library

- Existing implementations of 16-bit, 32-bit, and 64-bit floating point components
- **Q** quantumfpl.stationg.com
	- ▶ Optimization using ABC (academic, open source)
	- \triangleright LHRS implemented in RevKit (academic, open source)

```
revkit> read_aiger add_32.aig
revkit> ps -a
[i] add 32: i/\circ = 64 / 32 and = 1763 lev = 137
revkit> lhrs -k 16
[i] run-time: 9.32 secs
revkit> ps -c
Lines: 368
Gates: 6141
T-count: 256668
Logic qubits: 368
```
The LHRS ecosystem

arxiv.org/abs/1706.02721

DELHRS

Mapping into LUTs

Aligning LUTs as single-target gates

Mapping single-target gates

The LHRS ecosystem

arxiv.org/abs/1706.02721

The LHRS ecosystem

arxiv.org/abs/1706.02721

Summary

 \triangleright LHRS is the first scalable synthesis algorithm that allows reasonable space/time trade-offs

Summary

- \blacktriangleright LHRS is the first scalable synthesis algorithm that allows reasonable space/time trade-offs
- \triangleright Valuable tool to estimate the cost of future quantum algorithms

Summary

- \blacktriangleright LHRS is the first scalable synthesis algorithm that allows reasonable space/time trade-offs
- \triangleright Valuable tool to estimate the cost of future quantum algorithms
- \triangleright Step 1: Mapping to efficiently partition large function into subfunctions (determines qubits)
Summary

- \triangleright LHRS is the first scalable synthesis algorithm that allows reasonable space/time trade-offs
- \triangleright Valuable tool to estimate the cost of future quantum algorithms
- \triangleright Step 1: Mapping to efficiently partition large function into subfunctions (determines qubits)
- \triangleright Step 2: High effort methods to map subfunctions into $Clifford+T$ networks

Summary

- \triangleright LHRS is the first scalable synthesis algorithm that allows reasonable space/time trade-offs
- \triangleright Valuable tool to estimate the cost of future quantum algorithms
- \triangleright Step 1: Mapping to efficiently partition large function into subfunctions (determines qubits)
- \triangleright Step 2: High effort methods to map subfunctions into $Clifford+T$ networks
- \triangleright Most steps in the algorithm are (still) performed using conventional algorithms

Logic Synthesis for Quantum Computing Mathias Soeken, Alan Mishchenko, Luca Amarù, Robert K. Brayton Integrated Systems Laboratory, EPFL, Switzerland lsi.epfl.ch • msoeken.github.io

