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Quantum computing is getting real

I 17-qubit quantum computer from IBM based on
superconducting qubits (16-qubit version available via cloud
service)

I 9-qubit quantum computer from Google based on
superconducting circuits

I 5-qubit quantum computer at University of Maryland based on
ion traps

I Microsoft is investigating topological quantum computers
I Intel is investigating silicon-based qubits

I “Quantum supremacy” experiment may be possible with ≈50
qubits (45-qubit simulation has been performed classically)

I Smallest practical problems require ≈100 qubits
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Challenges in logic synthesis for quantum computing

1. Quantum computers process qubits not bits

2. All qubit operations, called quantum gates, must be reversible
3. Standard gate library for today’s physical quantum computers

is non-trivial
4. Circuit is not allowed to produce intermediate results, called

garbage qubits
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Reversible gates
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Quantum gates

I Qubit is vector |ϕ〉 = ( α
β ) with |α2|+ |β2| = 1.

I Classical 0 is |0〉 = ( 1
0 ); Classical 1 is |1〉 = ( 0

1 )
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Composing quantum gates

I Applying a quantum gate to a quantum state (matrix-vector
multiplication)

|ϕ〉 = ( α
β ) U U|ϕ〉

I Applying quantum gates in sequence (matrix product)

|ϕ〉 = ( α
β ) U1 U2 (U2U1)|ϕ〉

I Applying quantum gates in parallel (Kronecker product)

|ϕ1〉 =
( α1
β1

)
|ϕ2〉 =

( α2
β2

) U1

U2
(U1 ⊗ U2)|ϕ1ϕ2〉
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Mapping Toffoli gates
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Ç Costs are number of qubits and number of T gates
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LUT-based hierarchical reversible synthesis
Goal: Automatically synthesizing large Boolean functions into
Clifford+T networks of reasonable quality (qubits and T -count)

Algorithm: LUT-based hierarchical reversible synthesis (LHRS)

1. Represent input function as classical logic
network and optimize it

2. Map network into k-LUT network
3. Translate k-LUT network into reversible

network with k-input single-target gates
4. Map single-target gates into Clifford+T

networks

co
nv
.
al
g.

ne
w
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g.
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#
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#
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LUT mapping

I Realizing a logic function or logic circuit in terms of a k-LUT
logic network

I A k-LUT is any Boolean function with at most k inputs
I One of the most effective methods used in logic synthesis

I Typical objective functions are size (number of LUTs) and
depth (longest path from inputs to outputs)

I Open source software ABC can generate industrial-scale
mappings

I Can be used as technology mapper for FPGAs (e.g., when
k ≤ 7)



nine

LUT mapping

I Realizing a logic function or logic circuit in terms of a k-LUT
logic network

I A k-LUT is any Boolean function with at most k inputs
I One of the most effective methods used in logic synthesis
I Typical objective functions are size (number of LUTs) and

depth (longest path from inputs to outputs)
I Open source software ABC can generate industrial-scale

mappings

I Can be used as technology mapper for FPGAs (e.g., when
k ≤ 7)



nine

LUT mapping

I Realizing a logic function or logic circuit in terms of a k-LUT
logic network

I A k-LUT is any Boolean function with at most k inputs
I One of the most effective methods used in logic synthesis
I Typical objective functions are size (number of LUTs) and

depth (longest path from inputs to outputs)
I Open source software ABC can generate industrial-scale

mappings
I Can be used as technology mapper for FPGAs (e.g., when

k ≤ 7)



ten

k-LUT network to reversible network
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U k-LUT corresponds to k-controlled single-target gate
I non-output LUTs need to be uncomputed
I order of LUT traversal determines number of ancillas
I maximum output cone determines minimum number of ancillas
� fast mapping that generates a fixed-space skeleton for

subnetwork synthesis
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Single-target gate LUT mapping
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I Mapping problem: Given a single-target gate Tf (X , xt) (with
control function f , control lines X , and target line xt), a set of
clean ancillas Xc, and a set of dirty ancillas Xd, find the best
mapping into a Clifford+T network, such that all ancillas are
restored to their original value.
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Single-target gate mapping algorithms

I Direct

I Map each control function using ESOP based synthesis
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I LUT-based

I Map control function into smaller LUT network
I Map small LUTs into pre-computed optimum quantum circuits
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Direct mapping

f (x1, x2, x3, x4) = [(x4x3x2x1)2 is prime]

= x̄4x̄3x2 ∨ x̄4x3x1 ∨ x4x̄3x2x1 ∨ x4x3x̄2x1

= x4x2x1 ⊕ x3x1 ⊕ x̄4x̄3x2

x1
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x4

0

f

=

x1
x2
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x4

f (x1, x2, x3, x4)

I Each multiple-controlled Toffoli gate is mapped to Clifford+T

� ESOP minimization tools (e.g., exorcism) optimize for cube
count
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LUT-based single-target gate mapping
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LUT-based single-target gate mapping
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Exploiting Boolean function classification
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I Operations do not influence T -count of the quantum circuit
� All optimum circuits in an equivalence class have the same

T -count



sixteen

Classification of all 4-input functions

I All 65,356 4-input functions collapse into only 8 equivalence
classes

(all 4,294,967,296 5-input functions collapse into 48
classes)

I Classification simple by comparing coefficients in the function’s
Walsh spectrum

(and auto-correlation spectrum)
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Trading off size and space with LUT size
Synthesizing a 16-bit floating point adder with different LUT sizes

4 6 8 10 12 14 16 18 20
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LUT size k

qubits
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4 · 105
qubits

T gates (direct)
T gates (LUT-based)
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Experimental results: Quantum floating point library

I Existing implementations of 16-bit, 32-bit, and 64-bit floating
point components

� quantumfpl.stationq.com
I Optimization using ABC (academic, open source)
I LHRS implemented in RevKit (academic, open source)

revkit> read_aiger add_32.aig
revkit> ps -a
[i] add_32: i/o = 64 / 32 and = 1763 lev = 137
revkit> lhrs -k 16
[i] run-time: 9.32 secs
revkit> ps -c
Lines: 368
Gates: 6141
T-count: 256668
Logic qubits: 368
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The LHRS ecosystem
 arxiv.org/abs/1706.02721

Mapping into LUTs

Aligning LUTs as single-target gates

Mapping single-target gates

2 LHRS

let gaussian a b c d x =
let den = (x - b) * (x - b)
let nom = -2.0f * c * c
a * exp (den / nom)

/ program

LIQUi |〉 ProjectQ Quipper
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Summary

I LHRS is the first scalable synthesis algorithm that allows
reasonable space/time trade-offs

I Valuable tool to estimate the cost of future quantum
algorithms

I Step 1: Mapping to efficiently partition large function into
subfunctions (determines qubits)

I Step 2: High effort methods to map subfunctions into
Clifford+T networks

I Most steps in the algorithm are (still) performed using
conventional algorithms
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