
Don’t-Care Computation using k-clause Approximation

K. L. McMillan
Cadence Berkeley Labs

Abstract

Computation of the satisfiability and observability
care sets for a sub-circuit in a Boolean network
is essentially a problem of quantifier elimination in
propositional logic. In this paper, we introduce a
method of approximate quantifier elimination that
computes the strongest over-approximation express-
ible using clauses of a given length. The method uses
a Boolean satisfiability solver in a machine-learning
framework. Experiments using the SIS system show
that the method can produce useful care set infor-
mation in cases where earlier approaches are pro-
hibitively costly.

1 Introduction

Environmental don’t-care information is an impor-
tant source of flexibility in optimizing two-level logic
functions within a larger circuit. The care set of a
sub-circuit is the set of valuations of the sub-circuit’s
inputs that are produced by some primary input pat-
tern, such that the sub-circuit’s output is observable
at the circuit primary outputs. Computing care sets
is essentially a problem of image computation. We
can characterize by a Boolean formula the set of pri-
mary input patterns that make a given sub-circuit
output observable. We will call this the observability
condition. The care set is the image of the observ-
ability condition with respect to the sub-circuit input
function [9].

The problem of computing the image of a set with
respect to a (vector) Boolean function has been ex-
tensively studied [3, 2, 1, 6]. Existing methods derive
primarily from model checking applications and are
based either on Binary Decision Diagrams (BDD’s) or
Boolean satisfiability (SAT) solvers. Despite consid-
erable study, however, the computation is still pro-
hibitively expensive for large circuits and for sub-
circuits with many inputs.

To avoid the expense of an exact image computa-
tion, we propose a method of approximating the care
set using clauses of up to a fixed length k. These
clauses correspond to short cubes in the don’t-care
space. The rationale behind the method (for which
we provide some experimental evidence) is that short

don’t-care cubes are more useful than longer ones
in two-level logic optimization. To avoid generating
and testing all the cubes of length k, we investigate
a machine-learning approach that uses random sam-
pling and SAT to synthesize the prime implicates of
the care set with up to k literals. Experiments show
that this approach is more robust than existing exact
methods based on BDD’s and SAT, and that it can
produce significant reductions in literal count in cases
where other methods are prohibitively expensive.

Related work. The SIS system computes don’t-
care information using an image computation ap-
proach based on BDD’s [9]. This method com-
putes compatible observability don’t care (CODC)
sets, which allow every node (sub-circuit) in a multi-
level network to be optimized independently, but sac-
rifices optimization flexibility. Mishchenko and Bray-
ton [7] introduced a technique of don’t-care approx-
imation by “windowing” (restricting the sub-circuit
environment to a local subset of the entire circuit).
This restriction makes it feasible evaluate the care
set of every node independently, and avoids the need
for CODC’s. They also introduce the use of SAT-
based quantifier elimination [6], augmented with ran-
dom sampling, which they show is more robust than
BDD-based quantifier elimination if the number of
node inputs is less than about ten. However, be-
cause this method enumerates the minterms of the
care set, it cannot be applied to nodes with a large
number of inputs. The method presented here ap-
proximates the care set by restricting the length of
clauses rather than the size of the environment (al-
though it can be combined with windowing). This
makes the method relatively insensitive to the num-
ber of node inputs. We show experimentally that
it can extract useful don’t-care information in cases
where both the CODC method and the minterm enu-
meration method are impractical.

Notations We use P,Q to stand for Boolean for-
mulas or circuits, and U,W to stand for sets of
Boolean variables. We will consistently confuse a for-
mula or circuit over variables U with with its truth
function (a function in (U → {False,True}) →
{False,True}) and also with its set of satisfying

assignments (a subset of U → {False,True}). We
use ¬P for the negation of P , P ∧Q for the conjunc-
tion of P and Q and P ∨ Q for the disjunction of P
and Q. A literal is a Boolean variable or its negation.
A clause is a disjunction of literals, while a cube is
a conjunction of literals. A k-clause is a disjunction
of k literals. A minterm over U is a cube containing
exactly one literal over each variable in U . We will
generally confuse a minterm with its unique satisfying
truth assignment. We use l for literals, c for clauses,
and σ for truth assignments or minterms. Otherwise,
capital letters generally represent sets, while lower
case letters represent individuals.

2 Approximate image computation

The image computation problem can be reduced to
the problem of Boolean quantifier elimination or pro-
jection. That is, suppose we are given a Boolean func-
tion P over a set of Boolean variables U , and a vector
Boolean function f = (f1, . . . , fn) also over U . The
image of P with respect to f is the set of valuations
of f over all the satisfying assignments of P . We can
characterize this set as a Boolean function P ′ over
a vector of variables W = (w1, . . . , wn), representing
the outputs of the function:

P ′ .= ∃U. P ∧ (
n∧

i=1

(wi ⇐⇒ fi))

That is, P ′ is true of an assignment to W when there
exists a valuation of U (the input to f) such that the
value of f is equal to W . The problem of characteriz-
ing the image as a Boolean formula is to construct a
formula equivalent to the above without quantifiers.

Notationally, it will be more convenient to speak of
projection rather than quantification. That is, given
a Boolean function Q and a set of variables W , we
will say that Q ↓ W , the projection of Q onto W , is
∃W c.Q. That is, the projection is the result of exis-
tentially quantifying all Boolean variables not in W ,
leaving a formula dependent only on W . Another
way to view projection is that Q ↓ W is the strongest
Boolean formula over W that is implied by Q. Thus,
the problem of computing Q ↓ W can be reduced to
the computation of the prime implicates of Q over W .

An implicate over W of a Boolean formula Q is a
clause over W that is implied by Q. A prime implicate
over W is an implicate over W that is not implied by
any other implicate over W . It is straightforward
to show that the conjunction of the prime implicates
over W of P is equivalent to P ↓ W .

In this work we will be concerned with comput-
ing prime implicates having at most k literals. Since
this is a subset of the prime implicates, it is an

over-approximation of P ↓ W – the strongest over-
approximation expressible as a conjunction of k-
clauses.

A brute-force approach to this problem would be to
enumerate all the k-clauses over W , testing whether
each is implied by P using a SAT solver. Clearly,
this will only be effective if |W | is small and k is
very small. Here, we will attempt to avoid this enu-
meration by applying the machine learning paradigm.
In this approach, we have a teacher that produces a
set of samples S from the solution space of P , and
a learner that produces a theory T that accounts
for these samples. The function of the teacher is to
choose samples that contradict the learner’s theory,
and thus to force the learner to modify its theory.

In our case, the learner’s theory T is the set of
prime implicates over W of S, with k literals or
fewer. In particular, if the set S of samples is empty,
the learner’s theory is the proposition False. The
teacher may use multiple strategies. The simplest
strategy is to generate random samples satisfying P .
Since the learner’s theory T is initially far too strong,
many of these random samples will falsify T , and thus
cause the learner to update T . A more sophisticated
strategy uses a Boolean satisfiability (SAT) solver to
generate satisfying assignments to P ∧ ¬T . The cost
of finding such a sample is higher, but it is guar-
anteed to cause an update of T . The process ends
when P ∧ ¬T becomes unsatisfiable. At this point,
T is the strongest conjunction of k-clauses over W
implied by P .

To carry out this computation efficiently, we re-
quire an efficient means of updating T when a truth
assignment is added to the sample set S. For this
purpose, we use a trie representation of T . This al-
lows us to quickly find the clauses that conflict with a
new sample and to test whether a clause is subsumed
by existing clauses.

In addition, when the theory T is updated, we
need to be able to quickly update our representation
of P ∧ ¬T in the SAT solver. To do this, we use
an incremental SAT solver, which allows us to copy
updates to the trie structure representing T directly
into the clause database of the SAT solver.

2.1 Prime implicates computation

In a classical prime implicates computation, we gen-
erate new clauses by resolving existing clauses (ap-
plying the consensus rule). A trie structure can be
used to determine whether the new clause is sub-
sumed (implied) by an existing clause, and to find
those clauses that are subsumed by the new clause
and must therefore be removed. Here, however, we
do not use resolution. This is because we expect the

formula P in clause form to contain hundreds to thou-
sands of Boolean variables (one for each gate in a cir-
cuit). This makes a resolution approach impractical.

Instead, we generate a set S of samples from the
satisfying assignments of P , and compute the prime
implicates of this sample set. Since we are inter-
ested only in clauses over W , we project the sam-
ples onto W . Thus, each sample in S is a minterm
over W , and we can think of the sample set S as a
sum-of-products over W . Our problem is thus to in-
crementally compute the set of prime implicates of a
sum-of-products as new minterms are added. More-
over, we wish to restrict the computation to prime
implicates having k literals or fewer.

As in standard approaches to prime implicates
computation, we will use a trie-like structure to rep-
resent the set of prime implicates. Typically, it is
required that tries be ordered, in that the words
they generate must be strictly increasing according to
some total order on the alphabet. In our application,
the tries are unordered. Moreover, we view the trie as
a deterministic finite automaton with a tree-like state
graph (not to be confused with a tree automaton!).
In the usual definition of a trie, the terminal states
of this automaton are exactly the leaves of the tree.
Here, we allow leaves that are not terminal states.
This makes it possible to represent the empty set of
clauses, which otherwise cannot be represented.

For our purposes, a trie over W is a finite automa-
ton (Σ, V, E, ε, F) where Σ, the alphabet, is the set of
literals over W , V is the set of states, E ⊆ V ×Σ×V
is the transition relation, ε ∈ V is the initial state
and F ⊆ V is the set of terminal states. We further
require that the labeled directed graph (V,E) be a
tree rooted at ε.

Every word over Σ can be viewed as a clause. Thus,
we can think of the language of a trie T as a set of
clauses. We will use the notation [T] for the set of
clauses l1 ∨ · · · ∨ ln such that the word l1 · · · ln is in
the language of T . We will say that trie T is reduced
when no clause in [T] is implied by another clause in
[T] (that is, when all clauses in [T] are prime with
respect to [T]).

A fundamental operation on tries is to determine
whether a given clause is implied (subsumed) by some
clause in [T]. An efficient procedure for checking
subsumption in ordered tries is given, for example,
in [5]. Figure 1 shows a similar procedure for un-
ordered tries. Here, c is a clause represented by the
set of its literals. The ability to check subsumption
efficiently will allow us to maintain a trie in reduced
form.

Now suppose we have a set S of samples (minterms

function SubsumedVtx(T, c, v)
if v ∈ FT return true
for all edges (v, l, v′) ∈ VT such that l ∈ c do

if SubsumedVtx(T, c, v′) return true
done
return false

function Subsumed(T, c)
return SubsumedVtx(T, c, εT)

Figure 1: Checking subsumption of a clause in a trie.

over W) and a trie T representing the prime impli-
cates of S. Given a new sample σ, we wish to com-
pute a trie T ′ representing the prime implicates of
S′ = S ∪ {σ}. Figure 2 shows a procedure Update
for this purpose. In this procedure both truth as-
signments and clauses are represented as sets of lit-
erals. The recursive procedure UpdateVtx searches
the trie for conflicts – clauses in [T] that are false
under σ. Each time we encounter a conflict c, we re-
place c with the set of prime implicates of S′ implied
by c. This is done by the procedure Extend. We
note that every implicate of S′ must contain some
literal in σ, since it must be true under σ. Thus, the
only candidates for prime implicates implied by c are
of the form c∨ l where l is a literal in σ. Of course, if
¬l is in clause c, c∨ l is a tautology, so we discard this
clause. Note also that we never generate subsumed
clauses or clauses of length greater than k.

procedure Extend(T, v, L)
remove v from FT

for each literal l ∈ L do
let v′ be a new vertex
add v′ to VT and FT

add edge (v, l, v′) to ET

done

Figure 3: Extending a trie terminal.

This procedure maintains the invariant that all im-
plicates of S′ are implied by some clause in [T]. When
the procedure completes, there are no conflicts, thus
all clauses in [T] are implicates, thus [T] is the set of
prime implicates of S′.

In the actual implementation of this procedure, we
represent each non-terminal state v in the tree by
a list of the pairs (l, v′) such that (v, l, v′) ∈ ET .
This makes it straightforward to recur over the tree.
Sets of literals are represented by bit vectors. Also,
in practice we can save space by deleting any non-

procedure UpdateVtx(T ,σ,v,c)
if v ∈ FT then

if |c| < k then
let L = {l ∈ σ | ¬l 6∈ c and not Subsumed(T, c ∪ {l})}

else let L = ∅
Extend(T, c, L)

else for all edges (v, l, v′) ∈ VT in T do
if ¬l ∈ σ then UpdateVtx(T ,σ,v′,c ∪ {l})

done
end UpdateVtx

procedure Update(T ,σ)
UpdateVtx(T ,σ,εT ,∅)

end Update

Figure 2: Trie update procedure.

b ca ca ca

b

(1) (2) (3) (4)

Figure 4: Updating the trie.

terminal state with an empty set of children, since
such a state does not contribute to the language of T
(and note the deletion of one state can lead to dele-
tion of its parent). This is not shown in the figure for
the sake of clarity.

As an example, Figure 4 shows a sequence of tries
obtained by the procedure Update. We let k = 2.
Trie (1) represents the set containing the empty
clause (False). We add the sample {a, b, c}. Since
the clause False is a conflict, we call Extend with
the literals a, b and c from the sample, obtaining
trie (2). This represents the three unit clauses (a),
(b) and (c). Now we add the sample {a,¬b, c}. The
clause (b) is a conflict. In this case, however, there
are no extensions, since the clauses (b∨a) and (b∨ c)
are subsumed (while (b ∨ ¬b) is a tautology). Thus,
the clause (b) becomes a non-terminal with no chil-
dren and we delete it, yielding trie (3). Finally, we
add the sample {¬a, b, c}. Now clause (a) is a con-
flict. We extend clause (a) only with b in this case,
since (a ∨ c) is subsumed, yielding trie (4). This tree
represents (a ∨ b) ∧ (c). Note, however, that if we
had k = 1, this final extension would have been dis-
allowed, resulting in the deletion of clause (a).

2.2 Generating samples

The procedure Update provides the learner in our
teacher/learner framework. For the teacher, we need
some means of generating useful samples. A useful
sample is one that induces at least one conflict in T .
Early in the computation, it is typically possible to
generate useful samples randomly. However, as the
learner’s theory is refined, random samples become
less useful. Thus, we use a SAT solver for sample
generation. A näıve approach to this would be to
simply convert the formula P∧¬T into a satisfiability
equivalent CNF formula (here we let T stand for the
conjunction of its clauses). We can then use a SAT
solver to find a satisfying assignment. The projection
of this assignment onto W is guaranteed to be a useful
sample.

A more efficient approach is to use an incremen-
tal SAT solver, and to update the clause represen-
tation of P ∧ ¬T “in place” to reflect changes in T .
In this way, we avoid reconstructing the clause rep-
resentation for every sample, and the SAT solver can
reuse conflict clauses learned when computing previ-
ous samples.

We now define a representation Cnf of the trie T in
conjunctive normal form. The clause set Cnf is sat-
isfiable for a given assignment σ to W exactly when
some clause in [T] is false under σ (i.e., when there is
some conflict). For each vertex v ∈ VT , we introduce
fresh Boolean variables sv and pv. The variable sv

will be implied to be true when all the clauses rep-
resented by the subtree rooted at v are true. The
variable pv will be implied to be true when sv is true,
or when the label of the incoming edge of v is true
(intuitively, pv is the contribution of v to its parent).

The set Cnf consists of the following clauses:

• For every non-terminal v ∈ V , the clause

(
∨
{¬pv′ | (v, l, v′) ∈ E}) ∨ sv

• For every non-root v′ ∈ V , with incoming edge
(v, l, v′), the clauses (¬sv′ ∨ pv′) and (¬l ∨ pv′).

• The clause (¬sε).

We can show by induction on the height of the tree
that, for a given assignment to W , there is an as-
signment to the sv and pv variables satisfying Cnf
exactly when some clause in [T] is falsified by W .

Now suppose we extend a terminal state v ∈ V by
a literal set L. The state v becomes non-terminal,
and a new edge (v, l, vl) is added for each l ∈ L.
Figure 5 shows a procedure ExtendCnf that up-
dates Cnf to reflect this change. The parameter E′

is the set of new edges. Notice that this only involves
adding clauses to Cnf, not deleting clauses. Thus,
we do not require from the incremental SAT solver
the ability to delete clauses. Let us assume that the
procedure Extend from the previous section is mod-
ified so that it also calls ExtendCnf, passing the set
E′ of newly added edges. In the actual implementa-
tion, adding clauses is accomplished by calls to an
incremental SAT solver. Note it is also possible to
delete the clauses in Cnf corresponding to deleted
states of T , if the SAT solver supports this.

procedure ExtendCnf(T, v, E′)
for each (v, l, v′) ∈ E′ do

add clauses (¬sv′ ∨ pv′), (¬l ∨ pv′) to Cnf
add clause (

∨
{¬p′v | (v, l, v′) ∈ E′}) ∨ sv

to Cnf

Figure 5: Adding an edge to the CNF representation
of the trie T .

Figure 6 shows a procedure Sample that gener-
ates a new sample based on P and Cnf. It assumes
that the clause representation of P has been added to
Cnf. Thus Cnf is satisfiable exactly when P ∧¬T is
satisfiable. A procedure RandomSat is used to gen-
erate random satisfying assignments of P . The diffi-
culty of this depends on the structure of P . Thus we
postpone a discussion of generating random samples
to the application section. The procedure Sat repre-
sents the SAT solver, and returns either a satisfying
assignment for its argument, or the token Unsat.
The choice of whether to generate a random sample
or apply the SAT solver is arbitrary. Ideally, this

choice should be made so as to roughly balance the
computational effort applied in the two methods. In
the current implementation, the random approach is
applied until 320 consecutive samples produce no con-
flict.

procedure Sample(P,Cnf)
let σ = either RandomSat(P) or Sat(Cnf)
if σ = Unsat return Unsat
return σ ↓ W .

Figure 6: Sample generation.

Now we are ready to put our teacher and our
learner together into a procedure for computing the
k-clause restricted prime implicates. The overall
procedure is shown in figure 7. Our initial the-
ory T contains only the empty clause, representing
the proposition False. The function ToCnf uses
standard methods to convert a formula into a linear-
size satisfiability-equivalent set of clauses. We initial-
ize Cnf so it contains the clause representation of P
and ¬T . Then we loop, generating samples, and up-
dating T until P ∧ ¬T becomes unsatisfiable. Note
that the procedure Update has a side-effect on Cnf,
updating it to reflect any changes in T . As an opti-
mization, we can postpone constructing Cnf until the
first SAT solver call. This avoids adding many unnec-
essary clauses during the random simulation phase.

procedure ApproxProject(P,W, k)
let T be a one-state trie with F = {ε}
let Cnf = ToCnf(P)
add the clause ¬sε to Cnf
while true do

let σ = Sample(P,Cnf)
if σ = Unsat return [T]
Update(T, σ)

done

Figure 7: Procedure for k-clause over-approximate
projection.

3 Application to care set computation

Suppose we are given Boolean circuit over a set of
primary input variables U , with output function vec-
tor g = (g1, . . . , gm). We identify a single-output sub-
circuit φ, with input function vector f = (f1, . . . , fn).

The observability condition P of the sub-circuit is

P
.=

m∨
i=1

(gi|φ ⊕ gi|¬φ)

That is, P is true whenever substituting true and
false for the sub-circuit output yields differing values
at the primary outputs. The care condition P ′ at
the sub-circuit inputs is the image of P with respect
to f , which is characterized over the variables W =
(w1, . . . , wn) by

P ′ .= (P ∧
n∧

i=1

(wi ⇐⇒ fi)) ↓ W

We use the method of the previous section to com-
pute a k-clause over-approximation of this projection.
To generate random samples, we simply choose val-
uations of the inputs U with a uniform distribution.
The valuation of W is then computed from the sub-
circuit input function f . Input valuations that do not
satisfy the observability condition are discarded. The
usefulness of random sampling is thus determined by
the density of the observability space. If φ is observ-
able under a very small fraction of the input assign-
ments, then random sampling will not be useful. In
practice, however, we find random sampling to quite
effective, producing the vast majority of the theory
updates.

3.1 Empirical evaluation

The k-clause approximation method has been imple-
mented in the SIS environment. The derived observ-
ability care set information is used to optimize the
nodes of a multi-level network, using Espresso [8].
The dual of each clause in the care set approxima-
tion yields a cube in the don’t-care set. We do
not construct compatible observability don’t care sets
(CODC’s). Rather, we visit each node in turn, com-
puting a care set approximation for that node based
on the current state of the network, and then opti-
mizing the node before moving on to the next node.

As in [7], we use a “window” surrounding each node
as its environment for approximating the observabil-
ity care set. According to Mishchenko and Brayton’s
terminology, an N ×N window contains nodes up to
a distance N from the node to be optimized in both
the forward (toward outputs) and backward (toward
inputs) directions. Our procedure for generating an
N×N window is precisely as in [7]. For benchmarks,
we use the larger MCNC sequential benchmarks [10]
(names beginning with s) and a subset of the ITC’99
benchmarks [4] (names beginning with b). These
designs were pre-processed by running of version of

script.rugged from the SIS distribution, leaving out
the final step, which applies don’t-care optimization
using the full simplify command. This script typi-
cally produces a few nodes with too many fan-ins to
be processed using the espresso two-level logic min-
imizer [8]. For this reason, the SIS elim command
was modified so that node x is never substituted into
node y when y has more that 20 fan-ins. This results
in nodes with up to about 30 fan-ins, and makes it
possible to pre-process all the designs.

We perform two experiments on the pre-processed
designs. In experiment 1, we make one pass over the
network, simplifying each node with respect to the
computed don’t care cubes, with a given window size
and a given value of k. Table 1 shows run times and
resulting number of SOP literals as we increase k, for
a 4×4 window. The column labeled “orig.” gives the
number of literals after pre-processing. We observe
that k values greater than 2 produce no significant
additional improvement. For each node, we put a
limit on the SAT solver of of 107 total assignments to
Boolean variables (either by decisions or by BCP). If
this limit is reached, the care-set computation for the
node is abandoned. In experiment 1, this occurred
for approximately 0.003% of nodes.

We also observe that a robust ODC computation
allows us to apply don’t-care optimization in ways
that would otherwise be too costly. In our second ex-
periment, we use the same pre-processed benchmarks.
These are then processed using a modified version of
script.rugged. In the original script, the first two of
the three simplification steps do not use don’t-care
information. In the modified script, all three simpli-
fication steps have been replaced with the k-clause
limited ODC method. As a result, ODC simplifica-
tion is applied both before and after algebraic factor-
ization and resubstitution. Table 2 shows the results
of experiment 2, again for a 4× 4 window. Here, in a
few cases, we observe a non-negligible improvement
for k > 2. In this experiment, the rate of abandoned
nodes is approximately 0.02%.

Table 3 compares the results obtained with the
results of experiments 1 and 2 for a 4 × 4 win-
dow and k = 4. In the table new 1 represents ex-
periment 1 (one-pass simplification after preprocess-
ing), while new 2 represents experiment 2 (modi-
fied script.rugged after pre-processing). As we can
see, the additional flexibility for simplification some-
times results in significantly reduced area in experi-
ment 2, though run times are correspondingly higher
(the run times include the entire script, though pro-
cessing time is dominated by simplification).

By way of comparison, the columns labeled fs in

Name SOP literals Run time (s)
orig. k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

b14 9290 8783 8776 8798 38.8 42.9 47.9
b15 13411 12938 12873 12855 183.9 163.9 191.1
b17 47145 45586 44641 44785 397.3 418.1 462.5
b20 19946 18769 18541 18691 122.3 130.9 135.8
b21 22267 19884 20262 20752 140.3 163.6 180.9
b22 28519 27174 26591 27156 195.6 197.1 224.3
s13207.1 2852 2779 2782 2782 3.4 4.3 6.0
s15850.1 4241 4191 4180 4181 4.4 5.2 6.1
s35932 11222 11222 11222 11222 5.7 5.7 5.7
s38417 15470 15287 15266 15190 20.0 21.5 22.6
s38584.1 13056 12943 12872 12823 96.6 78.6 98.1

Table 1: One-pass simplification with 4× 4 window.

Name SOP literals Run time (s)
orig. k = 2 k = 3 k = 4 k = 2 k = 3 k = 4

b14 9290 7504 7443 7473 112.9 130.6 143.3
b15 13411 10428 10360 10396 343.2 436.5 629.9
b17 47145 36982 36017 36110 1470.5 1658.2 2121.0
b20 19946 15809 15453 15525 283.5 313.3 345.9
b21 22267 15994 15702 15628 301.8 357.7 406.8
b22 28519 24190 23759 23451 588.1 703.5 716.0
s13207.1 2852 2602 2556 2570 6.8 8.1 12.1
s15850.1 4241 3984 3993 3972 10.6 12.1 15.3
s35932 11222 11221 11221 11221 34.6 35.4 34.8
s38417 15470 14293 14223 13157 60.5 62.2 60.9
s38584.1 13056 12513 12478 12433 302.1 179.0 227.1

Table 2: Modified script.rugged with 4× 4 window.

Name SOP literals Run time (s)
orig. fs new 1 new 2 mt 1 mt 2 fs new 1 new 2 mt 1 mt 2

b14 9290 – 8798 7473 9024 7828 – 47.9 143.3 44.8 120.0
b15 13411 – 12855 10396 17695 11021 – 191.1 629.9 153.3 500.8
b17 47145 – 44785 36110 58491 37717 – 462.5 2121.0 496.9 1660.5
b20 19946 – 18691 15525 18566 16642 – 135.8 345.9 131.1 353.0
b21 22267 – 20752 15628 19370 17067 – 180.9 406.8 134.1 405.5
b22 28519 – 27156 23451 28077 25379 – 224.3 716.0 206.9 558.3
s13207.1 2852 2685 2782 2570 3162 2663 3.0 6.0 12.1 3.5 6.5
s15850.1 4241 4141 4181 3972 4130 4012 29.4 6.1 15.3 5.5 15.9
s35932 11222 10838 11222 11221 11222 11221 5182.4 5.7 34.8 5.5 33.2
s38417 15470 – 15190 13157 16234 13236 – 22.6 60.9 28.1 67.2
s38584.1 13056 12754 12823 12433 12868 12551 2960.9 98.1 227.1 8.2 54.6
ave. 17038 – 16294 13812 18076 14485 – 125 428 110 343

Table 3: Comparison of methods.

the Table 3 show the corresponding results for the
SIS full simplify command on the pre-processed de-
signs. This command computes CODC’s using Bi-
nary Decision Diagrams. A dash indicates that the
method aborted because the number of BDD nodes
exceeded the fixed limit of 4.8×105. As is clear from
the table, full simplify is only effective for the small-
est designs. In one case (s35932) the BDD method
produces a better result than experiment 2, though
at a very high run time cost.

Finally, we also applied the exact SAT-based
method of extracting don’t care information as de-
scribed in [7]. This method enumerates the minterms
of the care set using random simulation and a SAT
solver (and is essentially the same as the present
method if we let k = ∞). It failed to terminate within
two hours on any of the benchmark designs, even for
a 2 × 2 window. This is not surprising, since a node
with 30 inputs may have on the order of 109 minterms
in its care set. As Mishchenko and Brayton observe,
minterm enumeration is only feasible for nodes hav-
ing up to about 10 inputs. In our last experiment,
we restrict the SIS elim command to produce nodes
with no more than 10 inputs. We then rerun exper-
iments 1 and 2 (including pre-processing), using the
exact minterm enumeration method. The results are
shown in Table 3 in the columns labeled mt 1 and
mt 2. This shows that the ability to handle large
fan-in nodes can reduce overall literal count.

4 Conclusions

We have described a machine-learning technique for
k-clause approximate image computation, and ap-
plied this to approximate ODC computation in logic
synthesis. Since this method does not require enu-
meration of the minterms of the care set, it can be
applied when the number of node inputs is relatively
large. On the other hand, it is essentially equivalent
to the minterm enumeration method when the num-
ber of node inputs is less than or equal to k, so no
precision is lost for nodes with few inputs. Exper-
imentally, we observe that the method is robust in
cases when the BDD-based image computation and
minterm enumeration methods fail. We find that in-
creasing k produces diminishing returns in terms of
area minimization.

We should note that ODC computation is only one
of many applications of Boolean image computation.
By iterating the image operation, we can compute an
over-approximation of the reachable states of a sys-
tem (to be more precise, the strongest inductive in-
variant of the system expressible using k−clauses).
This invariant could be used to derive sequential

don’t-care information, or as an aid in formal veri-
fication.

References

[1] J. R. Burch, E. M. Clarke, and D. E. Long. Sym-
bolic model checking with partitioned transition
relations. In A. Halaas and P. B. Denyer, editors,
VLSI ’91, Edinburgh, Scotland, August 1991.

[2] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L.
Dill, and L. J. Hwang. Symbolic Model Check-
ing: 1020 States and Beyond. In Proceedings
of the Fifth Annual IEEE Symposium on Logic
in Computer Science, pages 1–33, Washington,
D.C., 1990. IEEE Computer Society Press.

[3] O. C., C. Berthet, and J.-C. Madre. Verifica-
tion of synchronous sequential machines based
on symbolic execution. In Joseph Sifakis, edi-
tor, Automatic Verification Methods for Finite
State Systems, International Workshop, Greno-
ble, France, volume 407 of Lecture Notes in Com-
puter Science. Springer-Verlag, June 1989.

[4] F. Corno, M. Sonza Reorda, and G. Squillero.
Rt-level itc 99 benchmarks and first atpg results.
IEEE Design and Test of Computers, pages 44–
53, July-August 2000.

[5] J. de Kleer. An improved incremental algorithm
for generating prime implicates. In AAAI ’92,
1992.

[6] K. L. McMillan. Applying sat methods in un-
bounded symbolic model checking. In Computer-
Aided Verification (CAV 2002), pages 250–264,
2002.

[7] A. Mishchenko and R. K. Brayton. SAT-based
complete don’t-care computation for network
optimization. In IWLS 2004, pages 353–360,
2004.

[8] R. Rudell and A. Sangiovanni-Vincentelli. Exact
minimization of multiple-valued functions for pla
minimization. In ICCAD ’86, pages 352–355,
1986.

[9] Hamid Savoj, Robert K. Brayton, and Hervé J.
Touati. Extracting local don’t cares for network
optimization. In ICCAD ’91, pages 514–517,
1991.

[10] S. Yang. Logic synthesis and optimization
benchmarks, verion 3.0. Technical report, Mi-
croelectronics Center of North Carolina.

