
Why McMillan’s construction is an interpolant. 

 

The resolution proof that ( , ) ( , ) 0A x y B y z = , contains a set of sub-clauses of A, ˆ( , )A x y , 

and a set of sub-clauses of B, ˆ ( , )B y z , so that ˆ ˆ( , ) ( , ) 0A x y B y z =  has been proved by 

SAT. Now form the AND DAG with the same structure as the resolution DAG; its leaves 

are the individual clauses of ˆ ˆ( , ) and ( , )A x y B y z  and its internal nodes are all AND 

nodes. Each node is associated a pivot variable of the resolution proof. Take this DAG 

and replace the A clauses with their global parts ( )
k

g y , the B clauses with 1, and the 

AND operator at the nodes where the pivot variable was an x variable with OR. This 

gives the computational DAG as given by McMillan for the interpolant ( ).I y  Further if 

we put back the clauses of B̂ , then we have formed a computational DAG which 

computes some function ( , )g y z , which we will use later. 

 

Since ˆ( , ) ( , )A x y A x y⊆ , we first prove that ˆ ( , ) ( )A x y I y⊆ . Note that one computation 

DAG for Â  is obtained from the AND DAG, associated with the resolution proof, of 
ˆ ˆ( , ) ( , )A x y B y z , where the leaves are the original clauses of Â  but with all B̂  clauses set 

to 1. Each internal node of this DAG represents a function and each is a unate function of 

the leaves. Thus if we replace any internal function with a larger one, then the function at 

the root of the DAG increases too. Consider a node where 
i

x  was the pivot variable 

associated with the node, let the child function associated with the positive literal be 

denoted by p, and the other child function by n. (Recall at a pivot, a resolution was done 

where one side had the positive literal and the other the negative literal.) The function of 

the AND node is 
i i i i i ii x x i x x x x

f pn x p n x p n n p= = + ⊆ + . Thus the AND node can be 

upper-bounded by the OR of two other functions. We argue that these two functions are 

precisely the ones that are created by McMillan’s construction. Since the cofactor 

operator commutes with the AND and OR operators, the cofactor can be pushed all the 

way to the leaves of the DAG. Suppose we are following the 
ix

n  side. At a leaf with an 

Â  clause, the local part ( )
k

l x  of the clause at the leaf, cannot have the 
i

x  literal in it 

(since 
ix

n  is being computed). Thus at such a leaf, after all cofactors have been pushed 

down to the leaves, the clause ( ) ( )+
k k

l x g y  becomes only its global part, ( )
k

g y , which 

is what is given by the McMillan construction for ( )I y  at each Â  leaf. Thus the 

computational DAG for ˆ( , )A x y  has been transformed into the one for ( )I y  by 

operations which only increased some functions at internal nodes. Thus, ˆ ( , ) ( )⊆A x y I y . 

 

To show that ˆ( ) ( , ) 0I y B y z = , consider the computational DAG where ˆ( , )A x y  clauses 

have been replaced by ˆ( )A y  clauses, the OR nodes have been inserted, and the ˆ( , )B y z  

have been left alone. This DAG computes some function ( , )g y z . We first show that 

( , ) 0≡g y z  and then use this to prove ˆ( ) ( , ) 0I y B y z = . Again, the DAG is unate in the 

leaves. We will increase this function by increasing the functions computed at its internal 



AND nodes. At an AND node, the pivot variable was a y or z variable, denoted by 
i

w . 

We increase the function at every such node as follows: 

( ) ( )
i i i ii w i w i w i w

f np w np w np w n w p= = + ⊆ + . 

Again the cofactoring operation can be pushed down to the leaves, implying that each 

literal appearing in any leaf is evaluated to 0.  Thus each leaf evaluates to 0 since all 

variables are eventually resolved out, because resolution derived the empty clause. This 

implies that ( , ) 0≡g x y , since the larger function computes is identically 0.  

 

Now assume that ˆ ˆ( , )y z  is an assignment such that ˆ ˆ ˆ( , ) 1=B y z . Then every clause of B̂  is 

1. Plugging in 1 for each B̂  clause in the ( , )g y z  DAG results in ( )I y , and thus this 

computes ˆ( )I y . However, since ( , ) 0≡g y z , then ˆ( )I y  must be 0. Thus ˆ ⇒B I , or 

ˆ 0≡I B . 


